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Abstract

In 1980 F. Wattenberg constructed the Dedekind completion∗d of the
Robinson non-archimedean field ∗ and established basic algebraic properties of
∗d [6]. In 1985 H. Gonshor established further fundamental properties of ∗d

[7].In [4] important construction of summation of countable sequence of
Wattenberg numbers was proposed and corresponding basic properties of such
summation were considered. In this paper the important applications of the
Dedekind completion∗d in transcendental number theory were considered. We
dealing using set theory ZFC  ∃(-model of ZFC).Given an class of analytic
functions of one complex variable f ∈ z, we investigate the arithmetic nature
of the values of fz at transcendental points en,n ∈ ℕ.Main results are: (i) the both
numbers e   and e   are irrational, (ii) number ee is transcendental. Nontrivial
generalization of the Lindemann- Weierstrass theorem is obtained.
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1.Introduction.
In 1873 French mathematician, Charles Hermite, proved that e is

transcendental. Coming as it did 100 years after Euler had established the
significance of e, this meant that the issue of transcendence was one
mathematicians could not afford to ignore.Within 10 years of Hermite’s
breakthrough,his techniques had been extended by Lindemann and used to add 
to the list of known transcendental numbers. Mathematician then tried to prove that



other numbers such as e   and e   are transcendental too,but these questions
were too difficult and so no further examples emerged till today’s time. The
transcendence of e has been proved in1929 by A.O.Gel’fond.

Conjecture 1. Whether the both numbers e   and e   are irrational.
Conjecture 2. Whether the numbers e and  are algebraically independent.
However, the same question with e and  has been answered:
Theorem.(Nesterenko, 1996 [1]) The numbers e and  are algebraically
independent.
Throughout of 20-th century,a typical question: whether f is a transcendental

number for each algebraic number  has been investigated and answered many
authors.Modern result in the case of entire functions satisfying a linear differential
equation provides the strongest results, related with Siegel’s E-functions
[1],[2].Reference [1] contains references to the subject before 1998, including
Siegel E and G functions.

Theorem.(Siegel C.L.) Suppose that  ∈ , ≠ −1,−2, . . . , ≠ 0.

z  ∑n0
 zn

  1  2     n
.
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Then  is a transcendental number for each algebraic number  ≠ 0.
Let f be an analytic function of one complex variable f ∈ z.
Conjecture 3.Whether f is an irrational number for given
transcendental number .
Conjecture 4.Whether f is a transcendental number for given
transcendental number .
We dealing using set theory ZFC  ∃(-model of ZFC).
In this paper we investigate the arithmetic nature of the values of fz at

transcendental
points en,n ∈ ℕ.
Definition 1.1. Let gx :  →  be any real analytic function such that: (i)

gx ∑
n0



anxn, |x|  r,∀nan ∈ , 1.2

and where (ii) the sequence ann∈ℕ is primitive recursive (constructive).
We will call any function given by Eq.(1.2) constructive -analytic function and

denoted
such function by gx.
Definition 1.2.[3],[4]. A transcendental number z ∈  is called
#-transcendental number over field , if there does not exist constructive

-analytic
function gx such that gz  0, i.e. for every constructive -analytic function

gx the
inequality gz ≠ 0 is satisfied.



Definition 1.3.[3],[4].A transcendental number z is called w-transcendental
number over field ,if z is not #-transcendental number over field ,i.e.there
exists an constructive -analytic function gx such that gz  0.
Notation 1.1.We will call for a short any constructive -analytic function gx

simply
-analytic function.
Example 1.1. Number  is transcendental but number  is not #-transcendental

number
over field  as
(1) function sinx is a -analytic and
(2) sin 

2
 1, i.e.

−1  
2
− 3

233!
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255!
− 7

277!
. . . −12n12n1

22n12n  1!
. . . 0.
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Note that the sequence an 
−12n12n1

22n12n  1!
,n  0,1,2. . . . . obviously is primitive

recursive.
Example 1.2. Let 0  1. For each n  0 choose an rational number n

inductively such
that

1 − ∑k1
n−1 kek − n!−1  nen  1 − ∑k1

n−1 kek.

The rational number n exists because the rational numbers are dense. Now the
power

series fx  1 − ∑n1
 nen has the radius of convergence 

and fe  0.However any
sequence nn∈ℕ obviously is not primitive recursive.
Main results are.
Theorem1.1. Assume that set theory ZFC  ZFC  ∃(-model of ZFC) is

consistent.
Let nn∈ℕ be any sequence defined above and let M by nonstandard model

of
ZFC.Then nn∈ℕ ∉ M.
Theorem 1.2.[3],[4].Number e is #-transcendental over .
From theorem 1.1 immediately follows.
Theorem 1.3.Number ee is transcendental.
Theorem 1.4.[3],[4]. The both numbers e   and e −  are irrational.
Theorem 1.5.For any  ∈  number e is #-transcendental over the field .
Theorem 1.6.[3],[4]. The both numbers e   and e−1   are irrational.
Theorem 1.7.[4] Let flz, l  1,2, . . . be a polynomials with coefficients in ℤ.
Assume that for any l ∈ ℕ algebraic numbers over the field  : 1,l, . . . ,kl,l,
kl ≥ 1, l  1,2, . . . form a complete set of the roots of flz such that



flz ∈ ℤz, deg flz  kl, 1.4

and al ∈ , l  1,2, . . . ;a0 ≠ 0, where the sequence all∈ℕ is primitive recursive.
Assume

that

a0 ∑
l1



|al |∑
k1

kl

|ek,l |  . 1.5

Then

a0 ∑
l1



al∑
k1

kl

ek,l ≠ 0. 1.6

Remark 1.1.Note that Theorem 1.2-1.7 can be proven (instead set theory
ZFC ) using a

theory RCA0  ∃S.Here (i) RCA0 is the subsystem of second-order arithmetic
whose

axioms are the axioms of Robinson arithmetic, induction for Σ1
0 formulas, and

comprehension for Δ1
0 formulas and (ii) S a minimal ω-model of RCA0 where S

consists of the all recursive subsets of ω [15]. In this case one can use
constructive

Moerdijk’s approach instead nonconstructive ultrapower construction acepted in
this paper;

see Remark 1.3 below.
Remark 1.2.The subsystem RCA0 is the one most commonly used as a base

system for reverse mathematics. The initials "RCA" stand for "recursive
comprehension axiom", where "recursive" means "computable", as in recursive
function.This name is used because RCA0 corresponds informally to "computable
mathematics". In particular, any set of natural numbers that can be proven to exist
in RCA0 is computable, and thus any theorem which implies that noncomputable
sets exist is not provable in RCA0. To this extent, RCA0 is a constructive system.

Remark 1.3. As is well known, elementary nonarchimedean extensions of the
real number structure  can be obtained in essentially two different ways, both
nonconstructive: one is to use an ultrapower construction [5], the other is to use the
compactness theorem.

As is known from topos theory the category of sheaves over a generalised
topological space is a universe of variable sets a Grothendieck topos which obeys
the laws of intuitionistic logic rather than classical logic We briefly review Moerdijk’s
sheaf model construction from [9]-[10].To motivate the construction recall Los’s
fundamental theorem for ultrapowers which states that for any ultrafilter U on a set
I any ℒ-structure M and any ℒ-formula x1, . . . ,xn,

MI/U  1, . . . ,n  i ∈ I|M  1i, . . . ,ni 1.7

That the filter is an ultrafilter i.e. maximal among proper filters on I is crucial for
proving the equivalence when involves the logical constants and Moerdijk gave a
constructive analogue of Los’s fundamental theorem, by changing the notion of



model to a sheaf model over a category of filters The idea of shifting to a
nonstandard semantics occurs also in Martin Löf [11].

A filter base ℱ  F,Fii∈I consists of a nonvoid index set I and a family
Fii∈I of subsets of an underlying set F called base sets satisfying the filtering
condition for all i, j ∈ I there exists k ∈ I such that Fk ⊆ Fi ∩ Fj.The filter generated
is then S ⊆ F : ∃i ∈ IFi ⊆ S For constructive reasons it will be better to work
only withthe bases of filters. So in the sequel we shall abuse the language and
simply call them filters. Let ℱ  F,Fii∈I and ℑ  G,Gii∈I be filters. A
continuous map  from ℱ to ℑ in symbols  : ℱ → ℑ is a partial function  : F → G
which is totally defined on some base set of ℱ and satisfies the continuity condition
∀j ∈ J∃i ∈ I Fi  ⊆ Gj Two such morphisms are equivalent if they agree on
some base set of ℱ. The filters together with the continuous maps then form a
category B with terminal object and all pullbacks see [9] and [12]. For each set A
there is a trivial filter A  AA. In this way the category of sets can be
considered as a full subcategory of B. Note that the set of morphisms from ℱ to A,
HomBF,A can be identified with the reduced power AF/ℱ As for any category the
hom-sets give a contravariant functor

∗
A  HomB−,A : Bop → Sets. 1.8

We now define a Grothendieck topology K on B so that ∗A becomes a sheaf Let
ℑk  Gk, Gj∈Jk

k , k  1, . . . ,n and ℱ  F,Fii∈I be filters. A finite set of

continuous maps k : ℑk → ℱ
k1
n is called a K-cover of ℱ if for all

j1 ∈ J1, . . . , jn ∈ Jn there exists i ∈ I for which

1 Gj1
1 . . . n Gjn

n ⊇ Fi 1.9

In case  : ℑ → ℱ g is a cover, we say that  is a covering map which is the
same as an epimorphism in B. The category of sheaves over the topology B,K

denoted N for nonstandard universe U is a universe containing both standard and
nonstandard objects. With this topology each presheaf of the form ∗A becomes a
sheaf. This sheaf is the nonstandard version of A. The sheaf of locally constant
functions ΔA is a subsheaf of ∗A denoted by A which constitute the standard
elements of ∗A. In particular each constant element

∗a  x  a ∈ ∗Aℱ is standard. For each relation R ⊆ A1    An define a
subsheaf ∗R of ∗A1      ∗An by

1, . . . ,n ∈
∗
Rℱ  ∃i ∈ I∀u ∈ Fi1, . . . ,n ∈ R, 1.10

where ℱ  F,Fii∈I.We assume now that ℒ is a first order language including
symbols for all sets relations functions and constants of interest to us here this can
be made precise using universes of sets. ∗ℒ denotes the language where all
symbols have been decorated with ∗.For any ℒ formula  we define its ∗ transform
∗ to be the ∗ℒ formula where all symbols have been replaced by their starred
counterparts. A formula which is a transform of an ℒ formula is called internal. The

language ∗ℒ can be regarded as a sublanguage of the language ℒ N of the

topos N. We now use ordinary sheaf semantics to interpret ℒ N .Corresponding



to the fundamental theorem for ultrapowers we have the following:
Theorem (Moerdijk) Let x1, . . . ,xn be an ℒ formula where x1, . . . ,xn vary
over S1, . . . ,Sn respectively Then for 1 ∈ ∗S1ℱ, . . . ,n ∈ ∗Snℱ :

ℱ  ∗1, . . . ,n iff ∃i ∈ I∀u ∈ Fi1, . . . ,n. 1.11

We list the main principles valid for the model N but refer to [12-13].

Theorem. (Transfer principle). For any ℒ formula  :  is true iff ∗ holds in N .

Theorem. (Idealization). The following is true in N for any ℒ-formula  : If for
any standard
n and any sequence a0, . . . ,an ∈ S there exists z ∈ ∗T such that ∗x,ak, z for
k  0, . . . ,n, then there is some z ∈ ∗T such that for all ∈ S : x,y, z.
Theorem. (Underspill). The following holds in N for any ℒ-formula  : If ∗x,n

for all in finite n ∈ ∗ℕ then there is some standard n with ∗x,n.
In paper [14] the 1-saturation principle was established, see [14] Theorem 3.1.

Thereby all the main principles of nonstandard analysis are available to us Note
however that the transfer principle is weaker than the usual since the interpretation

of the logical constants is nonstandard in N. As a consequence the standard part
map does not take its customary form (see [14] section 4). Moreover induction and

dependent choice is valid in N for the set of standard natural numbers ℕ; see [12].
This means that the results of constructive analysis [16-17] can be reused within
the model. To prove results in constructive analysis one need to use the transfer
principle For some examples of this, see [14] Section 5.

2. Preliminaries.Short outline of Dedekind
hyperreals and Gonshor idempotent theory

Let  be the set of real numbers and ∗ a nonstandard model of  [5]. ∗ is not
Dedekind complete.For example, 0  x ∈ ∗| x ≈ 0 and  are bounded

subsets of ∗ which have no suprema or infima in ∗.Possible completion of the
field ∗ can be constructed by Dedekind sections [6],[7]. In [6] Wattenberg
constructed the Dedekind completion of a nonstandard model of the real numbers
and applied the construction to obtain certain kinds of special measures on the set
of integers. Thus was established that the Dedekind completion ∗d of the field ∗
is a structure of interest not for its own sake only and we establish further important
applications here. Important concept introduced by Gonshor [7] is that of the
absorption number of an element a ∈∗d which, roughly speaking, measures the
degree to which the cancellation law a  b  a  c  b  c fails for a.

2.1 The Dedekind hyperreals ∗d



Definition 2.1. Let ∗ be a nonstandard model of  and P∗ the power set of
∗.

A Dedekind hyperreal  ∈ ∗d, ∉ ∗ is an ordered pair U,V ∈ P∗  P∗
that

satisfies the next conditions:
1.∃x∃yx ∈ U ∧ y ∈ V.2. U ∩ V  .3.∀xx ∈ U  ∃yy ∈ V ∧ x  y.
4. ∀xx ∈ V  ∃yy ∈ V ∧ x  y.5. ∀x∀yx  y  x ∈ U ∨ y ∈ V.

Compare the Definition 2.1 with original Wattenberg definition [6],(see [6]
def.II.1).

Designation 2.1. Let U,V   ∈ ∗d. We designate in this paper

U  cut−,V  cut

  cut−,cut

Designation 2.2. Let  ∈ ∗.We designate in this paper

#  cut−,#  cut

  #,#

Remark 2.1. The monad of  ∈ ∗ is the set: x ∈ ∗| x ≈  is denoted by

.
Supremum of 0 is denoted by d. Supremum of  is denoted by Δd.Note

that [6]

d 
∗
−, 0  0,

Δd  
n∈ℕ

∗−,n.

Let A be a subset of ∗ bounded above. Then supA exists in ∗d [6].
Example 2.1. (i) Δd  sup ∈ ∗d\∗, (ii) d  sup 0 ∈ ∗d\∗.
Remark 2.2. Unfortunately the set ∗d inherits some but by no means all
of the algebraic structure on ∗.For example,∗d is not a group with
respect to addition since if x  ∗d y denotes the addition in

∗d then:
d  ∗d d  d  ∗d 0 ∗d  d.Thus ∗d is not even a ring but pseudo-ring only.
Definition 2.2We define:
1.The additive identity (zero cut) 0 ∗d , often denoted by 0

# or simply 0 is
0 ∗d  x ∈ ∗| x  0 ∗ .



2.The multiplicative identity 1 ∗d , often denoted by 1
# or simply 1 is

1 ∗d  x ∈ ∗| x  ∗ 1 ∗ .

