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I. Introductory Remarks 
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I.1. Overview 

 

Neutrosophy means the study of ideas and notions 

that are not true, nor false, but in between (i.e. neutral, 

indeterminate, unclear, vague, ambiguous, incomplete, 

contradictory, etc.). 

Each field has a neutrosophic part, i.e. that part that 

has indeterminacy. Thus, there were born the neutrosophic 

logic, neutrosophic set, neutrosophic probability, neutro-

sophic statistics, neutrosophic measure, neutrosophic 

precalculus, neutrosophic calculus, etc. 

There exist many types of indeterminacies – that’s 

why neutrosophy can be developed in many different ways. 
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I.2. Preliminary 

The first part of this book focuses on Neutrosophic 

Precalculus, which studies the neutrosophic functions. A 

Neutrosophic Function 𝑓: 𝐴 → 𝐵  is a function which has 

some indeterminacy, with respect to its domain of 

definition, to its range, or to its relationship that associates 

elements in 𝐴 with elements in 𝐵. 

As particular cases, we present the neutrosophic 

exponential function and neutrosophic logarithmic function. 

The neutrosophic inverse function is the inverse of a 

neutrosophic function. 

A Neutrosophic Model is, in the same way, a model 

with some indeterminacy (vagueness, unsureness, 

ambiguity, incompleteness, contradiction, etc.). 

 * 

The second part of the book focuses on Neutrosophic 

Calculus, which studies the neutrosophic limits, 

neutrosophic derivatives, and neutrosophic integrals. 

* 

We introduce for the first time the notions of 

neutrosophic mereo-limit, mereo-continuity, mereo-

derivative, and mereo-integral, 1  besides the classical 

1 From the Greek μερος, ‘part’. It is also used to define the theory 
of the relations of part to whole and the relations of part to part 
within a whole (mereology), started by Leśniewski, in 
“Foundations of the General Theory of Sets” (1916) and 
“Foundations of Mathematics” (1927–1931), continued by 
Leonard and Goodman's “The Calculus of Individuals” (1940),  
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definitions of limit, continuity, derivative, and integral 

respectively.  

* 

The Neutrosophic Precalculus and Neutrosophic 

Calculus can be developed in many ways, depending on the 

types of indeterminacy one has and on the method used to 

deal with such indeterminacy. 

In this book, we present a few examples of 

indeterminacies and several methods to deal with these 

specific indeterminacies, but many other indeterminacies 

there exist in our everyday life, and they have to be studied 

and resolved using similar of different methods. Therefore, 

more research has to be done in the field of neutrosophics. 
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I.3. Distinctions among Interval Analysis, 
Set Analysis, and Neutrosophic Analysis 

Notation 
In this book we consider that an interval [a, b] = [b, a] 

in the case when we do not know which one between a and 

b is bigger, or for the case when the interval has varying left 

and right limits of the form [f(x), g(x)], where for certain x’s 

one has f(x) < g(x) and for other x’s one has f(x) > g(x). 

Interval Analysis 
In Interval Analysis (or Interval Arithmetic) one 

works with intervals instead of crisp numbers. Interval 

analysis is intended for rounding up and down errors of 

calculations. So an error is bounding by a closed interval. 

Set Analysis 
If one replaces the closed intervals (from interval 

analysis) by a set, one get a Set Analysis (or Set 

Arithmetic). 

For example, the set-argument set-value function: 

h: P (R)  P(R),     (1) 

where P(R) is the power set of R (the set of all real 

numbers),  

h({1, 2, 3}) = {7, 9}, h([0, 1]) = (6, 8), h(-3) = {-1, -2}

 (2.5, 8], h([x, x2] [-x2, x]) = 0.   (2) 

Set analysis is a generalization of the interval 

analysis. 
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Distinctions among Interval Analysis, Set Analysis, 
and Neutrosophic Analysis 

Neutrosophic Analysis (or Neutrosophic 

Arithmetic) is a generalization of both the interval analysis 

and set analysis, because neutrosophic analysis deals with 

all kind of sets (not only with intervals), and also considers 

the case when there is some indeterminacy (with respect to 

the sets, or with respect to the functions or other notions 

defined on those sets). 

If one uses sets and there is no indeterminacy, then 

neutrosophic analysis coincides with the set analysis. 

If instead of sets, one uses only intervals and there is 

no indeterminacy, then neutrosophic analysis coincides 

with interval analysis. 

If there is some indeterminacy, no matter if using 

only intervals, or using sets, one has neutrosophic analysis. 

Examples of Neutrosophic Analysis 
Neutrosophic precalculus and neutrosophic calculus 

are also different from set analysis, since they use 

indeterminacy. 

As examples, let’s consider the neutrosophic 

functions: 

f1(0 or 1) = 7  (indeterminacy with respect to the 

argument of the function),  

i.e. we are not sure if f1(0) = 7 or f1(1) = 7.  (3) 

Or 

f2(2) = 5 or 6   (indeterminacy with respect to the 

value of the function), 

so we are not sure if f2(2) = 5 or f2(2) = 6.  (4) 

Or even more complex: 
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f3(-2 or -1) = -5 or 9 (indeterminacy with respect with 

both the argument and the value of the function), 

i.e. f3(-2) = -5, or f3(-2) = 9, or f3(-1) = -5, or f3(-1) = 9. (5) 

And in general: 

fm,n(a1 or a2 or … or am) = b1 or b2 or … or bn. (6) 

These functions, containing such indeterminacies, 

are different from set-valued vector-functions. 

 Examples in Set Analysis 
For example f1: R  R is different from the set-

argument function: 

g1: R2  R, where g1({0, 1}) = 7.   (7) 

Also, f2: R  R is different from the set-value function  

g2: R  R2, where g2(2) = {5, 6}.   (8) 

Similarly, f3: R  R is different from the set-argument 

set-value function 

g3: R2  R2, where g3({-2, -1}) = {-5, 9}.  (9) 

And in the general case, fm,n: R  R is different from 

the set-argument set-value function            

gm,n : Rm  Rn,  

where gm,n({a1, a2, …,am}) = {b1, b2, …, bn}. (10) 

It is true that any set can be enclosed into a closed 

interval, yet by working with larger intervals than narrow 

sets, the result is rougher, coarser, and more inaccurate.  

Neutrosophic approach, by using smaller sets 

included into intervals, is more refined than interval 

analysis.  

Neutrosophic approach also uses, as particular cases, 

open intervals, and half-open half-closed intervals. 
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 Examples in Interval Analysis 
Also, neutrosophic analysis deals with sets that have 

some indeterminacy: for example we know that an element 

x(t,i,f) only partially belongs to a set S, and partially it does 

not belong to the set, while another part regarding the 

appurtenance to the set is indeterminate. 

Or we have no idea if an element y(0,1,0) belongs or 

not to the set (complete indeterminacy). 

Or there is an element that belongs to the set, but we 

do not know it. 

Interval analysis and set analysis do not handle these. 

Let’s consider an interval L = [0, 5(0.6, 0.1, 0.3) [, where 

the number 5(0.6, 0.1, 0.3) only partially (0.6) belongs to 

the interval L, partially doesn’t belong (0.3), and its 

appurtenance is indeterminate (0.1). We should observe 

that L ≠ [0, 5] and L ≠ [0, 5). Actually, L is in between them: 

[0, 5) ⊂ L ⊂ [0, 5],    (11) 

since the element 5 does not belong to [0, 5), partially 

belong to [0, 5(0.6, 0.1, 0.3)[, and certainly belongs to [0, 5]. So, 

the interval L is part of neutrosophic analysis, not of 

interval analysis. 

Now, if one considers the functions: 

k1( [0, 5] ) = [-4, 6], or k2( [-2, -4] ) = [0, 5],  (12) 

then k1 and k2 belong to the interval analysis. 

But if we take  

k3([0, 5(0.6, 0.1, 0.3)[)=[-4, 6], or k4([-2, -4])=[0, 5(0.6,0.1,0.3)[,  

then k3 and k4 belong to neutrosophic analysis. (13) 

A Neutrosophic Function 𝑓: 𝐴 → 𝐵 is a function, which 

has some indeterminacy, with respect to its domain of 

definition, to its range, to its relationship that associates 
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elements in 𝐴 with elements in 𝐵 -- or to two or three of the 

above situations. 

Interval Analysis studies only functions defined on 

intervals, whose values are also intervals, but have no 

indeterminacy. 

Therefore, neutrosophic analysis is more general 

than interval analysis. Also, neutrosophic analysis deals 

with indeterminacy with respect to a function argument, a 

function value, or both. 

For example, the neutrosophic functions: 

𝑒: ℝ ∪ {𝐼} → ℝ ∪ {𝐼}, 𝑒(2 + 3𝐼) = 7 − 6𝐼  (14) 

where I = indeterminacy. 

𝑓: ℝ → ℝ, 𝑓(4 or 5) = 7;     (15) 

𝑔: ℝ → ℝ, 𝑔(0) = −2 or 3 or 7;    (16) 

ℎ: ℝ → ℝ, ℎ(−1 or 1) = 4 or 6 or 8;  (17) 

𝑘: ℝ → ℝ, 𝑘(𝑥) = 𝑥 and − 𝑥 (which fails the classical 

vertical line test for a curve to be a classical function); 

thus 𝑘(𝑥) is not a function from a classical point of 

view, but it is a neutrosophic function);  (18) 

𝑙: ℝ → ℝ, 𝑙(−3) = maybe 9.    (19) 

One has:             

Interval Analysis ⊂ Set Analysis ⊂ Neutrosophic Analysis. 

