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Abstract. The search for a consistent theory of quantum gravity has motivated

the development of radically different approaches. This seeks consists of constructing

a mathematical apparatus that encapsulates both concepts of quantum theory and

general relativity. However, none approach has been definitive and the problem remains

open. As the quantization of the metric is an alternative, this paper shows how

a metric operator may be explicitly obtained by introducing a temporal operator,

defining an induced metric and invoking some spacetime symmetries. This makes it

possible to relate the effective acoustic metric to the model proposed here. The metric

operator equations are expressed in terms of a hamiltonian operator describing the

degrees of freedom of quantum vaccum whose dynamics gives rise to the metric field.

These findings may help understand and study the quantum vacuum at Planck scale,

consisting of one more tool for the community working on quantization of gravity.

PACS numbers: 04.60.-m, 04.20.Cv, 47.37.+q
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1. Introduction

A number of approaches have aimed to develop a consistent formulation of quantum

theory of gravity [1, 2]. This formulation consists of constructing a mathematical

apparatus that encapsulates both concepts of quantum theory and general relativity.

Quantum theory is a framework for all fundamental interactions and gravitation is

very well described by the metric field in general relativity. Both theories have gone

through several experimental tests making the unification fairly attractive. However,

the satisfactory unified formulation is still an open problem. The older approach is to

directly quantize the theory of general relativity resulting in canonical quantization

methods such as Loop Quantum Gravity [3]. Another approach is String Theory

that incorporates the ideia that a theory of quantum gravity could emerge in an

unified description with all elementar interactions and matter fields [4]. Less orthodox

ideas inspired from analogies with condensed matter also state a scenario where

gravity/spacetime and other fields are emergent phenomena [5, 6, 7, 8]. The major

motivation for the construction of a quantum theory of gravity is to understand

fundamental issues such as the origin of the universe, the evaporation of black holes

and the structure of space and time.

The incompatibility between quantum theory and general relativity can already be

realized in their foundations through the well-known problem of time [8, 9]. In general

relativity, spatial and temporal variables are treated as dynamical ones. In standard

quantum theory, spatial variables are dynamical ones but the time is just an absolute

parameter. In quantum field theory, all variables also receive democratic treatment,

but now spatial and temporal variables are treated as parameters. Fields are the

dynamical variables in Minkowiski spacetime. For completeness, this article shows how

the democratic treatment among all dynamic and parametric variables contributes to

establish a procedure for quantization of the metric field. In particular, a metric operator

can be obtained by introducing a temporal operator, defining an induced metric and

invoking some spacetime symmetries. It also shows how the analogy with the effective

acoustic metric leads to an analogue model to the one proposed here. This analogy

suggests that the metric operator equations are expressed in terms of a hamiltonian

operator describing the degrees of freedom of quantum vaccum whose dynamics gives

rise to the metric field.

2. Formulation of the metric operator

In order to construct the metric operator one must admit the coexistence of all

dynamic and parametric variables. In particular, with regards to standard quantum

mechanics, one introduces a temporal operator T besides the three position operators

X i, (i = 1, 2, 3). One also considers three spatial parameters xi in addition to the

temporal parameter t. The dynamic variables become operators, Xµ = (T,X1, X2, X3),

in the Hilbert space and the parametric variables, ξα = (t, x1, x2, x3), take their values
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in the Euclidean space. Throughout this article one uses natural units, h̄ = c = 1,

unless stated otherwise. The connection between the two sorts of variables can be made

through an induced metric operator. In fact, the simplest way of defining this metric

operator is in analogy to an induced metric. It can be written as ‡

ĝαβ = ηµν∂αX
µ∂βX

ν , (1)

where ηµν = diag(−1, 1, 1, 1) is a diagonal matrix introducing the Lorentzian signature

into the metric, so that Xµ = ηµνX
ν .

To calculate (1), one must use spacetime symmetry transformations and their

representations in the Hilbert space [10, 11]. Let |ξα > and Pα = (H,P 1, P 2, P 3) be

eigenvectors and translation generators of the corresponding operators Xµ, respectively.