Given two Dedekind hyperreal numbers  ∈ ∗d and  ∈ ∗d we define:
3. Addition   ∗d  of  and  often denoted by    is
    x  y| x ∈ ,y ∈  .

It is easy to see that   ∗d 0 ∗d   for all  ∈ ∗d.
It is easy to see that   ∗d  is again a cut in ∗ and   ∗d     ∗d .
Another fundamental property of cut addition is associativity:
  ∗d   ∗d     ∗d   ∗d .
This follows from the corresponding property of ∗.
4.The opposite −∗d  of , often denoted by −

# or simply by −, is
−  x ∈ ∗| − x ∉ ,−x is not the least element of ∗\
5.We say that the cut  is positive if 0#   or negative if   0#.
The absolute value of ,denoted ||, is ||  , if  ≥ 0 and ||  −, if  ≤ 0
6.If ,  0 then multiplication   ∗d  of  and  often denoted    is
    z ∈ ∗| z  x  y for some x ∈ ,y ∈  with x,y  0 .

In general,     0 if   0 or   0,
    ||  || if   0,  0 or   0,  0,
    −||  || if   0,  0,or   0,  0.
7. The cut order enjoys on ∗d the standard additional properties of:
(i) transitivity:  ≤  ≤    ≤ .
(ii) trichotomy: eizer   ,   or    but only one of the three
(iii) translation:  ≤     ∗d  ≤   ∗d .

2.2 The Wattenberg embeding ∗ into ∗d

Definition 2.3.[6]. Wattenberg hyperreal or #-hyperreal is a nonepty subset  
∗ such that:

(i) For every a ∈  and b  a, b ∈ .
(ii)  ≠ , ≠ ∗.
(iii)  has no greatest element.
Definition 2.4.[6].In paper [6] Wattenberg embed ∗ into ∗d by following way:
if  ∈ ∗ the corresponding element, #, of ∗d is

#  x ∈ ∗ x   2.1

Remark 2.3.[6]. In paper [6] Wattenberg pointed out that condition (iii) above is
included only to avoid nonuniqueness. Without it # would be represented by both
#and #  .

Remark 2.4.[7]. However in paper [7] H. Gonshor pointed out that the definition
(2.1) in Wattenberg paper [6] is technically incorrect. Note that Wattenberg [6]
defines − in general by



−  a ∈ ∗ − a ∉  . 2.2

If  ∈ ∗d i.e. ∗d\ has no mininum, then there is no any problem with definitions
(2.1) and (2.2). However if   a# for some a ∈ ∗, i.e. #  x ∈ ∗ x  a then

according to the latter definition (2.2)

− #  x ∈ ∗ x ≤ −a 2.3

whereas the definition of ∗d requires that:

−#  x ∈ ∗ x  −a , 2.4

but this is a contradiction.
Remark 2.5.Note that in the usual treatment of Dedekind cuts for the ordinary

real numbers both of the latter sets are regarded as equivalent so that no serious
problem arises [7].

Remark 2.6.H.Gonshor [7] defines −# by

−#  x ∈ ∗ ∃bb  a ∧ −b ∉ a , 2.5

Definition 2.5. (Wattenberg embeding) We embed ∗ into ∗d of the following
way: (i) if  ∈ ∗, the corresponding element # of ∗d is

#  x ∈ ∗|x ≤∗  2.6

and

−#  a ∈ ∗ − a ∉   . 2.7

or in the equivalent way,i.e. if  ∈ ∗ the corresponding element # of ∗d is

#  x ∈ ∗|x ∗ ≥  2.8

Thus if  ∈ ∗ then #  A|B where

A  x ∈ ∗|x ≤∗  ,B  y ∈ ∗|y ∗ ≥  . 2.9

Such embeding ∗ into ∗d Such embeding we will name Wattenberg embeding

and to designate by ∗
#
 ∗d

Lemma 2.1.[6].
(i) Addition ∘  ∗d ∘ is commutative and associative in∗d.
(ii) ∀ ∈ ∗d :   ∗d 0 ∗d  .
(iii) ∀, ∈ ∗ : #  ∗d #    ∗ #.
Remark 2.7. Notice, here again something is lost going from ∗ to ∗d since



a   does
not imply        since 0  d but 0  d  d  d  d.
Lemma 2.2.[6].
(i) ≤∗d a linear ordering on

∗d often denoted ≤,which extends the usual
ordering on

∗.
(ii)  ≤∗d  ′ ∧  ≤∗d ′    ∗d  ≤∗d  ′  ∗d 

′.

(iii)   ∗d 
′ ∧   ∗d 

′    ∗d   ∗d 
′  ∗d 

′.

(iv) ∗ is dense in ∗d.That is if   ∗d  in
∗d there is an a ∈ ∗ then

  ∗d a
#  ∗d .

(v) Suppose that A  ∗d is bounded above then supA 
∈A

sup   ∈A
cut−

exist in ∗d.
(vi) Suppose that A  ∗d is bounded below then infA 

∈A

inf   ∈A
cut

exist in ∗d.

Remark 2.8.Note that in general case infA 
∈A

inf  ≠ 
∈A

cut−. In particular

the formula for infA given in [6] on the top of page 229 is not quite correct [7], see
Example 2.2. However by Lemma 2.2 (vi) this is no problem.

Example 2.2.[7].The formula infA 
∈A

inf 
∈A

cut− says

∈A

inf a ∃dd  0 a  d ∈ 
∈A

cut−

Let A be the set A  a  d where d runs through the set of all positive numbers in
∗, then infA  a  x|x  a. However

∈A

cut−  x|x ≤ a.

Lemma 2.3.[6].

(i) If  ∈ ∗ then −∗d #  −∗ 
#.

(ii) −∗d−∗d   .
(iii)  ≤∗d   −∗d  ≤∗d −∗d .
(iv) −∗d  ∗d −∗d  ≤∗d −∗d   ∗d  .

(v) ∀a ∈ ∗ : −∗a#  ∗d −∗d   −∗d a#  ∗d .

(vi)   ∗d −∗d  ≤∗d 0 ∗d .
Proof.(v) By (iv): −a#  − ≤ −a#  .
(1) Suppose now c ∈ −a#   this means
(2) ∃c1c  c1 ∈ −a#   and therefore
(3) −c1 ∉ a#  .
(4) Note that: −c − a ∉  (since −c − a ∈  and a − c − c1 ∈ a# imply
−c1  a − c − c1  −c − a ∈ a#   but this is a contradiction)
(5) Thus −c − a ∈  and therefore c  a ∈ −.



(6) By similar reasoning one obtain: c1  a ∈ −.
(7) Note that: −a − c1 − c ∈ a# and therefore
c  −a − c1 − c  c1  a ∈ −a#  −.
Lemma 2.4.(i) ∀a ∈ ∗,∀ ∈ ∗d, ∈ ∗, ≥ 0 : −a#  −#  −#a#  ,
(ii) ∀a ∈ ∗,∀ ∈ ∗d, ∈ ∗, ≥ 0 : a#  #  #a#  .
Proof.(i) For   0 the statement is clear. Suppose now without loss of

generality
  0. By Lemma 2.3.(iv): −a#  −# ≤ −#a#  #.
(1) Suppose c ∈ −#a#   and therefore c

 ∈ −a
#  , but this means

(2) ∃c1 c
  c1

 ∈ −a#   and therefore

(3) − c1 ∉ a#  .

(4) Note that: − c − a ∉  (since − c − a ∈  and a −
c
 −

c1
 ∈ a# imply

− c1  a − c
 −

c1
  − c − a ∈ a#   but this is a contradiction)

(5) Thus − c − a ∈  and therefore c  a ∈ −
#.

(6) By similar reasoning one obtain: c1  a ∈ −#.
(7) Note that: −a − c1 − c ∈ #a# and therefore
c  −a − c1 − c  c1  a ∈ −a#  −#.
(ii) Immediately follows from (i) by Lemma 2.3.
Definition 2.6.Suppose  ∈ ∗d. The absolute value of  written ||
is defined as follows:

|| 
 if  ∗d

≥ 0 ∗d

−∗d  if  ≤∗d 0 ∗d

Definition 2.7.Suppose , ∈ ∗d.The product   ∗d , is defined
as follows: Case (1) , ∗d  0 ∗d :

  ∗d  

a  ∗ b|0 ∗d  ∗d a
#  ∗d  ∧ 0 ∗d  ∗d b

#  ∗d   ∗ − , ∗0
#.

2.10

Case (2)   ∗d 0 ∗d ∨   ∗d 0 ∗d :   ∗d   0 ∗d .
Case (3)   ∗d 0 ∗d  ∨   ∗d 0 ∗d  ∨   ∗d 0 ∗d ∧   ∗d 0 ∗d 

  ∗d   ||  ∗d || iff   ∗d 0 ∗d ∧   ∗d 0 ∗d ,

  ∗d   −∗d ||  ∗d || iff   ∗d 0 ∗d  ∨   ∗d 0 ∗d .
2.11

Lemma 2.5.[6]. (i) ∀a,b ∈ ∗ : a  ∗ b#  a#  ∗d b
#.

(ii) Multiplication   ∗  is associative and commutative:



  ∗d   ∗d     ∗d   ∗d ,   ∗d     ∗d . 2.12

(iii) 1 ∗d  ∗d   ; −1 ∗d  ∗d   −∗d , where 1 ∗d  1 ∗
#.

(iv) ||  ∗d ||  ||  ∗d ||.
(v)

 ≥ 0 ∧  ≥ 0 ∧  ≥ 0    ∗d   ∗d     ∗d   ∗d   ∗d . 2.13

(vi)

0 ∗d  ∗d   ∗d  ′, 0 ∗d  ∗d   ∗d ′    ∗d   ∗d  ′  ∗d ′. 2.14

Lemma 2.6.Suppose  ∈ ∗ and , ∈ ∗d. Then

# ≥ 0 ∧  ≥ 0  #  ∗d  −∗d   #  ∗d  −∗d #  ∗d . 2.15

Proof. We choose now: (1) a ∈ ∗ such that: −  a#  0.
(2) Note that #   −   #   −   #a# − #a#.
Then from (2) by Lemma 2.4.(ii) one obtain
(3) #   −   #   −   a#  − #a#.Therefore
(4) #   −   #    a# −  − #a#.
(5) Then from (4) by Lemma 2.5.(v) one obtain
(6) #   −   #    #  a# −  − #a#.
Then from (6) by Lemma 2.4.(ii) one obtain
(7) #   −   #    #  a# − # − #a#  #   − #.
Definition 2.8. Suppose  ∈ ∗d, 0  ∗d  then 

−1∗d is
defined as follows:
(i) 0 ∗d  ∗d  : −1∗d  infa−1∗ |a ∈ ,
(ii)   ∗d 0 : −1∗d  −∗d −∗d 

−1∗d .

Lemma 2.7.[6].

(i) ∀a ∈ ∗ : a#−1∗d w a−1∗ 
#.

(ii) −1∗ 
−1∗  .

(iii) 0 ∗d  ∗d  ≤∗d   −1∗d ≤∗d 
−1∗d .

(iv) 0 ∗d  ∗d  ∧ 0 ∗d  ∗d  
 −1∗d  ∗d −1∗d ≤∗d   ∗d 

−1∗d

(v) ∀a ∈ ∗ : a ≠∗ 0 ∗  a#−1∗d  ∗d −1∗d  a#  ∗d 
−1∗d .

(vi)   ∗d 
−1∗d ≤∗d 1 ∗d .

Lemma 2.8.[6]. Suppose that a ∈ ∗,a  0,, ∈ ∗d,   0,  0.Then
a#  ∗d   ∗d   a#  ∗d   ∗d a

#  ∗d .
Theorem 2.1.Suppose that S is a non-empty subset of ∗d which is
bounded from above, i.e. supS exist and suppose that
 ∈ ∗,  0.Then

x∈S

sup #  x  # 
x∈S

sup x  #  supS. 2.16



Proof.Let B  supS.Then B is the smallest number such that, for any x ∈ S,x
≤ B.Let T  #  x|x ∈ S.Since #  0,#  x ≤ #  B for any x ∈ S.Hence T is
bounded above by #  B.Hence T has a supremum CT  s-supT. Now we have to
prove that CT  #  B   #  supS.Since #  B  #  supS is an upper
bound for Tand C is the smallest upper bound for T,CT ≤ #  B.Now we repeat the
argument above with the roles of S and T reversed. We know that CT is the
smallest number such that, for any y ∈ T,y ≤ CT.Since #  0 it follows that
#−1  y ≤ #−1  CT for any y ∈ T.But S  #−1  y|y ∈ T .Hence #−1  CT

is an upper bound for S.But B is a supremum for S.Hence B ≤ #−1  CT and
#  B ≤ CT.We have shown that CT ≤ #  B and also that #  B ≤ CT.Thus
#  B  CT.

2.3 Absorption numbers in ∗d.
One of standard ways of defining the completion of ∗ involves restricting

oneself to subsets, which have the following property ∀0∃xx∈ ∃yy∈ y − x   .

It is well known that in this case we obtain a field. In fact the proof is essentially the
same as the one used in the case of ordinary Dedekind cuts in the development of
the standard real numbers, d,of course, does not have the above property
because no infinitesimal works.This suggests the introduction of the concept of
absorption part ab.p.  of a number  for an element  of ∗d which, roughly
speaking, measures how much  departs from having the above property [7].

Definition 2.9.[7]. Suppose  ∈ ∗d, then

ab.p.   d ≥ 0|∀xx∈x  d ∈ . 2.17

Example 2.5.
(i) ∀ ∈ ∗ : ab.p. #  0,
(ii) ab.p. d  d,
(iii) ab.p. −d  d,
(iv) ∀ ∈ ∗ : ab.p. #  d  d,
(v) ∀ ∈ ∗ : ab.p. # − d  d.
Lemma 2.9.[7].
(i) c  ab.p.  and 0 ≤ d  c  d ∈ ab.p. 
(ii) c ∈ ab.p.  and d ∈ ab.p.   c  d ∈ ab.p. .
Remark 2.9. By Lemma 2.7 ab.p.  may be regarded as an
element of ∗d by adding on all negative elements of ∗d to ab.p. .
Of course if the condition d ≥ 0 in the definition of ab.p.  is deleted we
automatically get all the negative elements to be in ab.p.  since
x  y ∈   x ∈ .The reason for our definition is that the real interest lies
in the non-negative numbers. A technicality occurs if ab.p.   0. We
then identify ab.p.  with 0. [ab.p.  becomes x|x  0 which by our
early convention is not in ∗d].
Remark 2.10. By Lemma 2.7(ii), ab.p.  is additive idempotent.