Inclusion Isotonicity 
Inclusion isotonicity of interval arithmetic also 

applies to set analysis and neutrosophic analysis. Hence, if 

ʘ stands for set addition, set subtraction, set multiplication, 

or set division, and A, B, C, D are four sets such that: A ⊆ C 

and B ⊆ D, then  

A ʘ B ⊆ C ʘ D.      (20) 

The proof is elementary for set analysis: 
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Let x ∈ A ʘ B, then there exists a ∈ A and b ∈ B such 

that x = a ʘ b. 

But a ∈ A and A ⊆ C means that a ∈ C as well.  

And similarly, b ∈ B and B ⊆ D means that b ∈ D as 

well. 

Whence, x = a ʘ b ∈ C ʘ D too. 

The proof for neutrosophic analysis is similar, but 

one has to consider one of the neutrosophic inclusion 

operators; for example as follows for crisp neutrosophic 

components t, i, f:  

a neutrosophic set M is included into a neutrosophic 

set N if, 

for any element x(tM,iM,fM) ∈ M one has x(tn,in,fn) ∈ N, with 

tM ≤ tN, iM ≥ iN, and fM ≥ fN. 

Conclusion 
This research is in the similar style as those on 

neutrosophic probability (2013) and neutrosophic 

statistics (2014) from below. 

References 
1.  Florentin Smarandache, Introduction to 

Neutrosophic Measure, Neutrosophic Integral, and 
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I.4. Indeterminate Elementary 
Geometrical Measurements 

 

The mathematics of indeterminate change is the 

Neutrosophic Calculus. 

Indeterminacy means imprecise, unclear, vague, 

incomplete, inconsistent, contradictory information. While 

classical calculus characterizes the dynamicity of our 

world, neutrosophic calculus characterizes the indeter-

minate (neutrosophic) dynamicity. Classical calculus deals 

with notions (such as slope, tangent line, arc length, 

centroid, curvature, area, volume, as well as velocity, and 

acceleration) as exact measurements, but in many real-life 

situations one deals with approximate measurements. 

Neutrosophic Precalculus is more static and is 

referred to ambiguous staticity.  

In neutrosophic calculus, we deal with notions that 

have some indeterminacy. Moreover, indeterminacy, 

unfortunately, propagates from one operation to the other. 

In an abstract idealist world, there are perfect objects 

and perfect notions that the classical calculus uses. 

For example, the curvature of perfect circle of radius 

r > 0 is a constant number [equals to  1/𝑟 ], but for an 

imperfect circle its curvature may be an interval [included 

in  (1/𝑟 − 휀, 1/𝑟 + 휀) , which is a neighborhood of the 

number 1/r, with 휀 > 0 a tiny number]. 

A perfect right triangle with legs of 1 cm and 2 cm has 

its hypotenuse equals to √5 cm. However, in our imperfect 

world, we cannot draw a segment of line whose length be 
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equal of exactly √5  cm, since √5  is an irrational number 

that has infinitely many decimals, we need to approximate 

it to a few decimals: √5 = 2.23606797 … 

        √5 ? 

 

Figure 1. 

The area of a perfect ellipses is 𝐴 = 𝜋𝑎𝑏, where 2𝑎 

and 2𝑏, with 𝑎 > 𝑏, are its major and minor axes respect-

ively. However, we cannot represent it exactly since 𝜋 is a 

transcendental number (i.e. it is not a solution of any 

polynomial equations with rational coefficients), and it has 

infinitely many decimals. If 𝑎 = 2 𝑐𝑚  and 𝑏 = 1 𝑐𝑚 , then 

the area of the ellipse is 𝐴 = 2𝜋 = 6.2831 … cm2. 

 
Figure 2. 

but we can exactly comprise this area inside of this ellipse, 

since 6.2831 … is not an exact number. We only work with 

approximations (imprecisions, indeterminations). 
Similarly, for the volume of a perfect sphere 𝑉 =

4

3
𝜋𝑟3  where its radius is 𝑟 . If 𝑟 = 1 cm , then 𝑉 =

4

3
𝜋 =

4.1887 … cm3  which is a transcendental number and has 
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infinitely many decimals. Thus, we are not able to exactly 

have the volume of the below sphere, 

 
Figure 3. 

equals to 4.1887 … 𝑐𝑚3. 
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I.5. Indeterminate Physical Laws 
 

Neutrosophy has also applications in physics, since 

many physical laws are defined in strictly closed systems, 

i.e. in idealist (perfect) systems2, but such “perfect” system 

do not exist in our world, we deal only with approximately 

closed system, which makes room for using the 

neutrosophic (indeterminate) theory. Therefore, a system 

can be t% closed (in most cases    t < 100), i% indeterminate 

with respect to closeness or openness, and f% open.  

Therefore, a theoretical physical law (L) may be true 

in our practical world in less than 100%, hence the law may 

have a small percentage of falsehood, and another small 

percentage of indeterminacy (as in neutrosophic logic). 

Between the validity and invalidity of a theoretical 

law (idea) in practice, there could be included multiple-

middles, i.e. cases where the theoretical law (idea) is 

partially valid and partially invalid. 

 

 

 

 

 

 

 

 

 

                                                             
2 Fu Yuhua, “Pauli Exclusion Principle and the Law of Included 

Multiple-Middle”, in Neutrosophic Sets and Systems, Vol. 6, 2014. 
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II. Neutrosophic Precalculus 
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II.1. Algebraic Operations with Sets 
 

Let 𝑆 and 𝑇 be two sets, and 𝛼 ∈ ℝ a scalar. Then: 

𝛼 ∙ 𝑆 = {𝛼 ∙ 𝑠|𝑠 ∈ 𝑆 };    (21) 

𝑆 + 𝑇 = {𝑠 + 𝑡|𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇};   (22) 

𝑆 − 𝑇 = {𝑠 − 𝑡|𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇};   (23) 

𝑆 ∙ 𝑇 = {𝑠 ∙ 𝑡|𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇};   (24) 
𝑆

𝑇
= {

𝑠

𝑡
|𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 ≠ 0}.   (25) 
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II.2. Neutrosophic Subset Relation 
 

A Neutrosophic Subset Relation 𝑟, between two sets 𝐴 

and 𝐵, is a set of ordered pairs of the form (𝑆𝐴, 𝑆𝐵), where 

𝑆𝐴  is a subset of 𝐴 , and 𝑆𝐵  a subset of 𝐵 , with some 

indeterminacy. 

A neutrosophic relation 𝑟, besides sure ordered pairs 

(𝑆𝐴, 𝑆𝐵) that 100% belong to 𝑟, may also contains potential 

ordered pairs (𝑆𝐶 , 𝑆𝐷), where 𝑆𝐶  is a subset of 𝐴, and 𝑆𝐷  a 

subset of 𝐵, that might be possible to belong to 𝑟, but we do 

not know in what degree, or that partially belong to 𝑟 with 

the neutrosophic value (𝑇, 𝐼, 𝐹), where 𝑇 < 1 means degree 

of appurtenance to 𝑟 , 𝐼  means degree of indeterminate 

appurtenance, and 𝐹 means degree of non-appurtenance. 

Example: 

𝑟: {0, 2, 4, 6} → {1, 3, 5}  

𝑟 = {
({0, 2}, {1, 3}), ({4, 6}, {5}),

({6}, {1, 5})(0.7,0.1,0.1), ({2, 6}, {3, 5})?
} (26) 

where ({0, 2}, {1, 3}) and ({4, 6}, {5}) for sure belong to 𝑟; 

while ({6}, {1, 5}) partially belongs to 𝑟 in a percentage of 

70%, 10% is its indeterminate appurtenance, and 10% 

doesn’t belong to 𝑟; 

and ({2, 6}, {3, 5}) is also potential ordered pairs (it might 

belong to 𝑟, but we don’t know in what degree). 
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II.3. Neutrosophic Subset Function 
 

A Neutrosophic Subset Function 𝑓: 𝒫(𝐴) → 𝒫(𝐵), is a 

neutrosophic subset relation such that if there exists a 

subset 𝑆 ⊆ 𝐴  with 𝑓(𝑠) = 𝑇 , and 𝑓(𝑠) = 𝑇2 , then 𝑇1 ≡ 𝑇2 . 

(This is the (Neutrosophic) Vertical Line Test extended from 

crisp to set-values.) 

As a particular case, a Neutrosophic Crisp Relation 

between two sets 𝐴 and 𝐵 is a classical (crisp) relation that 

has some indeterminacy.  

A neutrosophic crisp relation may contain, besides 

the classical sure ordered pairs (𝑎, 𝑏), with 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, 

also potential ordered pairs (𝑐, 𝑑) , with 𝑐 ∈ 𝐴  and 𝑑 ∈ 𝐵 

meaning that we are not sure if there is or there is not a 

relation between 𝑐 and 𝑑, or there is a relation between 𝑐 

and 𝑑, but in a percentage strictly less then 100%. 