As a spacetime displacement, ξ → ξ′ = ξ+λ, implies a displacement of the eigenvectors

|ξ >, one can write the state eigenvectors transformed as

|ξ + λ >= eiλ
αPα|ξ >, (2)

where λ are infinitesimal displacements. On the other hand, since the corresponding

operators Xµ bear a similar relationship one can expand them in the form

Xµ(ξ + λ) = eiλ
αPαXµ(ξ)e−iλ

αPα

= Xµ(ξ) + iλα[Pα, X
µ(ξ)] +O(|λ|2). (3)

By comparing (3) with the Taylor expansion:

Xµ(ξ + λ) = Xµ(ξ) + λα∂αX
µ(ξ) +O(|λ|2), (4)

one gets the following equation:

i∂αX
µ = [Xµ, Pα]. (5)

By inserting (5) into (1), one has

ĝαβ = −[Xµ, Pα][Xµ, Pβ]. (6)

Interestingly, we have employed only translation generators, P µ, in order to get

(6). We do not need the generators of the Lorentz algebra that incorporate boosts

and rotational symmetries. In addition, the dependence of the operators Xµ with the

parametric variables, i.e. ξ → Xµ(ξ), turns them into field operators. Another point is

what the hamiltonian H describes since it does not have an explicit form yet. Next we

shall see that it is fairly evident to interpret it as describing the degrees of freedom of

the quantum vacuum whose dynamics gives rise to the metric field.

3. Analogy with effective metric

Symmetries, conservation laws and analogies are very useful to probe theories. In

particular, some aspects of the physics of condensed matter give rise to a programme

known as ‘analogue gravity’, which allows to investigate aspects of the physics of curved

‡ This is also a 3-brane in 3+1 dimensions (spacetime filling 3-brane) if you prefer.
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spacetime. According to this vision gravity/spacetime is an emergent phenomenon and

quantum hydrodynamics can help the development of a quantum theory of gravity [5, 6].

For example, the physics of sound waves in a moving fluid is the simplest analogue model

that mimics the physics of light waves in a curved spacetime. These models invoke a

mathematical artifact named effective acoustic metric, which is an analogy for the metric

of curved spacetime.

A fluid propagating relative to the laboratory can produce sound waves which in

turns propagates relative to the fluid. In relation to the laboratory, the velocity of a

sound vector ray propagating along the direction of the vector ~n (~n2 = 1) is given by [7]

d~x

dt
= cs~n+ ~v, (7)

where cs is the speed of sound relative to the fluid and ~v = ~v(t, ~r) is the speed of the

fluid relative to the laboratory at the instant t and at the point ~r. By handling (7), one

gets

−c2sdt2 + (d~x− ~vdt)2 = 0. (8)

It is easy to see that (8) defines a null line element (ds2 = 0) in the way:

ds2 = −(1− v2

c2s
)(csdt)

2 − 2
~v

cs
· d~x(csdt)− d~x · d~x. (9)

From (9) it is also easy to see that an effective metric may be defined for the propagation

of sound in the fluid as

g00 = −1 +
vivi
c2s

, g0j = −vj
cs
, gij = δij. (10)

A null line element admits the omission of a multiplicative prefactor. Thus no conformal

factor has been explicit in (10).

In order to show the relationship of the effective metric with the metric operator,

the following commutation relations must be postulated:

[X i, P j] = iδij, [T, P µ] = iδ0µ. (11)

The commutation relations (11) are sufficient for what follows. The derivation of the

commutation relations with the other operators of the standard quantum mechanics will

be detailed in future work. Here the relations between T and P µ are motivated by the

same reasons as the usual relations between X i and P j. From (6) and (11), the metric

operator is simplified as

ĝ00 = −[Xµ, P0][Xµ, P0] = −I − [X i, H][Xi, H],

ĝ0j = −[Xµ, P0][Xµ, Pj] = i[Xj, H],

ĝij = −[Xµ, Pi][Xµ, Pj] = δijI.

