TrHT in the Grand Unification Scheme
Miguel A. Sanchez-Rey

Abstract
The manuscript will prove and describe the trust head theorem [TrHT].

July 8th, 2015
Introduction

What is stopping the grand unification scheme [GRS] from producing more schemes if GRS controls \(\text{dim } \phi = \{11\} \)? [1]
TrHT

\[\Gamma, \text{ strictly depends on compliance with the scientific method [1]. Any other estimate yields a paradoxical physical paradigm.} \]

GRS is a resolution to such a paradox. A selected number of schemes \([n = 121]\) must adhere to
the EOC Guideline [2]. The variants must naturally relate by the number of dimensions given by
compactification with the only known variant \(W_l\); an entity that shows a non-paradoxical observable [1, 3].

Trust Head Theorem [TrHT]

\[
\begin{align*}
(1.1) \quad & \Box + \bullet + \triangle \cong \lozenge \\
(1.2) \quad & \text{mod } \lozenge \cong \Box \\
(1.3) \quad & \text{mod } \lozenge \cong \bullet \\
(1.4) \quad & \text{mod } \lozenge \cong \triangle \\
(1.5) \quad & \Box \cong \{\bullet, \triangle\} \subset \{\triangle\} \subset \cdots \subset \{\bullet, \triangle\} \\
(1.6) \quad & \bullet \cong \{\triangle, \lozenge\} \subset \{\triangle, \lozenge\} \subset \cdots \subset \{\triangle, \lozenge\} \\
(1.7) \quad & \triangle \cong \{\lozenge, \bullet\} \subset \{\lozenge, \bullet\} \subset \cdots \subset \{\lozenge, \bullet\} \\
(1.8) \quad & \Box + [\Box + \bullet] \subset [\bullet + \Box] \subset \cdots \subset [\Box + \bullet] + [\bullet + \Box] \subset \cdots \subset [\bullet + \Box] + \text{mod} \\
(1.9) \quad & 1 + \{1, 1\} + \{1, 1\} + 1 \cong \boxed{1 + 2 + 1}
\end{align*}
\]
Conclusion

We've shown a metamathematical proof of TrHT. It does not mean to believe TrHT or to take it for granted; rather it demonstrates the best estimate of variants GRS requires to avoid paradox in PHPR.
References