For example, the neutrosophic relation: 

𝑟: {1, 2, 3, 4} → {5, 6, 7, 8, 9}   (27) 

defined in set notation as: 

{(1, 5), (2, 6), (3, 7)[0.6,0.1,0.2], (3, 8)?, (4, 9)?} 

where the ordered pairs (1, 5), (2, 6), (3, 7) for sure (100% 

belong to 𝑟), while (3, 7) only 60% belongs to 𝑟 , 10% the 

appurtenance is indeterminate, and 30% it does not belong 

to 𝑟 [as in neutrosophic set], while about the ordered pairs 

(3, 8) and (4, 9) we do not know their appurtenance to 𝑟 

(but it might be possible). 

Another definition, in general, is: 

A Neutrosophic Relation 𝑟: 𝐴 → 𝐵  is formed by any 

connections between subsets and indeterminacies in 𝐴 

with subsets and indeterminacies in 𝐵.  



Neutrosophic Precalculus and Neutrosophic Calculus 

25 

 

It is a double generalization of the classical relation; 

firstly, because instead of connecting elements in 𝐴  with 

elements in 𝐵, one connects subsets in 𝐴 with subsets in 𝐵; 

and secondly, because it has some indeterminacies, or 

connects indeterminacies, or some connections are not 

well-known. 

A neutrosophic relation, which is not a neutrosophic 

function, can be restrained to a neutrosophic function in 

several ways. 

For example, if 𝑟(𝑆) = 𝑇1 and 𝑟(𝑆) = 𝑇2, where 𝑇1 ≠

𝑇2, we can combine these to: 

 either 𝑓(𝑆) = 𝑇1 and 𝑇2, 

 or 𝑓(𝑆) = 𝑇1 or 𝑇2, 

 or 𝑓(𝑆) = {𝑇1, 𝑇2}, 

which comply with the definition of a neutrosophic 

function. 
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II.4. Neutrosophic Crisp Function 

 

A Neutrosophic Crisp Function 𝑓: 𝐴 → 𝐵  is a neutro-

sophic crisp relation, such that if there exists an element 

𝑎 ∈ 𝐴  with 𝑓(𝑎) = 𝑏  and 𝑓(𝑎) = 𝑐 , where 𝑏, 𝑐 ∈ 𝐵 , then 

𝑏 ≡ 𝑐. (This is the classical Vertical Line Test.) 
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II.5. General Neutrosophic Function 

 

A General Neutrosophic Function is a neutrosophic 

relation where the vertical line test (or the vertical subset-

line text) does not work. But, in this case, the general 

neutrosophic function coincides with the neutrosophic 

relation. 
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II.6. Neutrosophic (Subset or Crisp) 
Function 

 

A neutrosophic (subset or crisp) function in general is 

a function that has some indeterminacy. 

Examples 

1. 𝑓: {1, 2, 3} → {4, 5, 6, 7}   (28) 

𝑓(1) = 4, 𝑓(2) = 5, but 𝑓(3) = 6 or 7  

      [we are not sure]. 

If we consider a neutrosophic diagram representation 

of this neutrosophic function, we have: 

 
Diagram 1. Neutrosophic Diagram Representation. 

The dotted arrows mean that we are not sure if the 

element 3 is connected to the element 6, or if 3 is connected 

to 7. 

As we see, this neutrosophic function is not a function 

in the classical way, and it is not even a relationship in a 

classical way. 

If we make a set representation of this neutrosophic 

function, we have: 

{(1, 4), (2, 5), (3, 6)
?, (3, 7)

?} 
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where the dotted borders mean we are nou sure if they 

belong or not to this set. Or we can put the pairs (3, 6) and 

(3, 7) in red color (as warning). 

In table representation, we have: 

 
Table 1. 

where about the red color numbers we are not sure. 
Similarly, for a graph representation: 

 
Graph 1. 

Or, modifying a little this example, we might know, 

for example, that 3 is connected with 7 only partially, i.e. 

let’s say (3, 7)(0.6, 0.2, 0.5) which means that 60% 3 is connected 

with 7, 20% it is not clear if connected or non-connected, 

and 50% 3 is not connected with 7. 

The sum of components 0.6 + 0.2 + 0.5 = 1.3 is greater 

than 1 because the three sources providing information 

about connection, indeterminacy, non-connection respect-

ively are independent, and use different criteria of 

evaluation. 
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2. We modify again this neutrosophic function as 

follows: 

𝑔: {1, 2, 3} → {4, 5, 6, 7},    (29) 

𝑔(1) = 4, 𝑔(2) = 5, but 𝑔(3) = 6 and 7. 

The neutrosophic function 𝑔 is not a function in the 

classical way (since it fails the vertical line test at 𝑥 = 3), 

but it is a relationship in the classical way. 

Its four representations are respectively: 

 
Diagram 2. 

{(1, 4), (2, 5), (3, 6), (3, 7)} 

 
Table 1. 

 
Graph 2. 
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Yet, if we redesign 𝑔 as 

𝐺: {1, 2, 3} → 𝒫({4, 5, 6, 7}),    (30) 

𝐺(1) = 4, 𝐺(2) = 5, and 𝐺(3) = {6, 7}, 

then 𝐺 becomes a classical set-valued function. 

3. Let’s consider a different style of neutrosophic 

function: 

ℎ: ℝ → ℝ     (31) 

ℎ(𝑥) ∈ [2, 3], for any 𝑥 ∈ ℝ. 

Therefore, we know about this function only the fact 

that it is bounded by the horizontal lines 𝑦 = 2 and 𝑦 = 3: 

 
Graph 3. 

4. Similarly, we modify ℎ(•)  and get a constant 

neutrosophic function (or thick function): 

𝑙: ℝ → 𝒫(ℝ)      (32) 

𝑙(𝑥) = [2, 3] for any 𝑥 ∈ ℝ, 

where 𝒫(ℝ) is the set of all subsets of ℝ. 

For ex., 𝑙(7) is the vertical segment of line [2, 3]. 
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Graph 4. 

5. A non-constant neutrosophic thick function: 

𝑘: ℝ → 𝒫(ℝ)      (33) 

𝑘(𝑥) = [2𝑥, 2𝑥 + 1] 

whose graph is: 

 
Graph 5. 

For example: 

𝑘(2) = [2(2), 2(2) + 1] = [4, 5]. 
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6. In general, we may define a neutrosophic thick 

function as: 

𝑚: ℝ → 𝒫(ℝ)      (34) 

𝑚(𝑥) = [𝑚1(𝑥1)𝑚2(𝑥)]  

 
Graph 6. 

and, of course, instead of brackets we may have an open 

interval (𝑚1(𝑥), 𝑚2(𝑥)) , or semi-open/semi-close inter-

vals (𝑚1(𝑥), 𝑚2(𝑥)], or [𝑚1(𝑥),  𝑚2(𝑥)] . 

For example, 𝑚(0) = [𝑚1(0), 𝑚2(0)] , the value of 

neutrosophic function 𝑚(𝑥) and a vertical segment of line. 

These examples of thick (neutrosophic) functions are 

actually classical surfaces in ℝ2. 

7. Example of neutrosophic piece-wise function: 

𝑠: ℝ → 𝒫(ℝ)      (35) 

𝑠(𝑥) = {
[𝑠1(𝑥), 𝑠2(𝑥)], for 𝑥 ≤ 3;

(𝑠3(𝑥), 𝑠4(𝑥), for 𝑥 > 3; 
 

with the neutrosophic graph: 

m2(x) 

m1(x) 
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Graph 7. 

For example,  𝑠(3) = [𝑠1(3), 𝑠2(3)],  which is the 

vertical closed segment of line [AB]. 

In all above examples the indeterminacy occured into 

the values of function. But it is also possible to have 

indeterminacy into the argument of the function, or into 

both (the argument of the function, and the values of the 

function) as below. 

8. Indeterminacy into the argument of the function: 

𝑟: {1, 2, 3, 4} → {5, 6, 7}     (36) 

𝑟(1) = 5, 𝑟(2) = 6,  

𝑟(3 or 4) = 7 {i. e. we do not know if 𝑟(3)

= 7 or 𝑟(4) = 4}. 

Another such example: 

𝑡: {1, 2, 3, 4} → {5, 6}     (37) 

𝑡(1) = 5, but 𝑡(2 or 3 or 4) = 6. 

9. Indeterminacy into both: 

⊔ : {1, 2, 3, 4} → {5, 6, 7}    (38) 

⊔ (1 or 2) = 5 or 6 or 7, 
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which means that either U(1) = 5, or U(1) = 6, or U(1) = 7, 

or U(2) = 5, or U(2) = 6, or U(2) = 7; 

⊔ (2 or 3 or 4) = 6 or 7. 

Another example:  

𝑣1: ℝ → 𝒫(ℝ), 𝑣1(𝑥 or 2𝑥) = 5𝑥.  (39) 

Yet, this last neutrosophic function with indeter-

minacy into argument can be transformed, because 

𝑣1(2𝑥) = 5𝑥  is equivalent to 𝑣1(𝑥) = 2.5𝑥 , into a 

neutrosophic function with indeterminacy into the values 

of the function only: 

𝑣2(𝑥) = 2.5𝑥 or 5𝑥. 