Lemma 2.10.[7].
(i) ab.p.  is the maximum element  ∈ ∗d such that     .
(ii) ab.p.  ≤  for   0.
(iii) If  is positive and idempotent then ab.p.   .
Lemma 2.11.[7]. Let  ∈ ∗d satsify   0. Then the following are
equivalent. In what follows assume a,b  0.
(i)  is idempotent,
(ii) a,b ∈   a  b ∈ ,
(iii) a ∈   2a ∈ ,
(iv) ∀nn∈ℕa ∈   n  a ∈ ,
(v) a ∈   r  a ∈ , for all finite r ∈ ∗.
Theorem 2.2.[7]. −    −ab.p. .
Theorem 2.3.[7]. ab.p.    ≥ ab.p. .
Theorem 2.4.[7].
(i)    ≤     −ab.p.    ≤ .
(ii)         −ab.p.     −ab.p.   .
Theorem 2.5.[7].Suppose , ∈ ∗d, then
(i) ab.p. −  ab.p. ,
(ii) ab.p.     maxab.p. ,ab.p. 
Theorem 2.6.[7]. Assume   0. If  absorbs − then  absorbs .
Theorem 2.7.[7]. Let 0   ∈ ∗d. Then the following are equivalent
(i)  is an idempotent,
(ii) −  −  −,
(iii) −    −.
(iv) Let Δ1 and Δ2 be two positive idempotents such that Δ2  Δ1.
Then Δ2  −Δ1  Δ2.

2.4 Gonshor types of  with given ab.p. .
Among elements of  ∈ ∗d such that ab.p.   Δ one can
distinguish two many different types following [7].
Definition 2.10.[7].Assume Δ  0.
(i)  ∈ ∗d has type 1 if ∃xx ∈ ∀yx  y ∈   y ∈ Δ,
(ii)  ∈ ∗d has type 2 if ∀xx ∈ ∃yy ∉ Δx  y ∈ , i.e.
 ∈ ∗d has type 2 iff  does not have type 1.
(iii)  ∈ ∗d has type 1A if ∃xx ∉ ∀yx − y ∉   y ∈ Δ,
(iv)  ∈ ∗d has type 2A if ∀xx ∉ ∃yy ∉ x − y ∉ .

2.5 Robinson Part p of absorption number
 ∈ −Δd,Δd

Theorem 2.8.[6].Suppose  ∈ −Δd,Δd.Then there is a unique
standard x ∈ , called Wattenberg standard part of  and denoted byWst,
such that:
(i) ∗x# ∈  − d,  d .



(ii)  ≤∗d  impliesWst ≤ Wst.
(iii) The mapWst : ∗d →  is continuous.
(iv) Wst    Wst Wst.
(v) Wst    Wst Wst.
(vi) Wst−  −Wst.
(vii)Wst−1  Wst−1 if  ∉ −d,d .
Theorem 2.9.[7].
(i)  ∈ ∗d has type 1 iff − has type 1A,
(ii)  ∈ ∗d cannot have type 1 and type 1A simultaneously.
(iii) Suppose ab.p.   Δ  0. Then  has type 1 iff  has the form
a#  Δ for some a ∈ ∗.
(iv) Suppose ab.p.   −Δ,Δ  0. ∈ ∗d has type 1A iff  has the form
a#  −Δ for some a ∈ ∗.
(v) If ab.p.   ab.p.  then    has type 1 iff  has type 1.
(vi) If ab.p.   ab.p.  then    has type 2 iff either  or 
has type 2.
Proof (iii) Let   a  Δ. Then ab.p.   Δ.Since Δ  0,a ∈ a  Δ
(we chose d ∈ Δ such that 0  d and write a as a − d  d ).
It is clear that a works to show that  has type 1.
Conversely, suppose  has type 1 and choose a ∈  such that:
∀ya  y ∈   y ∈ Δ.Then we claim that:   a  Δ.
By definition of ab.p.  certainly a  Δ ≤ . On the other hand by choice
of a,every element of  has the form a  d with d ∈ Δ.
Choose d ′ ∈ Δ such that d ′  d, then a  d  a − d ′ − d  d ′ ∈ a  Δ .

Hence  ≤ a  Δ.Therefore   a  Δ.
Examples. (i) d has type 1 and therefore −d has type 1A.Note that also
−d has type 2. (ii) Suppose  ≈ 0, ∈ ∗. Then #  d has type 1 and
therefore −#  d has type 1A.
(ii) Suppose  ∈ ∗d,ab.p.   d  0, i.e.  has type 1 and therefore
by Theorem 2.9  has the form ∗a#  d for some unique a ∈

,a  Wst.Then, we
define unique Robinson part p of absorption number  by formula

p  ∗a#,

p  ∗Wst#.
2.18

(ii) Suppose  ∈ ∗d,ab.p.   −d, i.e.  has type 1A and therefore by

Theorem 2.9 
has the form ∗a# − d for some unique a ∈ ,a  Wst.Then we define

unique
Robinson part p of absorption number  by formula



p  ∗a#,

p  ∗Wst#.
2.19

(iii) Suppose  ∈ ∗d,ab.p.   Δ,Δ  0 and  has type 1A, i.e.  has the form
a#  Δ for

some a ∈ ∗.Then, we define Robinson part p of absorption number  by
formula

p  a#. 2.20

(iv) Suppose  ∈ ∗d,ab.p.   −Δ,Δ  0 and  has type 1A, i.e.  has the
form a#  −Δ for some a ∈ ∗.Then, we define Robinson part p of

absorption
number  by formula

p  a#. 2.21

Remark 2.11. Note that in general case,i.e. if  ∉ −Δd,Δd Robinson part
p of

absorption number  is not unique.
Remark 2.12. Suppose  ∈ ∗d and  ∈ −Δd,Δd has type 1or type 1A.Then

by definitions
above one obtain the representation

  p  ab.p. .

2.6 The pseudo-ring of Wattenberg hyperintegers ∗ℤd
Lemma 2.12. [6].Suppose that  ∈ ∗d.Then the following two conditions on 

are equivalent:
(i)   sup #|  ∈ ∗ℤ ∧ # ≤  ,

(ii)   inf #|  ∈ ∗ℤ ∧  ≤ # .

Definition 2.11.[6].If  satisfies the conditions mentioned above  is said to be
the Wattenberg hyperinteger. The set of all Wattenberg hyperintegers is denoted
by ∗ℤd.

Lemma 2.13. [6]. Suppose , ∈ ∗ℤd.Then
(i)    ∈ ∗ℤd.
(ii) − ∈ ∗ℤd.
(iii)    ∈ ∗ℤd.
The set of all positive Wattenberg hyperintegers is called the Wattenberg

hypernaturals and
is denoted by ∗ℕd.
Definition 2.12.Suppose that (i)  ∈ ∗ℕ, ∈ ∗ℤd, (ii)


  #,  # and (iii) |.

If

 ∈ ∗ℕd and

 ∈ ∗ℤd satisfies these conditions then we say that
 is divisible

by

 and we
denote this by #|#.
Definition 2.13.Suppose that (i)  ∈ ∗ℤd and (ii) there exists # ∈ ∗ℕd such that
(1)   sup #|  ∈ ∗ℤ ∧ | ∧ # ≤  or



(2)   inf #|  ∈ ∗ℤ ∧ | ∧  ≤ # .

If  satisfies the conditions mentioned above is said  is divisible by # and we
denote this by#|.
Theorem 2.10. (i) Let p ∈∗ℕ, Mp∈∗ℕ, be a prime hypernaturals such that (i)

p ∤ Mp.
Let  ∈ ∗ℤd be a Wattenberg hypernatural such that (i) p|. Then

Mp#    1.

(ii)  ∈ ∗ℤd has type 1 iff − has type 1A,
(iii)  ∈ ∗ℤd cannot have type 1 and type 1A simultaneously.
(iv) Suppose  ∈ ∗ℤd,ab.p.   Δ  0. Then  has type 1 iff  has the form
a#  Δ for some a ∈ ,a ∈ ∗ℤ.
(v) Suppose  ∈ ∗ℤd, ab.p.   −Δ,Δ  0. ∈ ∗d has type 1A iff  has the

form
a#  −Δ for some a ∈ ,a ∈ ∗ℤ.
(vi) Suppose  ∈ ∗ℤd. If ab.p.   ab.p.  then    has type 1 iff  has type

1.
(vii) Suppose  ∈ ∗ℤd. If ab.p.   ab.p.  then    has type 2 iff either  or


has type 2.
Proof. (i) Immediately follows from definitions (2.12)-(2.13).
(iv) Let   a  Δ. Then ab.p.   Δ.Since Δ  0,a ∈ a  Δ
(we chose d ∈ Δ such that 0  d and write a as a − d  d ).
It is clear that a works to show that  has type 1.
Conversely, suppose  has type 1 and choose a ∈  such that:
∀ya  y ∈   y ∈ Δ.Then we claim that:   a  Δ.
By definition of ab.p.  certainly a  Δ ≤ . On the other hand by choice
of a,every element of  has the form a  d with d ∈ Δ.
Choose d ′ ∈ Δ such that d ′  d, then a  d  a − d ′ − d  d ′ ∈ a  Δ .

Hence  ≤ a  Δ.Therefore   a  Δ.

2.7 The integer part Int.p of Wattenberg hyperreals
 ∈ ∗d

Definition 2.14. Suppose  ∈ ∗d, ≥ 0.Then, we define Int.p   ∈ ∗ℕd

by formula

  sup #|  ∈ ∗ℕ ∧ # ≤  .

Obviously there are two possibilities:
1. A set #|  ∈ ∗ℕ ∧ # ≤  has no greatest element. In this case valid

only the
Property I:   
since    implies ∃a ∈ ∗ such that   a#  . But then a#   which

implies a#  1   contradicting   a#  a#  1.
2. A set #|  ∈ ∗ℕ ∧ # ≤  has a greatest element,  ∈ ∗ℕ. In this case



valid the
Property II:   
and obviously    ≤     1    1.
Definition 2.15. Suppose  ∈ ∗d. Then, we define Int.p ∈ ∗ℤd by formula

Int.p 
 for  ≥ 0

− for   0.

Note that obviously: Int.p−  −Int.p.

2.8 External sum of the countable infinite series in ∗d
This subsection contains key definitions and properties of summ of countable

sequence of Wattenberg hyperreals.
Definition 2.16.[4]. Let snn1

 be an countable sequence sn : ℕ → .such that
(i) ∀nsn ≥ 0 or (ii) ∀nsn  0 or

(iii) snn1
  sn1n1∈ℕ1

  sn2n2∈ℕ2
 ,∀n1 n1 ∈ ℕ1 sn1 ≥ 0,

∀n2 n2 ∈ ℕ2 sn2  0,ℕ  ℕ1  ℕ2.

Then external sum (#-sum)

#Ext-∑
n∈ℕ

sn# of the corresponding

countable sequence ∗sn : ℕ → ∗ is defined by

i ∀nsn ≥ 0 :

#Ext-∑
n∈ℕ

sn# 
k∈ℕ

sup ∑
n≤k

∗sn# ,

ii ∀nsn  0 :

#Ext-∑
n∈ℕ

sn# 
k∈ℕ

inf ∑
n≤k

sn# 
k∈ℕ

− sup ∑
n≤k

|∗sn |# ,

iii ∀n1n1 ∈ ℕ1sn1 ≥ 0,

∀n2n2 ∈ ℕ2sn2  0,ℕ  ℕ1  ℕ2 :

#Ext-∑
n∈ℕ

sn#  #Ext-∑
n1∈ℕ1

sn1
#  #Ext-∑

n2∈ℕ2

sn2
# .
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Theorem 2.11.(i) Let snn1
 be an countable sequence sn : ℕ →  such that

∀nn ∈ ℕsn1  sn  and limn→ sn  .Then

n∈ℕ

sup ∗sn#  ∗# − d.

(ii) Let snn1
 be an countable sequence sn : ℕ →  such that

∀nn ∈ ℕsn1  sn1  and limn→ sn  .Then



n∈ℕ

inf ∗sn#  ∗#  d.

(iii) Let snn1
 be an countable sequence sn : ℕ →  such that

∀nn ∈ ℕsn ≥ 0, ∑n1
 sn     and infinite series∑n1

 sn absolutely converges

to  in .Then

#Ext-∑
n∈ℕ

sn# 
k∈ℕ

sup ∑
n≤k

∗sn#  ∗# − d ∈
∗d, 2.23

(iv) Let snn1
 be an countable sequence sn : ℕ →  such that

∀nn ∈ ℕsn  0, ∑n1
 sn    − and infinite series∑n1

 sn absolutely

converges to  in .Then

#Ext-∑
n∈ℕ

sn# 
k∈ℕ

inf ∑
n≤k

∗sn#  ∗#  d ∈
∗d, 2.24

(v) Let snn1
 be an countable sequence sn : ℕ →  such that (1)

snn1
  sn1n1∈ℕ1

  sn2n2∈ℕ2
 ,∀n1 n1 ∈ ℕ1 sn1 ≥ 0,∀n2 n2 ∈ ℕ2 sn2  0,

ℕ  ℕ1  ℕ2 and (2) ∑
n1∈ℕ1

sn1  1  ,∑
n2∈ℕ2

sn2  2  −. Then

#Ext-∑
n∈ℕ

sn#  #Ext-∑
n1∈ℕ1

sn1
#  #Ext-∑

n2∈ℕ2

sn2
#  ∗1#  ∗2# − d ∈

∗d. 2.25

Proof. (i) Let ∀nn ∈ ℕsn1  sn  and limn→ sn  .Then obviously:
∀nn ∈ ℕsn  .

Thus ∀ ∈  there exists M ∈ ℕ such that (1)

1 ∀k ∈ ℕ :  −   sMk  .

Therefore from (1) by Robinson transfer one obtains (2)

2 ∀ ∈ ,∀k ∈ ℕ : ∗ − ∗  ∗sMk  ∗.

Using now Wattenberg embedding from (2) we obtain (3)

3 ∀ ∈ ,∀k ∈ ℕ : ∗# − ∗#  ∗sMk#   ∗#.

From (3) one obtains (4)

4 ∀ ∈  : ∗# − ∗# 
k∈ℕ

sup ∗sMk
#   ∗#.

Note that ∀ ∈  ∧  ≈ 0 obviously

5
n∈ℕ

sup ∗sn#  ∗# − #.

From (4) and (5) one obtains (6)

6 ∀ ∈ ∀ ∈  ∧  ≈ 0 ∗# − ∗# 
n∈ℕ

sup ∗sn#  ∗# − # .

Thus (i) immediately from (6) and from definition of the idempotent −d.



Proof.(ii) Immediately from (i) by Lemma 2.3 (v).
Proof.(iii) Let m  ∑n1

m sn.Then obviously: m   and limm→ m  .Thus
∀ ∈  there exists M ∈ ℕ such that (1)

1 ∀k ∈ ℕ :  −   Mk  .