(12)

In addition to the commutation relations (11), one must be noted that a velocity operator

is generally defined in terms of a hamiltonian operator as iV i = [X i, H] [10]. Also let
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v̄i(ξ) be the mean value of this velocity operator in a state |ψ〉, i.e., v̄i = 〈ψ|V i|ψ〉. By

inserting these last two remarks into (12), one gets

g00 = −1 +
v̄iv̄i
c2

, g0j = − v̄j
c
, gij = δij. (13)

where the velocity of light (c) has been reinserted.

Let us consider the effective geometry (10) as being an analogue model for the mean

value of the quantum geometry (13), with cs and vi(t, ~r) playing the role of c and v̄i(ξ),

respectively. It is well known that the effective geometry is emergent from dynamics

of fluid. Here, by forcing the identification c → cs and v̄i(ξ) → vi(t, ~r), the effective

geometry is also emergent from the quantum geometry. It is interesting to note that

some relation to quantization of effective metric has already been done in [12]. In this

case, it is reasonable to interpret the hamiltonian as describing the degrees of freedom

which constitute the quantum fluid. On the other hand, because (6) could be derived by

only considerations of spacetime symmetries, its meaning is more fundamental. That is,

the hamiltonian might describe the degrees of freedom of the quantum vacuum whose

dynamics gives rise to the metric field.

4. Application to free hamiltonian

The metric operator equations have been expressed in terms of a hamiltonian operator

in (12). As it has already been explored, let us consider the hamiltonian as describing

the degrees of freedom of the quantum vacuum whose dynamics gives rise to the dynamic

metric field. One can consider the simplest case of a free hamiltonian in the form [10]

H = l0P
2/2 + E0, (14)

where E0 is an internal contribuition to the energy which commutes with operators

X i and P i. The characteristic length l0 has been used to override the usual mass.

The commutation relations (11), between T and P µ, imply [T,E0] = i leading to

uncertainty relations: ∆T∆E0 ≥ 1/2. It is expected that quantum gravitational effects

are meaningful at the Planck scale. By setting ∆T =
√
G as minimum uncertainty for

T , it follows that ∆E0 ≥ 1/2
√
G (where G is the gravitational constant) [13]. Since

E0 must be larger than its uncertainty then E0 > 5 × 1018 GeV. Although this model

is simplified, it is useful to illustrate an application of the equations leading to more

complex cases.

The commutation relations (11), between X i and P j, yield now

[X i, H] = il0P
i. (15)

By inserting (15) into (12), the components of the metric operator take the form

ĝ00 = −I + l20P
iPi, ĝ0j = −l0Pj, ĝij = δijI. (16)

From (16) we see that ĝαβ and P i commute, i.e. [ĝαβ, P
i] = 0. Thus they have the same

set of eigenvectors. If P i|Ki >= Ki|Ki >, where Ki and |Ki > are the eigenvectors
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and eigenvalues of the total momentum operator P i, then ĝαβ|Ki >= gαβ|Ki >, where

gαβ are the eigenvalues of the metric operator given by

g00 = −1 + l20K
iKi, g0j = −l0Kj, gij = δij. (17)

Note that for ‖l0Kj‖ << 1, the metric components approach of the components of the

Minkowiski metric. Moreover, their contravariant components are given by

g00 = −1, g0i = −l0Ki, gij = δij − l20KiKj. (18)

The model given by (14) bears a ground state of “heavy constituents” with energy

of the order of Planck scale. “Light quanta” (subplanckian scale) may arise as low-

energy collective excitations propagating over this vacuum. The energy spectrum of

theses quanta is given by [6]

gµνpµpν = 0, (19)

where pµ = (−E, p1, p2, p3) is the 4-momentum of the quanta. This equation also shows

that the spectrum is independent of a multiplicative prefactor (conformal factor). From

(18) and (19) one gets

−E2 + 2l0K
ipiE + p2 − l20(Kipi)

2 = 0, (20)

where p2 = ‖p‖2 = δijpipj. By handling (20), we have

E = l0K
ipi ± p. (21)