Nor these last neutrosophic functions are relation-

ships in a classical way. 
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II.7. Discrete and Non-Discrete 
Indeterminacy 

 

From another view point, there is a discrete indeter-

minacy, as for examples: 

𝑓(2 or 3) = 4,  

or 𝑓(2) = 5 or 6,  

or 𝑓(2 or 3) = 5 or 6; 

and non-discrete indeterminacy, as for examples: 

𝑓(7𝑥 or 8𝑥) = 63,  

or 𝑓(𝑥) = 10𝑥3  

or 20 sin(𝑥), 

or 𝑓(𝑥2 or 8𝑥) = 16𝑒𝑥 and ln 𝑥. 

Depending on each type of indeterminacy we need to 

determine a specific neutrosophic technic in order to over-

come that indeterminacy. 
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II.8. Neutrosophic Vector-Valued 
Functions of Many Variables 

 

We have given neutrosophic examples of real-valued 

functions of a real variable. But similar neutrosophic 

vector-valued functions of many variables there exist in any 

scientific space: 

𝑓: 𝐴1 × 𝐴2 × … × 𝐴𝑛 → 𝐵1 × 𝐵2 × … 𝐵𝑚  

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = (

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛),

𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛), … ,

𝑓𝑚(𝑥1, 𝑥2, … , 𝑥𝑛)
). (40) 

Sure 𝐴1, 𝐴2, … , 𝐴𝑛  and 𝐵1, 𝐵2, … , 𝐵𝑛  may be scientific 

spaces of any types. 

Such neutrosophic vector-valued functions of many 

variables may have indeterminacy into their argument, into 

their values, or into both. And the indeterminacy can be 

discrete or non-discrete. 
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II.9. Neutrosophic Implicit Functions 

 

Similarly to the classical explicit and implicit func-

tion, there exist: Neutrosophic Explicit Functions, for 

example: 

𝑓(𝑥) = 𝑥2 or 𝑥2 + 1,    (41) 

and Neutrosophic Implicit Functions, for example: 

{(𝑥, 𝑦) ∈ ℝ2|𝑒𝑥 + 𝑒𝑦 = 0 or 𝑒𝑥 + 𝑒𝑦 = −1}. (42) 
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II.10. Composition of Neutrosophic 
Functions 

 

Composition of Neutrosophic Functions is an 

extension of classical composition of functions, but where 

the indeterminacy propagates. 

For example: 

𝑓(𝑥) = [ln(𝑥) , ln (3𝑥)], for 𝑥 > 0,  (43) 

and    𝑔(𝑥) = {
1

𝑥−5
, if 𝑥 ≠ 5;

7 or 9, if 𝑥 = 5;
       (44) 

are both neutrosophic functions. 

What is (𝑓 ∘ 𝑔)(5) =? 

(𝑓 ∘ 𝑔)(5) = 𝑓(𝑔(5)) = 𝑓(7 or 9) =

[ln 7, ln 21] or [ln 9, ln 27].   (45) 

Therefore, the discrete indeterminacy “7 or 9” 

together with the non-discrete (continous) indeterminacy 

“ [ln(𝑥), ln(3𝑥)] ” have propagated into a double non-

discrete (continuous) indeterminacy “ [ln 7, ln 21]  or 

[ln 9, ln 27] ”. 

But what is (𝑔 ∘ 𝑓)(5) =? 

(𝑔 ∘ 𝑓)(5) = 𝑔(𝑓(5)) = 𝑔([ln 5, ln 15]) =

[
1

ln(15)−5
,

1

ln(5)−5
] ≈ [−0.43631, −0.29494]. (46) 

What is in general (𝑓 ∘ 𝑔)(𝑥) =? 

(𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) = {
𝑓 (

1

𝑥 − 5
) , for 𝑥 ≠ 5;

𝑓(7 or 9), for 𝑥 = 5;
 

= {
[ln (

1

𝑥−5
) , ln (

3

𝑥−5
)] , for 𝑥 > 5;

[[ln 7, ln 21] or [ln 9, ln 27]], for 𝑥 = 5.
 (47) 
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Since the domain of 𝑓(∙)  is (0, ∞) , one has 
1

𝑥−5
>

0, i.e. 𝑥 > 5 for the first piecewise of 𝑓 ∘ 𝑔. 

As we said before, a neutrosophic function 𝑦 = 𝑓(𝑥) 

may have indeterminacy into its domain, or into its range, 

or into its relation between x and y (or into any two or three 

of them together). 
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II.11. Inverse Neutrosophic Function 

 

The inverse of a neutrosophic function is also a 

neutrosophic function, since the indeterminacy of the 

original neutrosophic function is transmitted to its inverse. 

Example. 

𝑓(𝑥) = {
2𝑥 + 1 or 6𝑥, for 𝑥 ≠ 0;

[1, 3], for 𝑥 = 0;
   (48) 

or   

0 ≠ x                    2x+1 or 6x; 

0                  [1, 3]. 

Let’s find the inverse of the neutrosophic function 

𝑓(𝑥). 

𝑦 = 2𝑥 + 1 or 6𝑥, for 𝑥 ≠ 0.   (49) 

Therefore 𝑦 = 2𝑥 + 1 or 𝑦 = 6𝑥, for 𝑥 ≠ 0. 

Interchange the variables: 𝑥 = 2𝑦 + 1 or 𝑥 = 6𝑦, for 

𝑦 ≠ 0. 

Thus 𝑥 = 2𝑦 + 1, whence 𝑦 =
𝑥−1

2
≠ 0, therefore 𝑥 ≠

1, respectively: 𝑥 = 6𝑦, whence 𝑦 =
𝑥

6
≠ 0, therefore 𝑥 ≠ 0. 

Hence, the inverse of the neutrosophic function 𝑓(𝑥) 

is: 

𝑓−1(𝑥) = {
𝑥−1

2
 or 

𝑥

6
,   for 𝑥 ≠ 0 and 𝑥 ≠ 1;

0,         for 𝑥 = [1, 3].
 (50) 

Again, the inverse of a neutrosophic function: 

𝑓 = ℝ → ℝ2 

𝑓(𝑥) = [2𝑥 + 1, 6𝑥], for 𝑥 ∈ ℝ,  

or 𝑥 → [2𝑥 + 1, 6𝑥]. 

Simply, the inverse is: 

𝑓−1: ℝ2 → ℝ 
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𝑓−1([2𝑥 + 1, 6𝑥]) = 𝑥, for all 𝑥 ∈ ℝ, 

or [2𝑥 + 1, 6𝑥] → 𝑥.     (51) 

The inverse of the neutrosophic exponential function 

𝑘(𝑥) = 2𝑥 or 𝑥 + 1 

is 𝑘−1(𝑥) = log2(𝑥)  or log2(𝑥 + 1).  (52) 

Similarly, the inverse of the neutrosophic logarithmic 

function 

ℎ(𝑥) = log(0.09,   0.11) 𝑥  

is ℎ−1(𝑥) = (0.09, 0.11)𝑥.   (53) 

A classical function is invertible if and only if it is one-

to-one (verifies the Horizontal Line Test). 

Let’s consider the classical function: 

𝑓: {1, 2, 3} → {4, 5}    (54) 

𝑓(1) = 4, 𝑓(2) = 5, 𝑓(3) = 5. 

This function is not one-to-one since it fails the 

horizontal line test at 𝑦 = 5, since 𝑓(2) = 𝑓(3). Therefore, 

this function is not classically invertible. 

However, neutrosophically we can consider the 

neutrosophic inverse function 

𝑓−1(4) = 1, 𝑓−1(5) = {2, 3}, 

𝑓−1: {4, 5} → 𝒫({1, 2, 3}).   (55) 

For the graph of a neutrosophic inverse function 

𝑓−1(𝑥)  we only need to reflect with respect to the 

symmetry axis 𝑦 =  𝑥  the graph of the neutrosophic 

function 𝑓(𝑥). 

The indeterminacy of a neutrosophic function is 

transmitted to its neutrosophic inverse function. 

Proposition 

Any neutrosophic function is invertible. 
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Proof. If 𝑓(𝑥) fails the horizontal line test 𝑓: 𝐴 → 𝐵 , 

𝑎𝑡 𝑦 =  𝑏 , from the domain of definition of the neutro-

sophic function, we define the neutrosophic inverse 

function 

𝑓−1(𝑏) = {𝑎 ∈ 𝐴, 𝑓(𝑎) = 𝑏}, 𝑓−1: 𝐵 → 𝐴.  (56) 

Let 𝑓: 𝐴 → 𝐵  be a neutrosophic function. If the 

neutrosophic graph of 𝑓  contains the neutrosophic point 

(𝐶, 𝐷) , where 𝐶 ⊆ 𝐴  and 𝐷 ⊆ 𝐵 , then the graph of the 

neutrosophic inverse function 𝑓−1  contains the neutro-

sophic point (𝐷, 𝐶). 

A neutrosophic point is a generalization of the clas-

sical point (𝑐, 𝑑), where 𝑐 ∈ 𝐴 an  𝑑 ∈ 𝐵, whose dimension 

is zero. A neutrosophic point is in general a thick point, 

which may have the dimension 0, 1, 2 or more (depending 

on the space we work in). 