Therefore from (1) by Robinson transfer one obtains (2)

2 ∀ ∈ ,∀k ∈ ℕ : ∗ − ∗  ∗Mk  ∗.

Using now Wattenberg embedding from (2) we obtain (3)

3 ∀ ∈ ,∀k ∈ ℕ : ∗# − ∗#  ∗Mk#   ∗#.

From (3) one obtains (4)

4 ∀ ∈  : ∗# − ∗# 
k∈ℕ

sup ∗Mk#   ∗#.

From (4) by Definition 2.16 (i) one obtains

5 ∀ ∈  : ∗# − ∗#  #Ext-∑
n∈ℕ

∗sn#  ∗#.

Note that ∀ ∈  ∧  ≈ 0 obviously

6 #Ext-∑
n∈ℕ

∗sn#  ∗# − #.

From (5)-(6) follows (7)

7 ∀ ∈ ∀ ∈  ∧  ≈ 0 ∗# − ∗#  #Ext-∑
n∈ℕ

∗sn#  ∗# − # .

Thus Eq.(2.23) immediately from (7) and from definition of the idempotent −d.
Proof.(iv) Immediately from (iii) by Lemma 2.3 (v).
Proof.(v) From Definition 2.16.(iii) and Eq.(2.23)-Eq.(2.24) by Theorem 2.7.(iii)

one obtain

#Ext-∑
n∈ℕ

sn#  #Ext-∑
n1∈ℕ1

sn1
#  #Ext-∑

n2∈ℕ2

sn2
#  ∗1# − d  ∗2#  d 

 ∗1#  ∗2# − d  d  ∗1#  ∗2# − d ∈
∗d.

Theorem 2.12.Let ann1
 be a countable sequence an : ℕ →  such that

∀nan ≥ 0 and infinite series∑n1
 an absolutely converges in .Let s #Ext-∑

n∈ℕ

an#

be external sum of the corresponding countable sequence ∗ann1
 .Let bnn1

 be
a countable sequence where bn  amn is any rearrangement of terms of the

sequence ann1
 . Then external sum   #Ext-∑

n∈ℕ

bn# of the corresponding

countable sequence ∗bnm1
 has the same value s as external sum of the

countable sequence ∗an, i.e.   s −d.
Theorem 2.13.(i) Let ann1

 be a countable sequence an : ℕ → d,such that
(1) ∀nan ≥ 0, (2) infinite series∑n1

 an absolutely converges to  ≠  in  and



let #Ext-∑
n∈ℕ

an# be external sum of the corresponding sequence ∗ann1
 . Then for

any c ∈ ∗ the equality is satisfied

c#  #Ext-∑
n∈ℕ

an#  #Ext-∑
n∈ℕ

c#  an# 

 c#  ∗# − c#  d.
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(ii) Let ann1
 be a countable sequence an : ℕ → , such that (1) ∀nan  0, (2)

infinite series∑n1
 an absolutely converges to  ≠ − in  and let #Ext-∑

n∈ℕ

an# be

external sum of the corresponding sequence ∗ann1
 . Then for any c ∈ ∗ the

equality is satisfied:

c#  #Ext-∑
n∈ℕ

an#  #Ext-∑
n∈ℕ

c#  an# 

 c#  ∗#  c#  d.

2.27

(iii) Let snn1
 be a countable sequence sn : ℕ →  such that

(1) snn1
  sn1n1∈ℕ1

  sn2n2∈ℕ2
 ,∀n1n1 ∈ ℕ1sn1 ≥ 0,∀n2n2 ∈ ℕ2sn2  0,

ℕ  ℕ1  ℕ2,
(2) infinite series∑n1

 sn1 absolutely converges to 1 ≠  in ,
(3) infinite series∑n1

 sn2 absolutely converges to 2 ≠ − in .
Then the equality is satisfied:

c#  #Ext-∑
n∈ℕ

sn# 

 #Ext-∑
n1∈ℕ1

c#  sn1
#  #Ext-∑

n2∈ℕ2

c#  sn2
# 

 c#  ∗1#  ∗2# − c#  d.

2.28

Proof.(i) From Definition 2.16.(i) by Theorem 2.1,Theorem 2.11.(i) and Lemma
(2.4) (ii) one obtain

#Ext-∑
n∈ℕ

c#  an#  c#  #Ext-∑
n∈ℕ

an# 

 c#  ∗# − d  c#  ∗# − c#  d.

(ii) Straightforward from Definition 2.16.(i) and Theorem 2.1,Theorem 2.11.(iii)
and Lemma (2.4) (ii) one obtain



#Ext-∑
n∈ℕ

c#  an#  c#  #Ext-∑
n∈ℕ

an# 

 c#  ∗#  d  c#  ∗#  c#  d.

(iii) By Theorem 2.11.(iv) and Lemma (2.4).(ii) one obtain

c#  #Ext-∑
n∈ℕ

sn#  c#  ∗1#  ∗2# − d 

 c#  ∗1#  ∗2# − c#  d.

But other side from (i) and (ii) follows

#Ext-∑
n1∈ℕ1

c#  sn1
#  #Ext-∑

n2∈ℕ2

c#  sn2
# 

 c#  ∗1# − c#  d  c#  ∗#  c#  d 

c#  ∗1#  ∗2# − c#  d.

Definition 2.17. Let ann1
 be a countable sequence an : ℕ → , such that

infinite
series∑n1

 an absolutely converges in  to  ≠ .We assume now that:

(i) there exists m  1 such that ∀k ≥ m :∑n1
k an  , or

(ii) there exists m  1 such that ∀k ≥ m :∑n1
k an  , or

(iii) there exists infinite sequence ni, i  1,2, . . .such that
(a) ∀i,m : ∑ i1

m ani   and infinite series∑ i1
 ani absolutely converges in  to 

and
(b) there exists infinite sequence nj, j  1,2, . . .such that ∀j,m : ∑ j1

m anj   and

infinite
series∑ j1

 anj absolutely converges in  to .

Then: (i) external upper sum (#-upper sum) of the corresponding countable
sequence

∗an : ℕ →  is defined by

i

#Ext-∑
n∈ℕ

∨

an# 
k∈ℕ

inf ∑
n≤k

∗an# ,

ii

#Ext-∑
i∈ℕ

∨

ani
# 

k∈ℕ

inf ∑ i≤k
∗ani 

# ,
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(ii) external lower sum (#-lower sum) of the corresponding countable sequence



∗an : ℕ → 
is defined by

i

#Ext-∑
n∈ℕ

∧

an# 
k∈ℕ

sup ∑
n≤k

∗an# ,

ii

#Ext-∑
j∈ℕ

∧

anj
# 

k∈ℕ

sup ∑ j≤k
∗anj 

# .
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Theorem 2.14.Let ann1
 be a countable sequence an : ℕ → , such that

infinite
series∑n1

 an absolutely converges in  to  ≠ .We assume now that:

(i) there exists m  1 such that ∀k ≥ m :∑n1
k an  ,or

(ii) there exists m  1 such that ∀k ≥ m :∑n1
k an  ,or

(iii) there exists infinite sequence ni, i  1,2, . . .such that
(a) ∀i,m : ∑ i1

m ani   and infinite series∑ i1
 ani absolutely converges in  to 

and
(b) there exists infinite sequence nj, j  1,2, . . .such that ∀j,m : ∑ j1

m anj   and

infinite
series∑ j1

 anj absolutely converges in  to . Then

#Ext-∑
n∈ℕ

∨

an# 
k∈ℕ

inf ∑
n≤k

∗an#  ∗#  d ∈
∗d,

#Ext-∑
n∈ℕ

∧

an# 
k∈ℕ

sup ∑
n≤k

∗an#  ∗# − d ∈
∗d.

2.31

and

#Ext-∑
i∈ℕ

∨

ani
# 

k∈ℕ

inf ∑ i≤k
∗ani 

#  ∗#  d ∈
∗d,

#Ext-∑
j∈ℕ

∧

anj
# 

k∈ℕ

sup ∑ j≤k
∗anj 

#  ∗# − d ∈
∗d.

2.32

Proof. straightforward from definitions and by Theorem 2.11 (i)-(ii).
Theorem 2.15. (1) Let ann1

 be a countable sequence an : ℕ → , such that
infinite

series∑n1
 an absolutely converges in  to  ≠ .We assume now that:

(i) there exists m  1 such that ∀k ≥ m :∑n1
k an  , or

(ii) there exists m  1 such that ∀k ≥ m :∑n1
k an  , or

(iii) there exists infinite sequence ni, i  1,2, . . .such that



(a) ∀i,m : ∑ i1
m ani   and infinite series∑ i1

 ani absolutely converges in  to 
and
(b) there exists infinite sequence nj, j  1,2, . . .such that ∀j,m : ∑ j1

m anj   and

infinite
series∑ j1

 anj absolutely converges in  to .

Then for any c ∈ ∗ the equalities are satisfied

#Ext-∑
n∈ℕ

∨

c#  an#  c#  #Ext-∑
n∈ℕ

∨

an#  c#  ∗#  c#  d ∈
∗d,

#Ext-∑
n∈ℕ

∧

c#  an#  c#  #Ext-∑
n∈ℕ

∧

c#an#  c#  ∗# − c#  d ∈
∗d.

2.33

and

#Ext-∑
i∈ℕ

∨

c#  ani
#  c#  #Ext-∑

i∈ℕ

∨

ani
#  c#  ∗#  c#  d ∈

∗d,

#Ext-∑
j∈ℕ

∧

c#  anj
#  c#  #Ext-∑

j∈ℕ

∧

anj
#  c#  ∗# − c#  d ∈

∗d.

2.34

Proof. Copy the proof of the Theorem 2.13.
Theorem 2.16. (1) Let ann1

 be a countable sequence an : ℕ → , such that
infinite

series∑n1
 an absolutely converges in  to   0.We assume now that:

(i) there exists m  1 such that ∀k ≥ m :∑n1
k an  0, or

(ii) there exists m  1 such that ∀k ≥ m :∑n1
k an  0, or

(iii) there exists infinite sequence ni, i  1,2, . . .such that
(a) ∀i,m : ∑ i1

m ani  0 and infinite series∑ i1
 ani absolutely converges in  to

  0
and
(b) there exists infinite sequence nj, j  1,2, . . .such that ∀j,m : ∑ j1

m anj  0 and

infinite
series∑ j1

 anj absolutely converges in  to   0.

Then for any c ∈ ∗ the equalities are satisfied

#Ext-∑
n∈ℕ

∨

c#  an#  c#  #Ext-∑
n∈ℕ

∨

an#  c#  d ∈
∗d,

#Ext-∑
n∈ℕ

∧

c#  an#  c#  #Ext-∑
n∈ℕ

∧

c#an#  − c#  d ∈
∗d.

2.35

and



#Ext-∑
i∈ℕ

∨

c#  ani
#  c#  #Ext-∑

i∈ℕ

∨

ani
#  c#  d ∈

∗d,

#Ext-∑
j∈ℕ

∧

c#  anj
#  c#  #Ext-∑

i∈ℕ

∧

anj
#  −c#  d ∈

∗d.

2.36

Proof. (1) From Eq.(2.31) we obtain

#Ext-∑
n∈ℕ

∨

an#   d,

#Ext-∑
n∈ℕ

∧

an#  −d.

2.37

From Eq.(2.37) by Theorem 2.1 we obtain directly

#Ext-∑
n∈ℕ

∨

c#  an#  c#  #Ext-∑
n∈ℕ

∨

an#  c#  d,

#Ext-∑
n∈ℕ

∧

c#  an#  c#  #Ext-∑
n∈ℕ

∧

c#an#  − c#  d.

2.38

(2) From Eq.(2.32) we obtain

#Ext-∑
i∈ℕ

∨

ani
#  d,

#Ext-∑
j∈ℕ

∧

anj
#  − d.

2.39

From Eq.(2.39) by Theorem 2.1 we obtain directly

#Ext-∑
i∈ℕ

∨

c#  ani
#  c#  #Ext-∑

i∈ℕ

∨

ani
#  c#  d ∈

∗d,

#Ext-∑
j∈ℕ

∧

c#  anj
#  c#  #Ext-∑

i∈ℕ

∧

ani
#  −c#  d ∈

∗d.

2.40

Remark 2.13. Note that we have proved Eq.(2.35) and Eq.(2.36) without any
reference to the Lemma 2.4.

Definition 2.18. (i) Let nn1
 be a countable sequence n : ℕ → ∗d, such

that

∀nn ≥ m  0n  0 and ∀nn ≤ m − 1 n  an# ∧ n ∈
∗ 2.41



Then external countable lower sum (#-lower sum) of the countable sequence
n : ℕ → ∗d is defined by

#Ext-∑
n∈ℕ

∧

n ∑
n0

m−1

n  #Ext-∑
nm



n

#Ext-∑
nm



n 
k∈ℕ

sup∑
nm

k

n.

2.42

In particular if nn1
  an#n1

 , where ∀n ∈ ℕ an ∈
∗ the external countable

lower sum (#-lower sum) of the countable sequence n : ℕ → ∗d is defined by

#Ext-∑
n∈ℕ

∧

n ∑
n0

m−1

n#  #Ext-∑
nm



n#,

#Ext-∑
nm



n 
k∈ℕ

sup∑
nm

k

n#.

2.43

(ii) Let nn1
 be a countable sequence n : ℕ → ∗d, such that

∀nn ≥ m  0n  0 and ∀nn ≤ m − 1 n  an# ∧ an ∈
∗ 2.44

Then external countable upper sum (#-upper sum) of the countable sequence
an : ℕ → ∗d is defined by

#Ext-∑
n∈ℕ

∨

n ∑
n0

m−1

n  #Ext-∑
nm



n

#Ext-∑
nm



n 
k∈ℕ

inf∑
nm

k

n.

2.45

In particular if nn1
  an#n1

 , where ∀n ∈ ℕ an ∈
∗ the external countable

upper sum (#-upper sum) of the countable sequence n : ℕ → ∗d is defined by

#Ext-∑
n∈ℕ

∨

n ∑
n0

m−1

an#  #Ext-∑
nm



an#,

#Ext-∑
nm



n 
k∈ℕ

inf∑
nm

k

an#.

2.46

Theorem 2.17. (i) Let nn1
 be a countable sequence n : ℕ → ∗d, such that

valid the property (2.41). Then for any c ∈ ∗ the equality is satisfied



c#  #Ext-∑
n∈ℕ

∧

n  #Ext-∑
n∈ℕ

∧

c#  n 

∑
n0

m−1

c#  an#  #Ext-∑
nm



c#  an#.

2.47

(ii) Let nn1
 be an countable sequence n : ℕ → ∗d, such that valid the

property (2.44).
Then for any c ∈ ∗ the equality is satisfied

c#  #Ext-∑
n∈ℕ

∨

n  #Ext-∑
n∈ℕ

∨

c#  n 

∑
n0

m−1

c#  an#  #Ext-∑
nm



c#  an#.

