Formula for the age of the Universe
 3D Universe Theory
 Patrick Tonin
 www.3d-universe-theory.com

Following on from the self-similarity of the Universe on different size scales, as shown in the 3D Universe Theory, we postulate that:
$\mathrm{R}_{\mathrm{u}}=\frac{\lambda_{e}}{\pi \times \alpha_{G_{p}}}$
Where:
$\mathrm{R}_{\mathrm{u}}=$ Radius of the Universe as described by the 3D Universe Theory
$\lambda_{\mathrm{e}}=$ Electron Compton wavelength
$\alpha_{\mathrm{Gp}}=$ Gravitational coupling constant (proton)
The 3D Universe Theory describes the Universe as a growing sphere of Universal Bits (UB's). Each UB is a Planck Length in size and the sphere is growing at the speed of light.

We can therefore calculate the age of the Universe as follows:
$\mathrm{A}_{u}=\frac{R_{u}}{c}=\frac{\lambda_{e}}{\pi \times c \times \alpha_{G p}}=4.361 \times 10^{17} \mathrm{sec}=13.82 \times 10^{9}$ years
Where:
$\mathrm{A}_{\mathrm{u}}=$ Age of the Universe
$\mathrm{R}_{\mathrm{u}}=$ Radius of the Universe as described by the 3D Universe Theory
$\mathrm{c}=$ Speed of light

We have seen from the 3D Universe Theory that:

$$
\lambda_{\mathrm{e}}=\frac{\varphi \times 10^{-20} \times c}{2} \text { and } \alpha_{\mathrm{Gp}}=\left(\left(8-\frac{1}{\pi}\right) \times 10^{-20}\right)^{2}
$$

where φ is the golden ratio and has a dimension of Time in sec.

Therefore, the above formula for the age of the Universe can be simplified as follows:
$\mathrm{A}_{\mathrm{u}}=\frac{\varphi \times 10^{20}}{2 \pi\left(8-\frac{1}{\pi}\right)^{2}}=4.364 \times 10^{17} \mathrm{sec}=13.82 \times 10^{9}$ years