As examples, 𝛼([1, 2], [4, 6]) has dimension 2: 

 
Graph 8. 

or 𝛽(3, (−1, 1)) has the dimension 1: 
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Graph 9. 

or 𝛾(−2, {−4, −3, −2}) has the dimension zero: 

 
Graph 10. 
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while 𝛿([2, 3], [4, 5], [0, 4]) has the dimension 3: 

 
Graph 11. 
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II.12. Zero of a Neutrosophic Function 

 

Let 𝑓: 𝐴 → 𝐵. The zero of a neutrosophic function 𝑓 

may be in general a set 𝑆 ⊆ 𝐴 such 𝑓(𝑆) = 0. 

For example: 

𝑓: ℝ → ℝ  

𝑓(𝑥) = {
𝑥 − 4, 𝑥 ∉ [1, 3]

0,         𝑥 = [1, 3]
 .   (57) 

This function has a crisp zero, 𝑥 =  4, since 𝑓(4) =

4 − 4 = 0, and an interval-zero 𝑥 = [1, 3] since 𝑓([1, 3]) =

0. 
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II.13. Indeterminacies of a Function 

 

By language abuse, one can say that any classical 

function is a neutrosophic function, if one considers that the 

classical function has a null indeterminacy. 
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II.14. Neutrosophic Even Function 

 

A Neutrosophic Even Function: 

𝑓: 𝐴 → 𝐵 

has a similar definition to the classical even function: 

𝑓(−𝑥) = 𝑓(𝑥), for all 𝑥 in 𝐴,   (58) 

with the extension that 𝑓(−𝐼) = 𝑓(𝐼), where 𝐼 = indeter-

minacy. 

For example: 

𝑓(𝑥) = {
𝑥2,    for 𝑥 ∉ {−1, 1};

[0, 2], for 𝑥 = −1 or 1.
   (59) 

Of course, for determinate  

𝑥 ∈ ℝ ∖ {−1, 1}, 𝑓(−𝑥) = (−𝑥)2 = 𝑥2 = 𝑓(𝑥). (60) 

While for the indeterminate 𝐼 = −1 or 1 one has  

−𝐼 = −(−1 or 1) = 1 or − 1 = −1 or 1 

whence 𝑓(−𝐼) = 𝑓(−1 or 1) = [0, 2] 

and 𝑓(𝐼) = 𝑓(−1 or 1) = [0, 2], 

hence 𝑓 is a neutrosophic even function. 

 
Graph 12. 
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As for classical even functions, the graph of a 

neutrosophic even function is symmetric, in a neutrosophic 

way, with respect to the y-axis, i.e. for a neutrosophic point 

P situated in the right side of the y-axis there exists a 

neutrosophic point P’ situated in the left side of the y-axis 

which is symmetric with P, and reciprocally.  

We recall that the graph a neutrosophic function is 

formed by neutrosophic points, and a neutrosophic point 

may have not only the dimension 0 (zero), but also 

dimension 1, 2 and so on depending on the spaces the 

neutrosophic function is defined on and takes values in, and 

depending on the neutrosophic function itself. 
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II.15. Neutrosophic Odd Function 

 

Similarly, a Neutrosophic Odd Function 𝑓: 𝐴 → 𝐵 has a 

similar definition to the classical odd function: 

𝑓(−𝑥) = −𝑓(𝑥), for all 𝑥 in 𝐴, with the extension that 

𝑓(−𝐼) = −𝑓(𝐼), where 𝐼 = indeterminacy. 

For example: 

𝑓: ℝ → ℝ 

𝑓(𝑥) = {
𝑥 and 𝑥3,   for 𝑥 ≠ 0;
−5 or 5,   for 𝑥 = 0.

   (61) 

The first piece of the function is actually formed by 

putting together two distinct functions. 

Of course, for 𝑥 ≠ 0 , 𝑓(−𝑥) = − 𝑥 , and (−𝑥)3 =

 −𝑥, and − 𝑥3 =  −(𝑥 and 𝑥3) = –  𝑓(𝑥). 

While for 𝑥 =  0, one has: 

𝑓(−0) =  𝑓(0) = −5 or 5; 

−𝑓(0) = −(−5 or 5) = 5 or − 5 =  −5 or 5. 

So, 𝑓(−0) = −𝑓(0) , hence 𝑓  is a neutrosophic odd 

function. 

 
Graph 13. 
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Same thing:  a neutrosophic odd function is neutro-

sophically symmetric with respect to the origin of the 

Cartesian system of coordinates. 
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II.16. Neutrosophic Model 

 

A model which has some indeterminacy is a neutro-

sophic model. When gathered data that describe the 

physical world is incomplete, ambiguous, contradictory, 

unclear, we are not able to construct an accurate classical 

model. We need to build an approximate (thick) model. 

Using neutrosophic statistics, we plot the data and 

then design a neutrosophic regression method. The most 

common used such methods are the neutrosophic linear 

regression and the neutrosophic least squares regression. 

For two neutrosophic variables, 𝑥  and 𝑦, 

representing the plotted data, one designs the best-fitting 

neutrosophic curve of the regression method. Instead of 

crisp data, as in classical regression, for example: 

(𝑥, 𝑦) {
(1, 2), (3, 5), (4, 8),

 (−2, −4), (0, 0), (−5, −11), …
},  (62) 

one works with set (approximate) data in neutrosophic 

regression: 

(𝑥, 𝑦) ∈ 

{

(1, [2, 2.2]), ([2.5, 3], 5), ([3.9, 4), (8, 8.1)),

(−2, −4), ((0.0, 0.1], (−0.1, 0.0)),

(−5, (−10, −11)), …

} (63) 

and instead of obtaining, for example, a crisp linear 

regression as in classical statistics: 

𝑦 = 2𝑥 − 1,     (64) 

one gets a set-linear regression, for example: 

𝑦 = [1.9, 2]𝑥 − [0.9, 1.1]    (65) 

as in neutrosophic statistics. 



Neutrosophic Precalculus and Neutrosophic Calculus 

53 

 

II.17. Neutrosophic Correlation Coefficient 

 

The classical correlation coefficient 𝑟  is a crisp 

number between [-1, 1]. The neutrosophic correlation 

coefficient is a subset of the interval [-1, 1]. 

Similarly, if the subset of the neutrosophic 

correlation coefficient is more in the positive side of the 

interval [-1, 1], the neutrosophic variables 𝑥 and 𝑦 have a 

neutrosophic positive correlation, otherwise they have a 

neutrosphic negative correlation. 

Of course, there is not a unique neutrosophic model 

to a real world problem. And thus, there are no exact 

neutrosophic rules to be employed in neutrosophic 

modelling. Each neutrosophic model is an approximation, 

and the approximations may be done from different points 

of view. A model might be considered better than others if 

it predicts better than others. But in most situations, a 

model could be better from a standpoint, and worse from 

another standpoint – since a real world problem normally 

depends on many (known and unknown) parameters. 

Yet, a neutrosophic modelling of reality is needed in 

order to fastly analyse the alternatives and to find 

approximate optimal solutions. 
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II.18. Neutrosophic Exponential Function 

 

A Neutrosophic Exponential Function is an exponen-

tial function which has some indeterminacy [with respect 

to one or more of:  its formula (base or exponent), or 

domain, or range]. 

If one has a classical exponential function 

𝑔(𝑥) = 𝑎𝑥, with 𝑎 > 0 and 𝑎 ≠ 1,  (66) 

then an indeterminacy with respect to the base can be, for 

example: 

𝑓(𝑥) = [0.9, 1.1]𝑥,    (67) 

where “a” is an interval which even includes 1, and we get 

a thick function: 

 
Graph 14. 

or one may have indeterminacy with respect to the 

exponent: 

𝑘(𝑥) = 2𝑥 or 𝑥+1.     (68) 
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Graph 15. 

For example: 𝑘(1) = 21 or 1+1 = 21 or 22 = 2 or 4 

(we are not sure if it’s 2 or 4).    (69) 

A third neutrosophic exponential function: 

𝑙(𝑥) = 2(𝑥,   𝑥+1)     (70) 

is different from 𝑘(𝑥) and has the graph: 

 
Graph 16. 

which is a thick function. For example: 𝑙(1) = 2(1,   1+1) =

2(1,   2) = (21, 22) = (2, 4), an open interval.  (71) 
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II.19. Neutrosophic Logarithmic Function 

 

Similarly, a Neutrosophic Logarithmic Function is a 

logarithmic function that has some indeterminacy (with 

respect to one or more of: its formula, or domain, or range). 

For examples: 

𝑓(𝑥) = log[2,3] 𝑥 = [log3 𝑥 , log3 𝑥].  (72) 

 
Graph 17. 

or 𝑔(𝑥) = ln(𝑥, 2𝑥) = (ln(𝑥) , ln(2𝑥))   (73) 

 
Graph 18. 
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or ℎ(𝑥) = log(0.09,11) 𝑥     (74) 

 
Graph 19. 
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II.20. Composition of Neutrosophic 
Functions 

 

In general, by composing two neutrosophic 

functions, the indeterminacy increases. 

Example: 

𝑓1(𝑥) = 𝑥3 𝑜𝑟 𝑥4 

𝑓2(𝑥) = [2.1, 2.5]𝑥 

then 

(𝑓1 ∘ 𝑓2)(𝑥) = 𝑓1(𝑓2(𝑥)) = [2.1, 2.5]3𝑥 or [2.1, 2.5]4𝑥. (75) 
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III. Neutrosophic Calculus 
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III.1. Neutrosophic Limit 

 

Neutrosophic Limit means the limit of a neutrosophic 

function. 