2.48

Proof. Immediately from Definition 2.18 by Theorem 2.1.
Definition 2.19. Let znn1

  an  ibnn1
 be a countable sequence

zn  an  ibn : ℕ → ℂ such that infinite series∑n1
 zn absolutely converges in ℂ to

z, |z| ≠ .Then: (i) external complex sum (complex #-sum), (ii) external upper
complex sum (upper complex #-sum) and (iii) external lover complex sum (lover
complex #-sum) of the corresponding countable sequence ∗zn : ℕ → ∗ℂ is defined
by

#Ext-∑
n∈ℕ

zn#  #Ext-∑
n∈ℕ

an#  i  #Ext-∑
n∈ℕ

bn# ,

#Ext-∑
n∈ℕ

∨

zn#  #Ext-∑
n∈ℕ

∨

an#  i  #Ext-∑
n∈ℕ

∨

bn#

#Ext-∑
n∈ℕ

∧

zn#  #Ext-∑
n∈ℕ

∧

an#  i  #Ext-∑
n∈ℕ

∧

bn# .

2.49

correspondingly.
Note that any properties of this sum immediately follow from the properties of

the real external sum.
Definition 2.20. (i) We define now Wattenberg complex plane ∗ℂd by ∗ℂd 

∗d ⊕ i  ∗d with i2  1.Thus for any z ∈ ∗ℂd we obtain z  x  iy, where x,y ∈
∗d, (ii) for any z ∈ ∗ℂd such that z  x  iy we define |z|2 by |z|2  x2  y2 ∈ ∗d.

Theorem 2.18. Let znn1
  an  ibnn1

 be a countable sequence
zn  an  ibn : ℕ → ℂ such that infinite series∑n1

 zn absolutely converges in ℂ to

z  1  i2 and |z| ≠ .Then
(i)



#Ext-∑
n∈ℕ

zn#  #Ext-∑
n∈ℕ

an#  i  #Ext-∑
n∈ℕ

bn# 

∗1# − d  i ∗2# − d  ∗1#  i∗2# − d1  i

#Ext-∑
n∈ℕ

∨

zn# 

#Ext-∑
n∈ℕ

∨

an#  i  #Ext-∑
n∈ℕ

∨

bn#  ∗1#  i∗2#  d1  i

#Ext-∑
n∈ℕ

∧

zn# 

#Ext-∑
n∈ℕ

∧

an#  i  #Ext-∑
n∈ℕ

∧

bn#  ∗1#  i∗2# − d1  i

(ii)

#Ext-∑
n∈ℕ

zn#
2



 #Ext-∑
n∈ℕ

an#  i  #Ext-∑
n∈ℕ

bn#
2

 ∗1#  i∗2# − d1  i
2
,

#Ext-∑
n∈ℕ

∨

zn#
2



#Ext-∑
n∈ℕ

∨

an#  i  #Ext-∑
n∈ℕ

∨

bn#
2

 ∗1#  i∗2#  d1  i
2
,

#Ext-∑
n∈ℕ

∧

zn#
2



#Ext-∑
n∈ℕ

∧

an#  i  #Ext-∑
n∈ℕ

∧

bn#
2

 ∗1#  i∗2#  d1  i
2
.

2.9 Gonshor transfer
Definition 2.21.[7]. Let Sd  x|∃yy ∈ Sx ≤ y.
Note that Sd satisfies the usual axioms for a closure operator,i.e. if (i)

S ≠ ,S′ ≠  and
(ii) S has no maximum, then Sd ∈

∗d.

Let f be a continuous strictly increasing function in each variable from a subset



of n into . Specifically, we want the domain to be the cartesian producti1
n Ai,

where Ai  x|x  ai for some ai ∈ .By Robinson transfer f extends to a function
∗f : ∗ n → ∗ from the corresponding subset of ∗n into ∗ which is also strictly
increasing in each variable and continuous in the Q topology (i.e.  and  range
over arbitrary positive elements in ∗).We now extend ∗f to ∗fd

∗fd :
∗d

n →
∗d. 2.50

Definition 2.22.[7]. Let  i ∈ ∗d,  i  ai , bi ∈ ∗, then

∗fd1,2, . . . ,n 
∗fb1,b2, . . . ,bn| ai  bi ∈  i d

. 2.51

Theorem 2.20.[7]. If f and g are functions of one variable then

∗f  gd  
∗fd  

∗gd. 2.52

Theorem 2.21.[7].Let f be a function of two variables. Then for any  ∈ ∗ and
a ∈ ∗

∗fd,a  
∗fb,c|b ∈ ,c  a. 2.53

Theorem 2.22.[7].Let f and g be any two terms obtained by compositions of
strictly

increasing continuous functions possibly containing parameters in ∗. Then any
relation

∗
f  ∗g or ∗f  ∗g valid in ∗ extends to ∗d, i.e.

∗fd  
∗gd or 

∗fd  
∗gd. 2.54

Remark 2.14. For any function ∗f : ∗ n → ∗ we often write for short f # instead
of ∗fd.

Theorem 2.23.[7].(1) For any a,b ∈ ∗

exp#a#  b#  exp#a#exp#b#,

exp#a#b
#

 exp#b#a#.
2.55

For any , ∈ ∗d,,  0

exp#α  β  exp#αexp#β,

exp#α  exp#α.
2.56

(2) For any a,b ∈ ∗

ab#  a#b
#

. 2.57

(3) For any ,, ∈ ∗d,,,  0

   2.58

(4) For any a ∈ ∗

ln#exp#a#  a#,

exp#ln#a#  a#.
2.59



Note that we must always beware of the restriction in the domain when it comes
to multiplication

Theorem 2.24.[7].The map   expd maps the set of additive
idempotents onto the set of all multiplicative idempotents other than 0.

3. The proof of the #-transcendenсe of the numbers
ek,k ∈ ℕ.

In this section we will prove the #-transcendenсe of the numbers ek,k ∈ ℕ.Key
idea of this proof reduction of the statement of e is #-transcendental number to
equivalent statement in ∗ℤd by using pseudoring of Wattenberg hyperreals ∗d ⊃
∗ℤd [6] and Gonshor idempotent theory [7]. We obtain this reduction by three steps,
see subsections 3.2.1-3.2.3.

3.1. The basic definitions of the Shidlovsky quantities

In this section we remind the basic definitions of the Shidlovsky quantities
[8].Let M0n,p,Mkn,p and kn,p be the Shidlovsky quantities:

M0n,p  
0


xp−1x − 1. . . x − npe−x

p − 1!
dx ≠ 0, 3.1

Mkn,p  ek 
k


xp−1x − 1. . . x − npe−x

p − 1!
dx,k  1,2, . . . 3.2

kn,p  ek 
0

k
xp−1x − 1. . . x − npe−x

p − 1!
dx,k  1,2, . . . 3.3

where p ∈ ℕ this is any prime number.Using Eqs.(3.1)-(3.3.) by simple calculation
one obtains:

Mkn,p  kn,p  ekM0n,p ≠ 0,k  1,2, . . . . 3.4

and consequently

ek 
Mkn,p  kn,p

M0n,p

k  1,2, . . .

3.5

Lemma 3.1.[8]. Let p be a prime number. Then
M0n,p  −1nn!p  pΘ1,Θ1 ∈ ℤ.

Proof. ([8], p.128) By simple calculation one obtains the equality



xp−1x − 1. . . x − np  −1nn!pxp−1  ∑
p1

n1p

c−1x−1,

c ∈ ℤ,  p,p  1, . . . , n  1  p − 1,n  0,

3.6

where p is a prime. By using equality Γ  
0


x−1e−xdx   − 1!,where  ∈ ℕ,

from Eq.(3.1) and (3.6) one obtains

M0n,p  −1nn!p
Γp

p − 1!
 ∑

p1

n1p

c−1
Γ
p − 1!



 −1nn!p  cpp  cp1pp  1 . . .

 −1nn!p  p  Θ1,Θ1 ∈ ℤ.

3.7

Thus

M0n,p  −1nn!p  p  Θ1n,p,Θ1n,p ∈ ℤ. 3.8

Lemma 3.2.[8]. Let p be a prime number. Then Mkn,p  p  Θ2n,p,
Θ2n,p ∈ ℤ, k  1,2, . . . ,n .

Proof.([8], p.128) By subsitution x  k  u  dx  du from Eq.(3.3) one obtains

Mkn,p  
0


u  kp−1u  k − 1 . . .u . . .u  k − npe−u

p − 1!
du

k  1,2, . . .

3.9

By using equality

u  kp−1u  k − 1 . . .u . . .u  k − np  ∑
p1

n1p

d−1u−1,

d ∈ ℤ,  p,p  1, . . . , n  1  p − 1,

3.10

and by subsitution Eq.(3.10) into RHS of the Eq.(3.9) one obtains

Mkn,p  1
p − 1! 

0



∑
p1

n1p

d−1u−1du  p  Θ2n,p,

Θ2n,p ∈ ℤ,k  1,2, . . . .

3.11

Lemma 3.3.[8]. (i) There exists sequences an,n ∈ ℕ and gn,n ∈ ℕ such that

|kn,p| ≤
n  gn  anp−1

p − 1!
,

3.12

where sequences an,n ∈ ℕ and gn,n ∈ ℕ does not depend on number p. (ii) For



any n ∈ ℕ : kn,p → 0 if p → .
Proof.([8], p.129) Obviously there exists sequences an,n ∈ ℕ and

gn,k ∈ ℕ,n ∈ ℕ such that an,n ∈ ℕ and gn,n ∈ ℕ does not depend on number
p

|xx − 1. . . x − n|  an, 0 ≤ x ≤ n 3.13

and

|x − 1. . . x − ne−xk |  gn, 0 ≤ x ≤ n,k  1,2, . . . ,n. 3.14

Substitution inequalities (3.13)-(3.14) into RHS of the Eq.(3.3) by simple calculation
gives

kn,p ≤ gn
anp−1

p − 1! 
0

k

dx ≤ n  gn  anp−1

p − 1!
. 3.15

Statement (i) follows from (3.15). Statement (ii) immediately follows from a
statement (ii).

Lemma 3.4.[8]. For any k ≤ n and for any  such that 0    1 there exists
p ∈ ℕ such that

ek − Mkn,p
M0n,p

 . 3.16

Proof.From Eq.(3.5) one obtains

ek − Mkn,p
M0n,p

 |kn,p|
M0n,p

. 3.17

From Eq.(3.17) by using Lemma 3.3.(ii) one obtains (3.17).
Remark 3.1.We remind now the proof of the transcendence of e following

Shidlovsky proof is given in his book [8].
Theorem 3.1. The number e is transcendental.
Proof.([8], pp.126-129) Suppose now that e is an algebraic number; then it

satisfies some relation of the form

a0 ∑
k1

n

akek  0, 3.18

where a0,a1, . . . ,an ∈ ℤ integers and where a0  0.Having substituted RHS of the
Eq.(3.5) into Eq.(3.18) one obtains

a0 ∑
k1

n

ak
Mkn,p  kn,p

M0n,p
 a0 ∑

k1

n

ak
Mkn,p
M0n,p

∑
k1

n

ak
kn,p
M0n,p

 0. 3.19

From Eq.(3.19) one obtains

a0M0n,p ∑
k1

n

akMkn,p ∑
k1

n

akkn,p  0. 3.20



We rewrite the Eq.(3.20) for short in the form

a0M0n,p ∑
k1

n

akMkn,p ∑
k1

n

akkn,p 

 a0M0n,p  n,p ∑
k1

n

akkn,p  0,

n,p ∑
k1

n

akMkn,p.

3.21

We choose now the integers M1n,p,M2n,p, . . . ,Mnn,p such that:

p|M1n,p,p|M2n,p, . . . ,p|Mnn,p

where p  |a0 |
3.22

and p ∤ M0n,p. Note that p| n,p.Thus one obtains

p ∤ a0M0n,p  n,p 3.23

and therefore

a0M0n,p  n,p ∈ ℤ,

where

a0M0n,p  n,p ≠ 0.

3.24

By using Lemma 3.4 for any  such that 0    1 we can choose a prime number
p  p such that:

∑
k1

n

akkn,p  ∑
k1

n

|ak |    1. 3.25

From (3.25) and Eq.(3.21) we obtain

a0M0n,p  n,p    0. 3.26

From (3.26) and Eq.(3.24) one obtains the contradiction.This contradiction finalized
the proof.

3.2 The proof of the #-transcendenсe of the numbers
ek,k ∈ ℕ. We will divide the proof into four parts

3.2.1. Part I.The Robinson transfer of the Shidlovsky
quantities M0n,p,Mkn,p,kn,p

In this subsection we will replace using Robinson transfer the Shidlovsky
quantities M0n,p,Mkn,p,kn,p by corresponding nonstandard quantities
∗M0n,p, ∗Mkn,p, ∗kn,p.The properties of the nonstandard quantities
∗M0n,p, ∗Mkn,p, ∗kn,p one obtains directly from the properties of the
standard quantities M0n,p,Mkn,p,kn,p using Robinson transfer principle
[4],[5].



1.Using Robinson transfer principle [4],[5] from Eq.(3.8) one obtains directly

∗M0n,p  −1nn!p  p 
∗
Θ1n,p,

∗Θ1n,p ∈
∗ℤ,n,p ∈∗ℕ.

ℕ 
∗ℕ\ℕ.

3.27

From Eq.(3.11) using Robinson transfer principle one obtains ∀kk ∈ ℕ :

∗Mkn,p  p 
∗
Θ2n,p ,

∗Θ2n,p ∈
∗ℤ,k  1,2, . . . ,k ∈ ℕ,n,p ∈∗ℕ.

3.28

Using Robinson transfer principle from inequality (3.15) one obtains ∀kk ∈ ℕ :

∗kn,p ≤
n  ∗gn  ∗anp−1

p − 1!
,

k  1,2, . . . ,k ∈ ℕ,n,p ∈∗ℕ.
3.29

Using Robinson transfer principle, from Eq.(3.5) one obtains ∀kk ∈ ℕ :

∗
ek  ∗ek 

∗Mkn,p  ∗kn,p
∗M0n,p

,

k  1,2, . . . ,k ∈ ℕ,n,p ∈∗ℕ.
3.30

Lemma 3.5. Let n ∈ ∗ℕ, then for any k ∈ ℕ and for any  ≈ 0, ∈
∗ there

exists
p ∈ ∗ℕ such that

∗ek −
∗Mkn,p
∗M0n,p

 . 3.31

Proof. From Eq.(3.30) we obtain ∀kk ∈ ℕ :

∗
ek −

∗Mkn,p
∗M0n,p

 |∗kn,p|
|∗M0n,p|

,

k ∈ ℕ,n,p ∈∗ℕ.
3.32

From Eq.(3.32) and (3.29) we obtain (3.31).