This energy spectrum is different from the standard spectrum due to an additional

term containing the characteristic length (l0). By imposing l0 = 0, one obtains the

standard spectrum for massless particles, E = ‖p‖. In particular, let us consider p = p1
so that E = (l0K

1 ± 1)p1. If lo 6= 0, there are two different regimes. For ‖l0K1‖ << 1,

one gets E = ‖p1‖ again. Otherwise, for ‖l0K1‖ >> 1, the “light quanta” are more

coupled to the “heavy constituents”, i.e., E = l0K
1p1. By dimensional analysis, one

can estimate the energy associated to K1 to be of the order of thermal energy, i.e.

l0(K
1)2 ∼ κT or ‖l0K1‖ ∼

√
l0κT . Let us assume l−10 ∼ 1019 GeV. Then, for the

current temperature of the Universe, κT ∼ 10−4 eV, one has ‖l0K1‖ ∼ 10−16(<< 1).

Whereas in the primordial Universe, κT ∼ 1019 GeV, we obtain ‖l0K1‖ ∼ 1. Finally,

the case ‖l0K1‖ >> 1 is related to the transplanckian regime.

5. Connection with Einstein equations

The analogy with condensed matter suggests that the hamiltonian H should be

interpreted as describing the degrees of freedom of the microscopic system (quantum

vacuum) whose dynamics gives rise to the dynamic metric field. For the case

explored here, note that H can never vanish because otherwise it would violate the

noncommutativity with T . The contribuition of E0 in the hamiltonian (14) suggests

that these degrees of freedom come from quantum fluctuations of vacuum which affect
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the field metric. In order to connect with the Einstein equations, note that (6) can be

expressed as

ĝαβ = −T̂αβ, (22)

where T̂αβ = [Xµ, Pα][Xµ, Pβ]. On the other hand, the Einstein equations:

Gαβ + Λgαβ = −8πGTαβ, (23)

are simplified as

gαβ = −T (vac)
αβ , (24)

apart from a conformal factor, ρvac = Λ/8πG, and when the Einstein tensor is null, i.e.

Gαβ = 0.

Now (22) and (24) can be compared. We can clearly see the equivalence of physical

content. The left hand of theses equations involves metric quantities, while the right

hand involves quantities of momentum-energy. For correspondence, supose that there

is a state |Ψ > such that we can get the following expected values:

< Ψ|ĝαβ|Ψ >= gαβ and < Ψ|T̂αβ|Ψ >= T
(vac)
αβ . (25)

Therefore, apart from a conformal factor and in the absence of curvature, an aspect

of Einstein equations (24) can be reproduced by applying the state |Ψ > in (22).

6. Discussion

The formulation of the metric operator requires the introduction of a temporal operator

which is not common in standard quantum mechanics. The relationship and coexistence

between an absolute and dynamic time have already been explored in [9]. One may

extend those discussions to the absolute and dynamic spatial variables. That is, we

never measure the absolute variables but only some parameter of physical objects such

as rulers and clock-hands, from where we extract the measures of time and space. The

metric operator equations could be obtained in terms of theses variables and operators

of momentum and energy, as shown in (6). In order to solve these equations, it is useful

to invoke the analogy with condensed matter. This allows to relate the two systems:

quantum vacuum and quantum liquid.

This quantum vacuum composed of “heavy constituents” gives rise to a kind of

condensed matter system. The colletive excitations and emergent symmetries of such

a Planck condensed matter could describe the physics of quantum vacuum of a very

similar way to description of condensed matter in real laboratory [6, 8]. As possible

search for experimental evidence, the standard energy spectrum for massless particles

is modified in (21) due to the appearance of an additional term. Once again, this

indicates possible violation of Lorentz invariance at high energies [14]. This system of

“heavy constituents” might contribute to the degrees of freedom which gives rise to

the entropy of black holes [15, 16]. It can also be investigated whether there is some

connection with dark matter. On the other hand, the full classical limit given by (23)

for any magnitude of the Einstein tensor has not been obtained yet.



8

These findings arise from a new way of quantizing the metric and may be interesting

for community working on quantization of gravity.
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