We extend the classical limit. 

Let consider a neutrosophic function 𝑓: ℝ → 𝒫(ℝ) 

whose neutrosophic graph is below: 

 
Graph 20. 

𝑓(𝑥) = {
[𝑓1(𝑥), 𝑓2(𝑥)], for 𝑥 ≤ 5;
[𝑓3(𝑥), 𝑓4(𝑥)], for 𝑥 > 5,

   (76) 

is a neutrosophic piecewise-function. 

Using the Neutrosophic Graphic Method, we get: 

 The Neutrosophic Left Limit is 

lim
𝑥→5
𝑥<5

𝑓(𝑥) = [8, 11];    (77) 

 The Neutrosophic Right Limit is 

lim
𝑥→5
𝑥>5

𝑓(𝑥) = [6, 9].    (78) 
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We introduce for the first time the notion of neutro-

sophic mereo-limit. Because the neutrosophic mereo-limit 

is the intersection of the neutrosophic left limit and the 

neutrosophic right limit [similarly as in the classical limit, 

where the left limit has to be equal to the right limit – which 

is equivalent to the fact that the intersection between the 

left limit (i.e. the set formed by a single finite number, or by 

+∞, or by − ∞) and the right limit (i.e. also the set formed 

by a single finite number, or by +∞, or by − ∞ ) is not 

empty], one has: 

lim
𝑥→5

𝑓(𝑥) = [8, 11] ∩ [6,9] =]8,9].  (79) 

If the intersection between the neutrosophic left limit 

and the neutrosophic right limit is empty, then the neutro-

sophic mereo-limit does not exist. 

Neutrosophic Limit of a function 𝑓(𝑥)  does exist if 

the neutrosophic left limit coincides with the neutrosophic 

right limit. (We recall that in general the neutrosophic left 

and right limits are set, rather than numbers.) For example, 

the previous function does not have a neutrosophic limit 

since [8, 11] ≢ [6, 9]. 

Norm 
We define a norm. 

Let 𝜇: 𝒫(ℝ) → ℝ+ , where 𝒫(ℝ) is the power set of 

ℝ, while ℝ is the set of real numbers.   (80) 

For any set 𝒮 ∈ 𝒫(ℝ), 

𝜇(𝒮) = max {|𝑥|}, 𝑥 ∈ 𝒮 ∪ 𝐹𝑟(𝒮)},  (81) 

where |𝑥|  is the absolute value of 𝑥 , and 𝐹𝑟(𝒮)  is the 

frontier of 𝒮,  

or: 

𝜇(𝒮) = max{|𝑖𝑛𝑓𝒮|, |𝑠𝑢𝑝𝒮|}   (82) 
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where 𝑖𝑛𝑓𝒮 means the infimum of 𝒮, and 𝑠𝑢𝑝𝒮 means the 

supremum of 𝒮. 

Then: 

𝜇(𝒮1 + 𝒮2) = max{|𝑖𝑛𝑓𝒮1 + 𝑖𝑛𝑓𝒮2|, |𝑠𝑢𝑝𝒮1 + 𝑠𝑢𝑝𝒮2|}, 

𝜇(𝛼 ∙ 𝒮) = max{|𝛼| ∙ |𝑖𝑛𝑓𝒮|, |𝛼| ∙ |𝑠𝑢𝑝𝒮| }, (83) 

where 𝛼 ∈ ℝ is a scalar. 

If the cardinality of the set 𝒮 is 1, i.e.  𝒮 = {𝑎}, 𝑎 ∈ ℝ, 

then 𝜇(𝒮) = 𝜇(𝑎) = |𝑎|.    (84) 

We prove that 𝜇(∙) is a norm. 

𝜇: 𝒫(ℝ) → ℝ+, 

∀𝒮 ∈  𝒫(ℝ), 𝜇(𝒮) = max{|𝑥|, 𝑥 ∈ 𝒮 ∪ 𝐹𝑟(𝒮)} = 

max{|𝑖𝑛𝑓𝒮|, |𝑠𝑢𝑝𝒮|}.    (85) 

𝜇(−𝒮) = 𝜇(−1 ∙ 𝒮) = max{|−1| ∙ |𝑖𝑛𝑓𝒮|, |−1| ∙

|𝑠𝑢𝑝𝒮| } = max{|𝑖𝑛𝑓𝒮|, |𝑠𝑢𝑝𝒮|} = 𝜇(𝒮).  (86) 

For a scalar 𝑡,  

𝜇(𝑡 ∙ 𝒮) = max{|𝑡| ∙ |𝑖𝑛𝑓𝒮|, |𝑡| ∙ |𝑠𝑢𝑝𝒮| } = |𝑡| ∙

max{|𝑖𝑛𝑓𝒮|, |𝑠𝑢𝑝𝒮|} = |𝑡| ∙ 𝜇(𝒮).    (87) 

𝜇(𝑆1 + 𝑆2) = 𝑚𝑎𝑥{|𝑖𝑛𝑓𝑆1 + 𝑖𝑛𝑓𝑆2|, |𝑠𝑢𝑝𝑆1 +

𝑠𝑢𝑝𝑆2|} ≤ 𝑚𝑎𝑥{|𝑖𝑛𝑓𝑆1| + |𝑖𝑛𝑓𝑆2|, |𝑠𝑢𝑝𝑆1| + |𝑠𝑢𝑝𝑆2|} ≤

𝑚𝑎𝑥{|𝑖𝑛𝑓𝑆1|, |𝑠𝑢𝑝𝑆1|} + 𝑚𝑎𝑥{|𝑖𝑛𝑓𝑆2|, |𝑠𝑢𝑝𝑆2|} = 𝜇(𝑆1) +

𝜇(𝑆2).       (88) 

𝜇(𝑆1 − 𝑆2) = 𝜇(𝑆1 + (−𝑆2)) ≤  𝜇(𝑆1) + 𝜇(−𝑆2) =

𝜇(𝑆1) + 𝜇(𝑆2).      (89) 
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III.2. Appropriateness Partial-Distance 
(Partial-Metric) 

 

Let A and B be two sets included in ℝ, such that 𝑖𝑛𝑓𝐴,

𝑠𝑢𝑝𝐴, 𝑖𝑛𝑓𝐵, and 𝑠𝑢𝑝𝐵 are finite numbers.  

Then the appropriate partial-distance (partial-

metric) between A and B is defined as: 

η : ℝ2          ℝ+ 

η(A, B) = max{|infA-infB|, |supA-supB|}.) (90) 

In other words, the appropriateness partial-distance 

measures how close the inf’s and sup’s of two sets (i.e. the 

two sets corresponding extremities) are to each other. 
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III.3. Properties of the Appropriateness 
Partial-Distance 

 

For any A, B, C ⊂ ℝ , such that 𝑖𝑛𝑓𝐴, 𝑠𝑢𝑝𝐴, 𝑖𝑛𝑓𝐵,

𝑠𝑢𝑝𝐵, 𝑖𝑛𝑓𝐶, and 𝑠𝑢𝑝𝐶 are finite numbers, one has: 

a) η(A, B) ≥ 0.     (91) 

b) η(A, A) = 0.      (92) 

But if η(A, B) = 0 it does not result that A ≡ B, it 

results that infA = infB and supA = supB. 

For example, if A = {3, 4, 5, 7} and B = (3, 7],  then 

infA = infB = 3 and supA = supB = 7, whence η(A, B) = 

0, but A ≢ B.     (93) 

Therefore, this distance axiom is verified only 

partially by η. 

c) η(A, B) = η(B, A).    (94) 

d) η(A, B) ≤ η(B, C)+ η(C, A).   (95) 

Proof of d): 

η(A, B) = max{|infA-infB|, |supA-supB|}  

= max{|infA-infC + infC -infB|, |supA-supC+supC-

supB|}.      (96) 

But |infA-infC + infC -infB| ≤  |infA-infC| + |infC -infB| 

= |infB-infC| + |infC -infA|    (97) 

and similarly 

 |supA-supC+supC-supB| ≤ |supA-supC|+|supC-supB| 

= |supB-supC|+|supC-supA|   (98) 

whence 

max{|infA-infC + infC-infB|, |supA-supC+supC-supB|} 

≤ max{|infB-infC|, |supB-supC|} + max{|infC-infA|, 

|supC-supA|} = η(B, C)+ η(C, A).   (99) 
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e) If A = {a} and B = {b}, with a, b ∈ ℝ, i.e. A and B 

contain only one element each, then:  

η(A, B) = |a-b|.                 (100) 

f) If A and B are real (open, closed, or semi-

open/semi-closed) intervals,  A = [a1, a2] and B = 

[b1, b2], with a1 < a2 and b1 < b2, then η(A, B) = 

max{|a1-b1|, |a2-b2|}.                (101) 
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III.4. Partial-Metric Space 
 

Let’s have in general: 

𝜂: ℳ → 𝑅+, where ℳ is a non-empty set. 

The function 𝜂  is a partial-metric (partial-distance) 

on ℳ, 

𝜂(𝐴, 𝐵) = 𝑚𝑎𝑥{|𝑖𝑛𝑓𝐴 − 𝑖𝑛𝑓𝐵|, |𝑠𝑢𝑝𝐴 − 𝑠𝑢𝑝𝐵|}   (102) 

and the space ℳ endowed with 𝜂 is called a partial-metric 

space. 