3.2.2. Part II.The Wattenberg imbedding ∗ek into ∗d

In this subsection we will replace by using Wattenberg imbedding [6] and
Gonshor transfer the nonstandard quantities ∗ek and the nonstandard Shidlovsky
quantities ∗M0n,p, ∗Mkn,p, ∗kn,p by corresponding Wattenberg quantities
∗ek#, ∗M0n,p#, ∗Mkn,p#, ∗kn,p#.The properties of the Wattenberg

quantities ∗ek#, ∗M0n,p#, ∗Mkn,p#, ∗kn,p# one obtains directly from the
properties of the corresponding nonstandard quantities



∗ek, ∗M0n,p, ∗Mkn,p, ∗kn,p using Gonshor transfer principle [4],[7].

1.By using Wattenberg imbedding ∗
#


∗d, from Eq.(3.30) one obtains

∗ek#  ∗e#
k  ∗Mkn,p#  ∗kn,p#

∗M0n,p#
,

k  1,2, . . . ;k ∈ ℕ,n,p ∈∗ℕ.
3.33

2.By using Wattenberg imbedding ∗
#


∗d, and Gonshor transfer (see
subsection 2.9 Theorem 2.19) from Eq.(3.27) one obtains

∗M0n,p#  −1n #  n!p #  p#  ∗Θ1n,p# 

 −1#n
#

 n!#
p#  p#  ∗Θ1n,p#,

∗Θ1n,p ∈
∗ℤ,d,n,p ∈∗ℕ.

3.34

3.By using Wattenberg imbedding ∗
#
 #, from Eq.(3.28) one obtains

∗Mkn,p#  p# 
∗
Θ2n,p

#
,

∗Θ2n,p# ∈
∗ℤ,d,

k  1,2, . . . ,k ∈ ℕ,n,p ∈∗ℕ.

3.35

Lemma 3.6. Let n ∈ ∗ℕ, then for any k ∈ ℕ and for any  ≈ 0, ∈
∗ there

exists
p ∈ ∗ℕ such that

∗ek# − ∗Mkn,p#

∗M0n,p#
 #. 3.36

Proof. Inequality (3.36) immediately follows from inequality (3.31) by using

Wattenberg imbedding ∗
#


∗d and Gonshor transfer.

3.2.3.Part III.Reduction of the statement of e is
#-transcendental number to equivalent statement in ∗ℤd
using Gonshor idempotent theory

To prove that e is #-transcendental number we must show that e is not

w-transcendental, i.e., there does not exist real -analytic function gx ∑
n0



anxn

with rational coefficients a0,a1, . . . ,an, . . .∈  such that

∑
n0



aken  0,

∑
n0



|ak |en ≠ .

3.37

Suppose that e is w-transcendental, i.e., there exists an -analytic function



ğx ∑
n0



ănxn,with rational coefficients:

ă0 
k0
m0

,ă1 
k1
m1

, . . . ,ăn 
kn
mn , . . .∈ ,

ă0  0,
3.38

such that the equality is satisfied:

∑
n0



ănen  0.

∑
n0



|ak |en ≠ .

3.39

In this subsection we obtain an reduction of the equality given by Eq.(3.39) to
equivalent equality given by Eq.(3.). The main tool of such reduction that external
countable sum defined in subsection 2.8.

Lemma 3.7.Let Δ≤k and Δk be the sum correspondingly

Δ≤k  ă0 ∑
n1

k≥1

ănen,

Δk  ∑
nk1



ănen.

3.40

Then Δk ≠ 0,k  1,2, . . .
Proof. Suppose there exists k such that Δk  0.Then from Eq.(3.39) follows

Δ≤k  0.Therefore by Theorem 3.1 one obtains the contradiction.
Remark 3.2.Note that from Eq.(3.39) follows that in generel case there is a

sequence mii1
 such that

i→
lim mi  ,

∀i ∈ ℕ ∑
n1

mi

ănen  0 ,

ă0 
i→
lim ∑

n1

mi

ănen  0,

3.41

or there is a sequence mjj1
 such that



i→
lim mj  ,

∀j ∈ ℕ ∑
n1

mj

ănen  0 ,

ă0 
j→
lim ∑

n1

mj

ănen  0,

3.42

or both sequences mii0
 and mjj0

 with a property that is specified above exist.

Remark 3.3. We assume now for short but without loss of generelity that (3.41)
is satisfied. Then from (3.41) by using Definition 2.17 and Theorem 2.14 (see
subsection 2.8) one obtains the equality [4]

∗ă0#  #Ext-∑
n∈ℕ

∧

∗ăn#  ∗en#  − d. 3.43

Remark 3.4.Let Δ≤#k and Δ
#k be the upper external sum defined by

Δ≤#k  ă0 ∑
n1

k≥1

∗ăn#  ∗en#,

Δ
#k  #Ext-∑

n∈ℕ
nk1

∧

ănen.
3.44

Note that from Eq.(3.43)-Eq.(3.44) follows that

Δ≤#k  Δ
#k  − d. 3.45

Remark 3.5. Assume that , ∈ ∗d and  ∉ ∗. In this subsection we will write
for a short ab| iff  absorbs , i.e.     .

Lemma 3.8. abΔ≤#k|Δ
#k,k  1,2, . . .

Proof.Suppose there exists k ∈ ℕ such that abΔ≤#k|Δ
#k.Then from

Eq.(3.45) one obtains

Δ
#k  − d. 3.46

From Eq.(3.46) by Theorem 2.11 follows that Δk  0 and therefore by Lemma
3.7 one obtains the contradiction.

Theorem 3.2.[4] The equality (3.43) is inconsistent.
Proof.Let us consider hypernatural number ℑ ∈ ∗ℕ defined by countable

sequence

ℑ  m0,m0  m1, . . . ,m0  m1 . . .mn, . . .  3.47

From Eq.(3.43) and Eq.(3.47) one obtains



ℑ#  ∗ă0#  ℑ#  #Ext-∑
n∈ℕ

∧

∗ăn#  ∗en#  −ℑ#  d.
3.48

Remark 3.6.Note that from inequality (3.27) by Wattenberg transfer one obtains

∗nn,p# ≤
n#  gnn#  anp−1

#

p − 1!#
,

n ∈ ℕ,n,p ∈∗ℕ.

3.49

Substitution Eq.(3.30) into Eq.(3.48) gives

ℑ0
#  #Ext- ∑

n∈ℕ\0

∧

ℑn#  ∗en# 

ℑ0
#  #Ext-∑

n∈ℕ

∧

ℑn# 
∗Mnn,p#  ∗nn,p#

∗M0n,p#
 −ℑ#  d,

ℑn#  ℑ#  ∗ăn#,n ∈ ℕ,ℑ0
#  ℑ#  ∗ă0#.

3.50

Multiplying Eq.(3.50) by Wattenberg hyperinteger ∗M0n,p# ∈ ∗ℤd by Theorem
2.13 (see subsection 2.8) one obtains

ℑ0
#  ∗M0n,p#  #Ext-∑

n∈ℕ

∧

ℑn#  ∗Mnn,p#  ℑk#  ∗nn,p
# 

 −ℑ#  ∗M0n,p#  d.

3.51

By using inequality (3.49) for a given  ∈ ∗,  ≈ 0 we will choose infinite prime
integer p ∈∗ℕ such that:

#Ext-∑
k∈ℕ

∧

ℑk#  ∗kn,p# ⊆ ℑ#  ∗M0n,p#  #  d 3.52

Now using the inequality (3.49) we are free to choose a prime hyperinteger p ∈∗ℕ
and

# ∈ ∗d, #  #p ≈ 0 in the Eq.(3.51) for a given  ∈ ∗, ≈ 0 such that:

ℑ#  ∗M0n,p#  #p  #. 3.53

Hence from Eq.(3.52) and Eq.(3.53) we obtain

#Ext-∑
n∈ℕ

∧

ℑn#  ∗nn,p# ⊆ −#  d. 3.54

Therefore from Eq.(3.51) and (3.54) by using definition (2.15) of the function
Int.p given by Eq.(2.20)-Eq.(2.21) and corresponding basic property I (see
subsection 2.7) of the function Int.p we obtain



Int.p ℑ0
#  ∗M0n,p#  #Ext-∑

n∈ℕ

∧

ℑn#  ∗Mnn,p#  ℑn#  ∗nn,p
# 

ℑ0
#  ∗M0n,p#  #Ext-∑

k∈ℕ

∧

ℑn#  ∗Mnn,p# 

 −Int.p ℑ#  ∗M0n,p#  d  −ℑ#  ∗M0n,p#  d.

3.55

From Eq.(3.55) using basic property I of the function Int.p finally we obtain the
main equality

ℑ0
#  ∗M0n,p#  #Ext-∑

n∈ℕ

∧

ℑk#  ∗Mnn,p#  ℑ#  ∗M0n,p#  d. 3.56

We will choose now infinite prime integer p in Eq.(3.56) p  p∈∗ℕ such that
p# max|ℑ0

# |,n#.  3.57

Hence from Eq.(3.34) follows
p# ∤ ∗M0n,

p#. 3.58

Note that ∗M0n,
p# ≠ 0#.Using (3.57) and (3.58) one obtains:

p# ∤ ∗M0n,
p#  ℑ0#. 3.59

Using Eq.(3.35) one obtains
p# ∣ ∗Mnn,

p#,n  1,2, . . . . 3.60

3.2.4.Part IV.The proof of the inconsistency of the main
equality (3.56)

In this subsection we wil prove that main equality (3.56) is inconsistent. This
prooff is based on the Theorem 2.10 (v), see subsection 2.6.

Lemma 3.9.The equality (3.56) under conditions (3.59)-(3.60) is inconsistent.
Proof. (I) Let us rewrite Eq.(3.56) in the short form

Γn,p  ∧n,p  −#p  d, 3.61

where

∧n,p  #Ext-∑
n∈ℕ
n≥1

∧

ℑn#  ∗Mnn,
p# ,

Γn,p  ℑ0
#  ∗M0n,

p#,

#p  ℑ#  ∗M0n,
p#.

3.62

From (3.59)-(3.60) follows that



p# ∤ Γn,p,
p# ∧n,p.

3.63

Remark 3.7.Note that ∧n,p ∉ ∗.Otherwise we obtain that
ab.pΓn,p  ∧n,p  . But the other hand from Eq.(3.61) follows that
ab.pΓn,p  ∧n,p  −#p  d.But this is a contradiction. This contradiction
completed the proof of the statement (I)

(II) Let Δ≤
#
k,n,p,Δ

#
k,n,p,Δ≤

#
k1,k2,n,

p and Δ≤
#
k,n,p,n#,Δ

#
k,n,p,n#,be the

external sum correspondingly

Δ≤
#
k,n,p  Γn,p ∑

n1

k≥1

ℑn#  ∗Mnn,
p# ,

Δ
#
k,n,p  #Ext-∑

n∈ℕ
n≥k1

∧

ℑn#  ∗Mnn,
p# ,

Δ≤
#
k1,k2,n,

p ∑
nk1

k2

ℑn#  ∗Mnn,
p# ,

Δ≤
#
k,n,p,n#  Γn,p ∑

n1

k≥1

ℑn#  ∗Mnn,
p#  ℑn#  ∗nn,p

# ,

Δ
#
k,n,p,n#  #Ext-∑

n∈ℕ
n≥k1

∧

ℑn#  ∗Mnn,
p#  ℑn#  ∗nn,p

# ,

3.64

Note that from Eq.(3.61) and Eq.(3.64) follows that

Δ≤
#
k,n,p  Δ

#
k,n,p  − #p  d. 3.65

Lemma 3.10. (i) Under conditions (3.59)-(3.60)

ab Δ≤
#
k,n,p,n# Δ

#
k,n,p,n# ,k  1,2, . . . 3.66

And (ii) Under conditions (3.59)-(3.60)

ab Δ≤
#
k,n,p Δ

#
k,n,p ,k  1,2, . . . 3.67

Proof. (i) First note that under conditions (3.59)-(3.60) one obtains

∀k Δ≤
#
k,n,p,n# ≠ 0 3.68

Suppose that there exists a k ≥ 0 such that ab Δ≤
#
k,n,p,n# Δ

#
k,n,p,n# .Then

from Eq.(3.65) one obtains

Δ
#
k,n,p,n#  − #p  d. 3.69



From Eq.(3.69) by Theorem 2.17 one obtains

−d  #p−1  Δ
#
k,n,p,n#  #p−1  Δ

#
k,n,p,n# 

 Δ
#k,n,p.

3.70

Thus

−d  Δ
#k,n,p. 3.71

From Eq.(3.71) by Theorem 2.11 follows that Δk  0 and therefore by Lemma
3.7 one obtains the contradiction. This contradiction finalized the proof of the
Lemma 3.10 (i).

Proof. (ii) This is immediate from the Definition 2.14 (Property I), see
subsection 2.7.

Part (III)
Remark 3.8.(i) Note that from Eq.(3.62) by Theorem 2.10 (v) follws that ∧n,p

has the form

∧n,p  q#  ab.p∧n,p 

 q#  −#p  d,
3.72

where

q# ∈ ∧n,p  Δ
#
1,n,p,

q ∈∗ℤ and
p |q.

3.73

(ii) Substitution by Eq.(3.72) into Eq.(3.61) gives

Γn,p  ∧n,p  Γn,p  q#  −#p  d  −#p  d. 3.74

Remark 3.9. Note that from (3.74) by definitions follows that

abΓn,p  q#|−#p  d . 3.75

Remark 3.10. Note that from (3.73) by construction of the Wattenberg integer
∧n,p obviously follows that there exist some k,d ∈ ℕ such that

Δ≤
#
1,k,n,p  q# ≤ Δ≤

#
1,d,n,p,

k  d.
3.76

Therefore

Γn,p  Δ≤
#
1,k,n,p  Γn,p  q# ≤ Γn,p  Δ≤

#
1,d,n,p. 3.77

Note that under conditions (3.59)-(3.60) and (3.73) obviously one obtains

0 ≠ Γn,p  Δ≤
#
1,k,n,p  Γn,p  q# ≤ Γn,p  Δ≤

#
1,d,n,p  0,

Γn,p  q# ≠ 0.
3.78

From Eq.(3.74) follows that



Γn,p  q#  −#p  d  −#p  d. 3.79

Therefore

#p−1Γn,p  q#   −d  −d. 3.80

From (3.78) follows that

0 ≠ #p−1 Γn,p  Δ≤
#
1,k,n,p  #p−1Γn,p  q#  ≤

≤ #p−1 Γn,p  Δ≤
#
1,d,n,p  0,

#p−1Γn,p  q#   0.

3.81

Note that by Theorem 2.8 (see subsection 2.5) and formula (3.44) one otains

0 ≠ Wst #p−1 Γn,p  Δ≤
#
1,k,n,p  Wst ∗a0#  Δ≤#1,k,n,

p ,

Wst #p−1 Γn,p  Δ≤
#
1,d,n,p  Wst ∗a0#  Δ≤#1,d,n,

p  0,

Wst #p−1Γn,p  q#  ≠ 0.