This partial-metric space 𝜂 is a generalization of the 

metric 𝑑, defined in interval analysis: 

𝑑: 𝑆 → 𝑆, where 𝑆 is any real set, and 

𝑑([𝑎, 𝑏], [𝑐, 𝑑]) = 𝑚𝑎𝑥{|𝑎 − 𝑐|, |𝑏 − 𝑑|},              (103) 

with 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑, because 𝜂 deals with all kinds of sets, 

not only with intervals as in integer analysis. 

Remarkably, 

𝜂(𝐴, 0) = 𝑚𝑎𝑥{|𝑖𝑛𝑓𝐴 − 0|, 𝑠𝑢𝑝|𝐴 − 0|} =

𝑚𝑎𝑥{|𝑖𝑛𝑓𝐴|, |𝑠𝑢𝑝𝐴|} = 𝜇(𝐴),               (104) 

which is the norm of 𝐴. 
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III.5. 𝛆 − 𝛅 Definition of the Neutrosophic 
Left Limit 

 

Let f  be a neutrosophic function, f: P(ℝ) ⟶ P(ℝ). 

The 휀 − 𝛿 definition of the Neutrosophic Left Limit is 

an extension of the classical left limit definition, where the 

absolute value |∙| is replace by 𝜂(∙). Also, instead of working 

with scalars only, we work with sets (where a “set” is view 

as an approximation of a “scalar”). 

Therefore, 

lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) = 𝐿                 (105) 

is equivalent to ∀휀 > 0 , ∃𝛿 = 𝛿(휀) > 0 , such that if 

𝜂(𝑥, 𝑐)𝑥<𝑐 < 𝛿, then 𝜂(𝑓(𝑥), 𝐿)𝑥<𝑐 < 휀.               

(106) 

The 휀 − 𝛿 definition of the Neutrosophic Right Limit. 

lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) = 𝐿                 (107) 

is equivalent to ∀휀 > 0 , ∃𝛿 = 𝛿(휀) > 0 , such that if 

𝜂(𝑥, 𝑐)𝑥>𝑐 < 𝛿, then 𝜂(𝑓(𝑥), 𝐿)𝑥>𝑐 < 휀.                    

(108) 

And, in general, the 휀 − 𝛿  definition of the 

Neutrosophic Limit. 

lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 

is equivalent to ∀휀 > 0 , ∃𝛿 = 𝛿(휀) > 0 , such that if 

𝜂(𝑥, 𝑐) < 𝛿, then 𝜂(𝑓(𝑥), 𝐿) < 휀.                

(109) 
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III.6. Example of Calculating 
the Neutrosophic Limit 

 

In our previous example, with 𝑐 = 5, let 휀 > 0,  

then  

𝜂([𝑓1(𝑥), 𝑓2(𝑥)], [8, 11]) =

max
𝜂(𝑥−5)<𝛿

𝑥<5

{|𝑖𝑛𝑓[𝑓1(𝑥), 𝑓2(𝑥)] − 𝑖𝑛𝑓[8, 11]|,

|𝑠𝑢𝑝[𝑓1(𝑥), 𝑓2(𝑥)] − 𝑠𝑢𝑝[8, 11]|} = max
𝜂(𝑥−5)<𝛿

𝑥<5

{|𝑓1(𝑥) −

8|, |𝑓2(𝑥) − 11|} < 휀.                (110) 

𝜂(𝑥, 5) < 𝛿 means |𝑥 − 5| < 𝛿 as in classical calculus. 

max
𝜂(𝑥−5)<𝛿

𝑥<5

{|𝑓1(𝑥) − 8|, |𝑓2(𝑥) − 11|} < 휀  

means |𝑓1(𝑥) − 8| < 휀 , and |𝑓2(𝑥) − 11| < 휀 , when |𝑥 −

5| < 𝛿 and 𝑥 ≤ 5.                 (111) 
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III.7. Particular Case of Calculating 
the Neutrosophic Limit 

 

Suppose, as a particular case of the previous example, 

that 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥) are piecewise functions, such 

that in a left or right neighborhood of 𝑥 = 5 they are: 

𝑓1(𝑥) = −𝑥2 + 6𝑥 + 3, for 𝑥 ∈ [4, 5];              (112) 

𝑓2(𝑥) = 𝑥3 − 114, for 𝑥 ∈ [4, 5];                                 (113) 

𝑓3(𝑥) = 𝑥 + 1, for 𝑥 ∈ [5, 6];                                    (114) 

𝑓4(𝑥) = 3𝑥 − 6, for 𝑥 ∈ [5, 6].                          (115) 

Therefore, 

|𝑓1(𝑥) − 8| = |−𝑥2 + 6𝑥 + 3 − 8| = |−(𝑥 − 5)(𝑥 −

1)| = |(𝑥 − 5)(𝑥 − 1)| <
4

(4) = 휀; we take 𝛿 =
4
, because 

𝑥 − 1 ≤ 4, since 𝑥 ∈ [4, 5].                (116) 

And |𝑓2(𝑥) − 11| = |𝑥3 − 114 − 11| = |(𝑥 − 5)(𝑥2 +

5𝑥 + 25)| <
75

(75) = 휀 ; we take 𝛿 =
75

, because 𝑥2 +

5𝑥 + 25 ≤ (5)2 + 5(5) + 25 = 75, since 𝑥 ∈ [4, 5].      (117) 

We got that for any 휀 > 0 , there exists 𝛿 =

𝑚𝑖𝑛 {
4

,
75

} =
75

 . Whence it results the neutrosophic left 

limit. 

Similarly for the neutrosophic right limit in this 

example. 

Let 휀 > 0.  Then 

𝜂([𝑓3(𝑥), 𝑓4(𝑥)], [6, 9]]) =

max
𝜂(𝑥−5)<𝛿

𝑥>5

{|𝑖𝑛𝑓[𝑓3(𝑥), 𝑓4(𝑥)] − inf [6, 9]|, |𝑠𝑢𝑝[𝑓3(𝑥), 𝑓4(𝑥)] −

sup [6, 9]|} = max
𝜂(𝑥−5)<𝛿

𝑥>5

{|𝑓3(𝑥) − 6|, |𝑓4(𝑥) − 9|} < 휀,     (118) 

which means 
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|𝑓3(𝑥) − 6| < 휀, and |𝑓4(𝑥) − 9| < 휀,  

when |𝑥 − 5| < 𝛿 and 𝑥 > 5. 

Therefore: 

 |𝑓3(𝑥) − 6| = |𝑥 + 1 − 6| = |𝑥 − 5| <
1

(1) = 휀;  

we take 𝛿 =
1

= 휀.                           (119) 

And: 

|𝑓4(𝑥) − 9| = |3𝑥 − 6 − 9| = |3(𝑥 − 5)| <
3

∙ (3) = 휀;  

we take 𝛿 =
3
.                                (120) 

We got that for any 휀 > 0, there exists 

𝛿 = 𝑚𝑖𝑛 {휀,
3
} =

3
,                              (121) 

whence it results the neutrosophic right limit. 

Then we intersect the neutrosophic left and right 

limits to get the neutrosophic mereo-limit. We observe that 

the neutrosophic limit does not exist of this function, since 

if we take 휀 = 0.1 > 0 , there exist no 𝛿 = 𝛿(휀) > 0  such 

that if |𝑥 − 5| < 𝛿 to get  

𝜂([𝑓1(𝑥), 𝑓2(𝑥)], [8, 9]) < 0.1               (122) 

not even 

𝜂([𝑓3(𝑥), 𝑓4(𝑥)], [8, 9]) < 0.1                           (123) 

since in tiny neighborhood of 5 the absolute values of 

differences |𝑓2(𝑥) − 9| and |𝑓3(𝑥) − 8| are greater than 1. 
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III.8. Computing a Neutrosophic Limit 
Analytically 

 

Let’s consider the below limit: 

lim
𝑥→−3

𝑥2 + 3𝑥 − [1, 2]𝑥 − [3, 6]

𝑥 + 3
 

(124) 

We substitute 𝑥 for -3, and we get: 

lim
𝑥→−3

(−3)2 + 3 ∙ (−3) − [1, 2] ∙ (−3) − [3, 6]

−3 + 3

=
9 − 9 − [1 ∙ (−3), 2 ∙ (−3)] − [3, 6]

0

=
0 − [−6, −3] − [3, 6]

0

=
[3, 6] − [3,6]

0
=

[3 − 6, 6 − 3]

0

=
[−3, 3]

0
, 

(125) 

which has un undefined operation
0

0
, since 0 ∈ [−3, 3].              

Then we factor out the numerator, and simplify: 

lim
𝑥→−3

𝑥2 + 3𝑥 − [1, 2]𝑥 − [3, 6]

𝑥 + 3

= lim
𝑥→−3

(𝑥 − [1, 2]) ∙ (𝑥 + 3)

(𝑥 + 3)

= lim
𝑥→−3

(𝑥 − [1,2]) = −3 − [1,2]

= [−3, −3] − [1,2]

=  −([3,3] + [1,2]) = [−5, −4]. 