3.82

From Eq.(3.81)-Eq.(3.82) follows that

0 ≠ Wst ∗ă0#  Δ≤#1,k,n,
p  Wst #p−1Γn,p  q#  ≤

≤ Wst ∗ă0#  Δ≤#1,d,n,
p  0,

Wst #p−1Γn,p  q#   0.

3.83

Thus

ab #p−1Γn,p  q#  −d 3.84

and therefore

#p−1Γn,p  q#   −d ≠ −d. 3.85

But this is a contradiction. This contradiction completed the proof of the Lemma
3.9.

4.Generalized Lindemann-Weierstrass theorem

In this section we remind the basic definitions of the Shidlovsky quantities,see
[8] p.132- 134.

Theorem 4.1.[8] Let flz, l  1,2, . . . , r be a polynomials with coefficients in
ℤ.Assume that

for any l  1,2, . . . , r algebraic numbers over the field  : 1,l, . . . ,kl,l,
kl ≥ 1, l  1,2, . . . , r

form a complete set of the roots of flz such that



flz ∈ ℤz, deg flz  kl, l  1,2, . . . , r 4.1

and al ∈ ℤ, l  1,2, . . . , r,a0 ≠ 0.Then

a0 ∑
l1

r

al∑
k1

kl

ek,l ≠ 0. 4.2

Let frz be a polynomial such that

frz 
l1

r

flz  b0  b1z . . .bNrzNr 

 bNr
l1

r


k1

kl

z − k,l,b0 ≠ 0,bN  0,Nr  ∑ l1
r kl.

4.3

Let M0Nr,p,Mk,lNr,p and k,lNr,p be the quantities [8]:

M0Nr,p  
0


bNr
Nr−1p−1zp−1fr

pze−zdz
p − 1!

, 4.4

where in (4.4) we integrate in complex plane ℂ along line 0,,see Pic.1.

Mk,lNr,p  ek,l 
k,l


bNr
Nr−1p−1zp−1fr

pze−zdz
p − 1!

, 4.5

where k  1, . . . ,kl and where in (4.5) we integrate in complex plane ℂ along line
with initial point k,l ∈ ℂ and which are parallel to real axis of the complex plane
ℂ,see Pic.1.

k,lNr,p  ek,l 
0

k,l
bNr
Nr−1p−1zp−1fr

pze−zdz
p − 1!

, 4.6

where k  1, . . . ,kl and where in (4.6) we integrate in complex plane ℂ along
contour 0,k,l , see Pic.1.

Pic.1.Contour 0,k,l  in complex

plane ℂ.

From Eq.(4.3) one obtains



bNr
Nr−1p−1zp−1fr

pz  bNr
Nr−1p−1b0

pzp−1  ∑
sp1

Nr1p

cs−1zs−1, 4.7

where bNrb0 ≠ 0,cs ∈ ℤ, s  p, . . . , Nr − 1p − 1.Now from Eq.(4.4) and Eq.(4.7)
using formula

Γs  
0


xs−1e−xdx  s − 1!, s ∈ ℕ

one obtains

M0Nr,p 
bNr
Nr−1p−1b0

p

p − 1! 
0



zp−1e−zdz  ∑
sp1

Nr1p
cs−1

p − 1! 
0



zs−1e−zdz 

bNr
Nr−1p−1b0

p  ∑
sp1

Nr−1p
s − 1!
p − 1!

cs−1  bNr
Nr−1p−1b0

p  pC,

4.8

where bNrb0 ≠ 0,C ∈ ℤ.We choose now a prime p such that
p  max|a0 |,bNr , |b0 |.Then from Eq.(4.8) follows that

p ∤ a0M0Nr,p. 4.9

From Eq.(4.3) and Eq.(4.5) one obtains

Mk,lNr,p  ek,l
p − 1! 

k,l



bNr
Nrp−1zp−1zp−1 

j1

r


i1

kj

z − i,jp e−zk,ldz, 4.10

where k  1, . . . ,kl, l  1, . . . , r.By change of the variable integration z  u  k,l in
RHS of the Eq.(4.10) we obtain

Mk,lNr,p  1
p − 1! 

0



bNr
Nrp−1u  k,lp−1upe−u 

j1
j≠l

r


i1
i≠k

kj

z  k,l − i,jp du, 4.11

where k  1, . . . ,kl, l  1, . . . , r.Let us rewrite now Eq.(4.11) in the following form

Mk,lNr,p 

1
p − 1! 

0



bNru  bNrk,l
p−1upe−u 

j1
j≠l

r


ri1
i≠k

kj

bNru  bNrk,l − bNri,j
p du

4.12

Let ℤA be a ring of the all algebraic integers. Note that [8]

 i,j  bNri,j ∈ ℤA, i  1, . . . ,kj, j  1, . . . , r. 4.13

Let us rewrite now Eq.(4.12) in the following form



Mk,lNr,p  1
p − 1! 

0



bNru  k,l
p−1upe−u

j1
j≠l

r


i1
i≠k

kj

bNru  k,l −  i,j
pdu 4.14

where k  1, . . . ,kl, l  1, . . . , r.From Eq.(4.14) one obtains

∑
l1

r

al∑
k1

kl

Mk,lNr,p  
0


upe−uru
p − 1!

du,

ru ∑
l1

r

al∑
k1

kl

bNru  k,l
p−1upe−u

j1
j≠l

r


i1
i≠k

kj

bNru  k,l −  i,j
p

4.15

The polynomial ru is a symmetric polynomial on any system Δl of variables
1,l,2,l, . . . ,kl,l, where

Δl  1,l,2,l, . . . ,kl,l, l  1, . . . , r.

1,l,2,l, . . . ,kl,l ∈ ℤA, l  1, . . . , r.
4.16

It well known that ru ∈ ℤu (see [8] p.134) and therefore

upru  ∑
sp1

Nr1p

cs−1us−1,cs ∈ ℤ. 4.17

From Eq.(4.15) and Eq.(4.17) one obtains

∑
l1

r

al∑
k1

kl

Mk,lNr,p  
0


upe−uru
p − 1!

du 

∑
sp1

Nr1p
cs−1

p − 1! 
0



us−1e−udu  ∑
sp1

Nr1p

cs−1
s − 1!
p − 1!

 pC,C ∈ ℤ.

4.18

Therefore

Nr,p ∑
l1

r

al∑
k1

kl

Mk,lNr,p ∈ ℤ,

p|Nr,p.

4.19

Let OR ⊂ ℂ be a circle wth the centre at point 0,0.We assume now that
∀k∀lk,l ∈ OR. We will designate now

gk,lr 
|z|≤R
max |bNr

−1frze−zk,l |,

g0r 
1≤k≤kl,1≤l≤r
max gk,lr,gr 

|z|≤R
max |bNr

−1zfrz|.
4.20

From Eq.(4.6) and Eq.(4.20) one obtains



|k,lNr,p|  
0

k,l
bNr
Nr−1p−1zp−1fr

pze−zk,ldz
p − 1!

≤

1
p − 1! 

0

k,l

|bNr
−1fze−zk,l ||bNr

−1zfrz|
p−1dz ≤ g0rgp−1r|k,l |

p − 1!
≤ g0rgp−1rR

p − 1!
,

4.21

where k  1, . . . ,kl, l  1, . . . , r.Note that

g0rgp−1rR
p − 1!

→ 0 if p → . 4.22

From (4.22) follows that for any  ∈ 0, there exists a prime number p such that

∑
l1

r

al∑
k1

kl

k,lNr,p  p  1. 4.23

where k  1, . . . ,kl, l  1, . . . , r.From Eq.(4.4)-Eq.(4.6) follows

ek,l 
Mk,lNr,p  k,lNr,p

M0Nr,p
4.24

where k  1, . . . ,kl, l  1, . . . , r. Assume now that

a0 ∑
l1

r

al∑
k1

kl

ek,l  0. 4.25

Having substituted RHS of the Eq.(4.24) into Eq.(4.25) one obtains

a0 ∑
l1

r

al∑
k1

kl
Mk,lNr,p  k,lNr,p

M0N,p


a0 ∑
l1

r

al∑
k1

kl
Mk,lNr,p
M0Nr,p

∑
l1

r

al∑
k1

kl k,lNr,p
M0Nr,p

 0.

4.26

From Eq.(4.26) by using Eq.(4.19) one obtains

a0  Nr,p ∑
l1

r

al∑
k1

kl

k,lNr,p  0. 4.27

We choose now a prime p ∈ ℕ such that p  max|a0 |, |b0 |, |bNr | and p  1. Note
that p|Nr,p and therefore from Eq.(4.19) and Eq.(4.27) one obtains the
contradiction. This contradiction completed the proof.

5.Generalized Lindemann-Weierstrass theorem

Theorem 5.1.[4] Let flz, l  1,2, . . . , be a polynomials with coefficients in
ℤ.Assume that

for any l ∈ ℕ algebraic numbers over the field  : 1,l, . . . ,kl,l, kl ≥ 1, l  1,2, . . .
form a



complete set of the roots of flz such that

flz ∈ ℤz, deg flz  kl, l  1,2, . . . 5.1

and al ∈ ,a0 ≠ 0, l  1,2, . . . , . We assume now that

∑
l1



|al |∑
k1

kl

|ek,l |  . 5.2

Then

a0 ∑
l1



al∑
k1

kl

ek,l ≠ 0. 5.3

We will divide the proof into three parts

Part I.The Robinson transfer
Let fz  frz ∈ ∗ℤz, z ∈ ∗ℂ, l  1,2, . . . ,r,r ∈∗ℕ be a nonstandard polynomial

such that

fz  frz 
l1

r

flz  b0  b1z . . .bNzN 

 bN
l1

r


k1

∗kl

z − ∗k,l,b0 ≠ 0,bN  0,

N  Nr  ∑ l1
r ∗kl ∈∗ℕ.

5.4

Let ∗M0N,p, ∗Mk,lN,p and ∗k,lN,p be the quantities:

∗M0N,p  
0

∗  
bN
N−1p−1zp−1f pz∗e−z dz

p − 1!
,

N,p ∈ ∗ℕ,

5.5

where in (5.5) we integrate in nonstandard complex plaine ∗ℂ along line
∗0,,see Pic.1.

∗Mk,lN,p  ∗e
∗k,l  

∗k,l

∗
bN
N−1p−1zp−1f pz∗e−z dz

p − 1!
,

N,p ∈ ∗ℕ,

5.6

where k  1, . . . , ∗kl and where in (5.6) we integrate in nonstandard complex plain
∗ℂ along line with initial point ∗k,l ∈ ∗ℂ and which are parallel to real axis of the
complex plane ∗ℂ,see Pic.1.



∗k,lN,p  ∗e ∗k,l  
0

∗k,l
bN
N−1p−1zp−1f pz∗e−z dz

p − 1!
,

N,p ∈ ∗ℕ,

5.7

where k  1, . . . , ∗kl and where in (5.7) we integrate in nonstandard complex plain
∗ℂ along contour ∗0, ∗k,l , see Pic.1.

1.Using Robinson transfer principle [4],[5],[6] from Eq.(5.5) and Eq.(4.8) one
obtains directly

∗M0N,p  bN
N−1p−1b0

p  pC, 5.8

where bNb0 ≠ 0,C ∈ ∗ℤ.We choose now infinite prime p ∈ ∗ℕ such that

p  max|a0 |,bN, |b0 |. 5.9

2.Using Robinson transfer principle from Eq.(5.6) and Eq.(4.19) one obtains

directly

∀rr ∈ ℕ :

∗N,p, r ∑
l1

r

∗al∑
k1

kl

∗Mk,lN,p  pCr ∈
∗ℤ.

5.10

and therefore

∀rr ∈ ℕ :

p|∗N,p, r.
5.11

3.Using Robinson transfer principle from Eq.(5.7) and Eq.(4.21) one obtains

directly

|∗k,lN,p|  ∗e ∗k,l  
0

∗k,l
bN
N−1p−1zp−1f pz∗e−z dz

p − 1!
≤

1
p − 1! 

0

∗k,l

bN
−1fz∗e−z∗k,l   |bNr

−1zfz|p−1dz ≤
∗g0r∗gp−1r|∗k,l |

p − 1!

≤
∗g0r∗gp−1r

p − 1!
,

5.12

where k  1, . . . , ∗kl, l  1, . . . ,r.Note that ∀ ∈∗  ≈ 0, there exists p  p

∗g0r∗gp−1r
p − 1!

≤ . 5.13

4. From (5.13) follows that for any  ∈ 0, there exists an infinite prime p ∈

∗ℕ such that



∀rr ∈ ℕ :

∑
l1

r

∗al∑
k1

kl

∗k,lN,p  p  1
5.14

where k  1, . . . , ∗kl, l  1, . . . ,r. .
5. From Eq.(5.5)-Eq.(5.7) we obtain

∗e
∗k,l 

∗Mk,lN,p  ∗k,lN,p
∗M0N,p

, 5.15

where k  1, . . . , ∗kl, l  1, . . . ,r.

Part II.The Wattenberg imbedding ∗e
∗k,l into ∗d

1.By using Wattenberg imbedding ∗
#


∗d, and Gonshor transfer (see
subsection 2.8 Theorem 2.17) from Eq.(5.8) one obtains

∗M0N,p#  bN
N−1p−1b0

p #
 p#C# 

 bN# 
N#−1p#−1b0

#
p#  p#C#

5.16

where bN
# b0

# ≠ 0#,C# ∈ ∗ℤd.We choose now an infinite prime p ∈ ∗ℕ such that

p#  max|a0# |,bN
# , b0

# . 5.17

2.By using Wattenberg imbedding ∗
#


∗d, and Gonshor transfer from
Eq.(5.10) one obtains directly

∀rr ∈ ℕ :

∗N,p, r# ∑
l1

r

∗al# ∑
k1

kl

∗Mk,lN,p#  p#Cr
# ∈ ∗ℤd

5.18

and therefore

∀rr ∈ ℕ p# |∗N,p, r# . 5.19

3.By using Wattenberg imbedding ∗
#


∗d,and Gonshor transfer from
Eq.(5.14) one obtains directly

∀rr ∈ ℕ :

∑
l1

r

∗al# ∑
k1

kl

∗k,lN,p#  #p#  1.
5.20

4.By using Wattenberg imbedding ∗
#


∗d,and Gonshor transfer from
Eq.(5.15) one obtains directly



ek,l
#  ∗e ∗k,l #  ∗Mk,lN,p#  ∗k,lN,p#

∗M0N,p#
, 5.21

where k  1, . . . ,kl, l  1, . . . ,r ∈ ∗ℕ.

Part III.Main equality
Remark 5.1 Note that in this subsection we often write for a short a# instead

∗a#,a ∈ . For example we write

∀rr ∈ ℕ :

ek,l
#

Mk,l

# N,p#  k,l# N,p
M0

#N,p

instead Eq.(5.21).
Assumption 5.1. Let flz, l  1,2, . . . , be a polynomials with coefficients in

ℤ.Assume that
for any l ∈ ℕ algebraic numbers over the field  : 1,l, . . . ,kl,l,

kl ≥ 1, l  1,2, . . . , r form a
complete set of the roots of flz such that

flz ∈ ℤz, deg flz  kl, l  1,2, . . . 5.22

l  1,2, . . . ,a0 ∈ ,a0 ≠ 0, r  1,2, . . . .
Note that from Assumption 5.1 by Robinson transfer follows that algebraic

numbers over
∗ : ∗1,l, . . . , ∗kl,l, kl ≥ 1, l  1,2, . . . , for any l  1,2, . . . , form a complete set of

the roots
of ∗flz such that

∗flz ∈
∗ℤz, deg∗flz  kl, l  1,2, . . . . 5.23

Assumption 5.2. We assume now that there exists a sequence

ăl 
ql
ml ∈ , l  1,2, . . . ; r  1,2, . . . 5.24

and rational number

ă0 
q0
m0

∈ , 5.25

such that

∑
l1



|ăl |∑
k1

kl

|ek,l |  . 5.26

and

ă0 ∑
l1



ăl∑
k1

kl

ek,l  0. 5.27

Assumption 5.3. We assume now for a short that the all roots ∗1,l, . . . , ∗kl,l,
kl ≥ 1, l  1,2, . . .of ∗flz are real.
In this subsection we obtain an reduction of the equality given by Eq.(5.27) in 

to some equivalent equality given by Eq.(3.) in ∗d. The main tool of such reduction



that external countable sum defined in subsection 2.8.
Lemma 5.1.Let Δ≤r and Δr be the sum correspondingly

Δ≤r  ă0 ∑
l1

r≥1

ăl∑
k1

kl

ek,l ,

Δr  ∑
lr1



ăl∑
k1

kl

ek,l .

5.28

Then Δr ≠ 0, r  1,2, . . .
Proof. Suppose there exist r such that Δr  0.Then from Eq.(5.27) follows

Δ≤r  0. Therefore by Theorem 4.1 one obtains the contradiction.
Remark 5.2. Note that from Eq.(5.27) follows that in generel case there is a

sequence mii1
 such that

i→
lim mi  ,

∀i ∈ ℕ ă0 ∑
l1

mi

ăl∑
k1

kl

ek,l  0 ,

ă0 
i→
lim ∑

l1

mi

ăl∑
k1

kl

ek,l  0,

5.29

or there is a sequence mjj1
 such that

i→
lim mj  ,

∀j ∈ ℕ ă0 ∑
l1

mj

ăl∑
k1

kl

ek,l  0 ,

ă0 
j→
lim ∑

l1

mj

ăl∑
k1

kl

ek,l  0,

5.30

or both sequences mii0
 and mjj0

 with a property that is specified above exist.

Remark 5.3. We assume now for short but without loss of generelity that (5.29)
is satisfied. Then from (5.29) by using Definition 2.17 and Theorem 2.14 (see
subsection 2.8) one obtains the equality [4]

∗ă0#  #Ext-∑
l∈ℕ

∧

∗ăl#∑
k1

kl

∗e ∗k,l #  − d. 5.31

Remark 5.4.Let Δ≤#r and Δ
#r be the upper external sum defined by



Δ≤#r  ă0 ∑
l1

r≥1

∗ăl#∑
k1

kl

∗e ∗k,l #,

Δ
#r  #Ext-∑

n∈ℕ
lr1

∧

∗ăl#∑
k1

kl

∗e ∗k,l #.
5.32

Note that from Eq.(5.31)-Eq.(5.32) follows that

Δ≤#r  Δ
#r  − d. 5.33

Remark 5.5. Assume that , ∈ ∗d and  ∉ ∗. In this subsection we will write
for a short ab| iff  absorbs , i.e.     .

Lemma 5.2. abΔ≤#r|Δ
#r,k  1,2, . . .

Proof.Suppose there exists r ∈ ℕ such that abΔ≤#r|Δ
#r.Then from Eq.(5.33)

one obtains

Δ
#r  − d. 5.34

From Eq.(5.34) by Theorem 2.11 follows that Δr  0 and therefore by Lemma
5.1 one obtains the contradiction.

Theorem 5.2.[4] The equality (5.31) is inconsistent.
Proof.Let us considered hypernatural number ℑ ∈ ∗ℕ defined by countable

sequence

ℑ  m0,m0  m1, . . . ,m0  m1 . . .mn, . . .  5.35

From Eq.(5.31) and Eq.(5.35) one obtains

ℑ#  ∗ă0#  ℑ#  #Ext-∑
l∈ℕ

∧

∗ăl#∑
k1

kl

∗e ∗k,l # 

 ℑ0
#  #Ext-∑

l∈ℕ

∧

ℑl# ∑
k1

kl

∗e ∗k,l #  −ℑ#  d

5.36

where

ℑ0
#  ℑ#ă0 

ℑ#q0
#

m0
# ,

ℑl#  ℑ#ăl
#  ℑ0

#ql
#

ml
# .

5.37

Remark 5.6.Note that from inequality (5.12) by Gonshor transfer one obtains

∗k,lN,p# ≤
∗g0r#∗gp−1r

#|∗k,l# |
p# − 1!#

N,p ∈∗ℕ.

5.38



Substitution Eq.(5.21) into Eq.(5.36) gives

ℑ0
#  #Ext-∑

l∈ℕ

∧

ℑl# ∑
k1

kl Mk,l
# N,p#  k,l# N,p

M0
#N,p

 −ℑ#  d. 5.39

Multiplying Eq.(5.39) by Wattenberg hyperinteger ∗M0N,p# ∈ ∗ℤd by Theorem
2.13 (see subsection 2.8) we obtain

ℑ0
#  M0

#Nr,p  #Ext-∑
l∈ℕ

∧

∑
k1

kl

ℑl# ∑
k1

kl

Mk,l
# N,p  k,l# N,p 

 −ℑ#  ∗M0N,p#  d.

5.40

By using inequality (5.38) for a given  ∈ ∗,  ≈ 0 we will choose infinite prime
integer p ∈∗ℕ,p  p such that:

#Ext-∑
l∈ℕ

∧

∑
k1

kl

ℑl#∑
k1

kl

k,l# N,p ⊆ −#  d. 5.41

Therefore from Eq.(5.40) and (5.41) by using definition (2.15) of the function
Int.p given by Eq.(2.20)-Eq.(2.21) and corresponding basic property I (see
subsection 2.7) of the function Int.p we obtain

Int.p ℑ0
#  M0

#N,p  #Ext-∑
l∈ℕ

∧

∑
k1

kl

ℑl# ∑
k1

kl

Mk,l
# N,p  k,l# N,p 

ℑ0
#  M0

#N,p  #Ext-∑
l∈ℕ

∧

∑
k1

kl

ℑl# ∑
k1

kl

Mk,l
# N,p 

−Int.p ℑ#  ∗M0N,p#  d  −ℑ#  ∗M0N,p#  d.

5.42

From Eq.(5.42) finally we obtain the main equality

ℑ0
#  M0

#N,p  #Ext-∑
l∈ℕ

∧

∑
k1

kl

ℑl# ∑
k1

kl

Mk,l
# N,p  −ℑ#  ∗M0N,p#  d. 5.43

We will choose now infinite prime integer p in Eq.(3.56) p  p∈∗ℕ such that
p#  max|a0# |,bN

# , b0
# ,ℑ0

#. 5.44

Hence from Eq.(5.16) follows
p# ∤ M0

#N,p. 5.45

Note that ∗M0n,
p# ≠ 0#.Using (5.44) and (5.45) one obtains:

p# ∤ Mk,l
# N,p, r  ℑ0

#. 5.46

Using Eq.(5.11) one obtains



p# ∣ Mk,l
# N,p,k, l  1,2, . . . . 5.47

Part IV.The proof of the inconsistency of the main
equality (5.43)

In this subsection we wil prove that main equality (5.43) is inconsistent. This
prooff is based on the Theorem 2.10 (v), see subsection 2.6.

Lemma 5.3.The equality (5.43) under conditions (5.46)-(5.47) is inconsistent.
Proof. (I) Let us rewrite Eq.(5.43) in the short form

ΓN,p  ∧N,p  −#p  d, 5.48

where

∧N,p  #Ext-∑
l∈ℕ

∧

∑
k1

kl

ℑl# ∑
k1

kl

Mk,l
# N,p,

Γn,p  ℑ0
#  ∗M0N,

p#,#p  ℑ#  ∗M0N,
p#.

5.49

From (5.46)-(5.47) follows that

p# ∤ ΓN,p,
p# ∧N,p.

5.50

Remark 5.7.Note that ∧N,p ∉ ∗.Otherwise we obtain that

ab.pΓN,p  ∧N,p  . 5.51

But the other hand from Eq.(5.48) follows that

ab.pΓN,p  ∧N,p  −#p  d. 5.52

But this is a contradiction. This contradiction completed the proof of the statement
(I).

(II) Let Δ≤
#
k,N,p,Δ

#
k,N,p,Δ≤

#
k1,k2,N,

p and Δ≤
#
k,N,p,n#,Δ

#
k,N,p,n#,be

the external sum correspondingly



Δ≤
#
r,N,p  ΓN,p ∑

l1

r≥1

∑
k1

kl

ℑl# ∑
k1

kl

Mk,l
# N,p,

Δ
#
r,N,p  ∑

l≥r1

∧

∑
k1

kl

ℑl# ∑
k1

kl

Mk,l
# N,p,

Δ≤
#
r1, r2,N,

p ∑
lr1

r2

∑
k1

kl

ℑl# ∑
k1

kl

Mk,l
# N,p,

Δ≤
#
r,N,p,k,l#   Γn,p ∑

l1

r≥1

∑
k1

kl

ℑl# ∑
k1

kl

Mk,l
# N,p  k,l# N,p,

Δ
#
r,N,p,k,l#   #Ext-∑

l≥r1

∧

∑
k1

kl

ℑl# ∑
k1

kl

Mk,l
# N,p  k,l# N,p.

5.53

Note that from Eq.(5.43) and Eq.(5.53) follows that

Δ≤
#
r,N,p  Δ

#
r,N,p  − #p  d,

r  1,2, . . .
5.54

Lemma 5.4. (i) Under conditions (5.46)-(5.47)

ab Δ≤
#
r,N,p,k,l#  Δ

#
r,N,p,k,l#  , r  1,2, . . . . 5.55

And (ii) Under conditions (5.46)-(5.47)

ab Δ≤
#
r,N,p Δ

#
r,N,p , r  1,2, . . . . 5.56

Proof. (i) First note that under conditions (5.46)-(5.47) one obtains

Δ≤
#
r,N,p,k,l#  ≠ 0 , r  1,2, . . . 5.57

Suppose that there exists r ≥ 0 such that ab Δ≤
#
r,N,p,k,l#  Δ

#
r,N,p,k,l#  .Then

from Eq.(5.54) one obtains

Δ
#
r,N,p,k,l#   − #p  d. 5.58

From Eq.(5.58) by Theorem 2.17 one obtains

−d  #p−1  Δ
#
r,N,p,k,l#   #p−1  Δ

#
r,N,p,k,l#   Δ

#r,N,p,k,l# . 5.59

Thus

−d  Δ
#r,N,p,k,l# . 5.60

From Eq.(5.60) by Theorem 2.11 follows that Δr  0 and therefore by Lemma
5.2 one obtains the contradiction. This contradiction finalized the proof of the
Lemma 5.4 (i)

Proof. (ii) This is immediate from the Definition 2.14 (Property I), see
subsection 2.7.

(III)



Remark 5.8.(i) Note that from Eq.(5.49) by Theorem 2.10 (v) follws that
∧N,p has the form

∧N,p  q#  ab.p∧N,p 

 q#  −#p  d
5.61

where

q# ∈ ∧N,p  Δ
#
1,N,p,

q ∈∗ℤ and
p |q.

5.62

(ii) Substitution by Eq.(5.61) into Eq.(5.48) gives

ΓN,p  ∧N,p  ΓN,p  q#  −#p  d  −#p  d. 5.63

Remark 5.9. Note that from (5.63) by definitions follows that

abΓN,p  q#|−#p  d . 5.64

Remark 5.10. Note that from (5.62) by construction of the Wattenberg integer
∧N,p obviously follows that there exists some r1, r2 ∈ ℕ such that

Δ≤
#
1, r1,N,

p  q# ≤ Δ≤
#
1, r2,N,

p,

r1  r2.
5.65

Therefore

ΓN,p  Δ≤
#
1, r1,N,

p  ΓN,p  q# ≤ ΓN,p  Δ≤
#
1, r2,N,

p. 5.66

Note that under conditions (5.46)-(5.47) and (5.66) obviously one obtains

0 ≠ ΓN,p  Δ≤
#
1, r1,N,

p  ΓN,p  q# ≤ ΓN,p  Δ≤
#
1, r2,N,

p  0,

ΓN,p  q# ≠ 0.
5.67

From Eq.(5.63) follows that

ΓN,p  q#  −#p  d  −#p  d. 5.68

Therefore

#p−1ΓN,p  q#   −d  −d. 5.69

From (5.69) follows that

0 ≠ #p−1 ΓN,p  Δ≤
#
1, r1,N,

p  #p−1ΓN,p  q#  ≤

≤ #p−1 ΓN,p  Δ≤
#
1, r2,N,

p  0,

#p−1ΓN,p  q#   0.

5.70

Note that from (5.70) by Theorem 2.8 (see subsection 2.5) and formula (5.32) one
otains



0 ≠ Wst #p−1 ΓN,p  Δ≤
#
1, r1,N,

p  Wst ∗a0#  Δ≤#1, r1,n,
p ,

Wst #p−1 ΓN,p  Δ≤
#
1, r2,n,

p  Wst ∗a0#  Δ≤#1, r2,N,
p  0,

Wst #p−1Γn,p  q#  ≠ 0.

5.71

From Eq.(5.70)-Eq.(5.71) follows that

0 ≠ Wst ∗ă0#  Δ≤#1, r1,N,
p  Wst #p−1Γn,p  q#  ≤

≤ Wst ∗ă0#  Δ≤#1, r2,N,
p  0,

Wst #p−1ΓN,p  q#   0.

5.72

Thus

ab #p−1ΓN,p  q#  −d 5.73

and therefore

#p−1ΓN,p  q#   −d ≠ −d. 5.74

But this is a contradiction. This contradiction completed the proof of the Lemma
5.3.

Remark 5.11. Note that by Definitions 2.19-2.20 and Theorem 2.18 from
Assumption 5.1 and Assumption 5.2 follows

∗ă0#  #Ext-∑
l∈ℕ

∧

∗ăl#∑
k1

kl

∗e ∗k,l #
2

 |−d |2  d. 5.75

Theorem 5.3.The equality (5.75) is inconsistent.
Proof. The proof of the Theorem 5.3 obviously copies in main details the proof

of the
Theorem 5.2.
Theorem 5.3 completed the proof of the main Theorem 1.6.
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