             (126) 
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We can check the result considering classical crisp 

coefficients instead of interval-valued coefficients.  

For examples: 

a) Taking the infimum of the intervals [1,2] and 

respectively [3,6], i.e. 1 and respectively 3, we 

have: 

lim
𝑥→−3

𝑥2+3𝑥−1𝑥−3

𝑥+3
=

lim
𝑥→−3

𝑥2+2𝑥−3

𝑥+3
= lim

𝑥→−3

(𝑥+3)(𝑥−1)

𝑥+3
= lim

𝑥→−3
(𝑥 − 1) =-3-1  

= -4 ∈[−5, −4].                               (127) 

 

b) Taking the supremum  of the intervals [1,2] and 

respectively [3,6], i.e. 2 and respectively 6, we 

have: 

lim
𝑥→−3

𝑥2+3𝑥−2𝑥−6

𝑥+3
=

lim
𝑥→−3

𝑥2+𝑥−6

𝑥+3
= lim

𝑥→−3

(𝑥+3)(𝑥−2)

𝑥+3
= lim

𝑥→−3
(𝑥 − 2) =-3-2 = 

= -5 ∈[−5, −4].                 (128) 

 

c) Taking the midpoints of the intervals [1,2] and 

respectively [3,6], i.e. 1.5 and respectively 4.5, 

we have: 

lim
𝑥→−3

𝑥2+3𝑥−1.5𝑥−4.5

𝑥+3
=

lim
𝑥→−3

𝑥2+1.5𝑥−4.5

𝑥+3
= lim

𝑥→−3

(𝑥+3)(𝑥−1.5)

𝑥+3
= lim

𝑥→−3
(𝑥 −

1.5) =  -3-1.5 = -4.5 ∈[−5, −4].               (129) 

 

d) In general, taking α ∈ [1,2] and respectively 3α ∈ 

[3,6], one has: 
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lim
𝑥→−3

𝑥2+3𝑥−α𝑥−3α

𝑥+3
=

lim
𝑥→−3

𝑥2+(3−α)𝑥−3α

𝑥+3
= lim

𝑥→−3

(𝑥+3)(𝑥−α)

𝑥+3
= lim

𝑥→−3
(𝑥 −

α) = -3- α ∈ [-3,-3]-[1,2]   { since α ∈ [1,2] } 

= [-3-2, -3-1] = [-5, -4].                 (130) 

So, we got the same result. 
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III.9. Calculating a Neutrosophic Limit 
Using the Rationalizing Technique 

 

lim
𝑥→0

√(4, 5) ∙ 𝑥 + 1 − 1

𝑥
=

√(4, 5) ∙ 0 + 1 − 1

0

=
√[4 ∙ 0, 5 ∙ 0] + 1 − 1

0

=
√[0, 0] + 1 − 1

0
=

√0 + 1 − 1

0
=

0

0
 

= undefined.                (131) 

Multiply with the conjugate of the numerator:  

lim
𝑥→0

√[4, 5]𝑥 + 1 − 1

𝑥
∙

√[4, 5]𝑥 + 1 + 1

√[4, 5]𝑥 + 1 + 1

= lim
𝑥→0

(√[4, 5]𝑥 + 1)
2

− (1)2

𝑥 (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5] ∙ 𝑥 + 1 − 1

𝑥 ∙ (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5] ∙ 𝑥

𝑥 ∙ (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5]

(√[4, 5]𝑥 + 1 + 1)

=
[4, 5]

(√[4, 5] ∙ 0 + 1 + 1)
=

[4, 5]

√1 + 1

=
[4, 5]

2
= [

4

2
,
5

2
] = [2, 2.5]. 

(132) 
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Similarly we can check this limit in a classical way 

considering a parameter α ∈ [4,5] and computing the limit 

by multiplying with the conjugate of the numerator: 

lim
𝑥→0

√𝛼∙𝑥+1−1

𝑥
=

𝛼

2
 ∈ [4,5]/2 = [2, 2.5].              (133) 
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III.10. Neutrosophic Mereo-Continuity 

 

We now introduce for the first time the notion of 

neutrosophic mereo-continuity. A neutrosophic function 

𝑓(𝑥) is mereo-continuous at a given point 𝑥 =  𝑐, where  

𝑓: 𝐴 → 𝐵 

if the intersection of the neutrosophic left limit, 

neutrosophic right limit, and 𝑓(𝑐) is nonempty: 

{lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)} ∩ {lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)} ∩ {𝑓(𝑐)} ≠ 0.              (134) 

A neutrosophic function 𝑓(𝑥) is mereo-continuous on 

a given interval [𝑎, 𝑏], if there exist the classical points 𝐴 ∈

{𝑓(𝑎)}  and 𝐵 ∈ {𝑓(𝑏)}  that can be connected by a 

continuous classical curve which is inside of 𝑓(𝑥). 

Also, the classical definition can be extended in the 

following way: A neutrosophic function 𝑓(𝑥)  is mereo-

continuous on a given interval [𝑎, 𝑏] , if 𝑓(𝑥)  is neutro-

sophically continuous at each point of [𝑎, 𝑏]. 

A neutrosophic function 𝑓(𝑥) is continuous at a given 

point 𝑥 =  𝑐 if: 

lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) ≡ lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) ≡ 𝑓(𝑐).               (135) 

We see that the previous neutrosophic function is 

mereo-continuous at 𝑥 = 5 because: 

{lim
𝑥→5
𝑥<5

𝑓(𝑥)} ∩ {lim
𝑥→5
𝑥>5

𝑓(𝑥)} ∩ {𝑓(5)} = [8, 11] ∩

[6, 9] ∩ [8, 11] = [8, 9] ≠ 𝜙.               (136) 
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III.11. Neutrosophic Continuous Function  
 

A neutrosophic function 𝑓: ℳ1 → ℳ2 is continuous at 

a neutrosophic point 𝑥 = 𝑐 if: 

∀휀 > 0, ∃ 𝛿 = 𝛿(휀) > 0,                 (137) 

such that for any 𝑥 ∈ ℳ1  such that 𝜂(𝑥, 𝑐) < 𝛿  one has 

𝜂(𝑓(𝑥), 𝑓(𝑐)) < 휀.                 (138) 

(We recall that a “neutrosophic point” 𝑥 = 𝑐  is in 

general a set 𝑐 ∈ ℳ1, while ℳ1 and ℳ2 are sets of sets.) 
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III.12. Neutrosophic Intermediate Value 
Theorem 

 

Let 𝑓: 𝐴 → 𝑃(𝐴), 𝑓(𝑥) = [𝑎𝑥 , 𝑏𝑥] ⊆ 𝐴, where [𝑎𝑥 , 𝑏𝑥] 

is an interval.                  (139) 

Let 

𝑖𝑛𝑓{𝑓(𝑎)} = 𝑎1; 

𝑠𝑢𝑝{𝑓(𝑎)} = 𝑎2; 

𝑖𝑛𝑓{𝑓(𝑏)} = 𝑏1; 

𝑠𝑢𝑝{𝑓(𝑏)} = 𝑏2. 

Suppose 𝑚𝑖𝑛{𝑎1, 𝑎2, 𝑏1, 𝑏2} = 𝑚,  

and  𝑚𝑎𝑥{𝑎1, 𝑎2, 𝑏1, 𝑏2} = 𝑀. 

If 𝑓(𝑥) is a neutrosophic mereo-continuous function 

on the closed interval [𝑎, 𝑏], and 𝑘 is a number between 𝑚 

and 𝑀, with 𝑚 ≠ 𝑀, then there exists a number 𝑐 ∈ [𝑎, 𝑏] 

such that: {𝑓(𝑐)} ∋ 𝑘 (i.e. the set {𝑓(𝑐)} contains 𝑘), or 𝑘 ∈

{𝑓(𝑐)}. 

An extended version of this theorem is the following: 

If 𝑓(𝑥) is a neutrosophic mereo-continuous function 

of the closed interval [a, b], and 〈𝑘1, 𝑘2〉  is an interval 

included in the interval [𝑚, 𝑀] , with 𝑚 ≠ 𝑀 , then there 

exist 𝑐1, 𝑐2, … , 𝑐𝑚  in [𝑎, 𝑏] , where 𝑚 ≥ 1 , such that 

〈𝑘1, 𝑘2〉 ⊆ 𝑓(𝑐1) ∪ 𝑓(𝑐2) ∪ … ∪ 𝑓(𝑐𝑚). 

Where by 〈𝛼, 𝛽〉 we mean any kind of closed, open or 

half-closed and half-open intervals: [𝛼, 𝛽] , or (𝛼, 𝛽) , or 

[𝛼, 𝛽), or (𝛼, 𝛽]. 
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III.13. Example for the Neutrosophic 
Intermediate Value Theorem 

 

Let 𝑔(𝑥) = [𝑔1(𝑥), 𝑔2(𝑥)] , where 𝑔: ℝ → ℝ2 , and 

𝑔1, 𝑔2: ℝ → ℝ. 

 
Graph 21. 

𝑔 is neutrosophically continuous on the interval [2, 8]. 

Let 𝑚 = 𝑚𝑖𝑛{4, 5, 6, 7} = 4,  

and 𝑀 = 𝑚𝑎𝑥{4, 5, 6, 7} = 7, and let 𝑘 ∈ [4, 7].  

Then there exist many values of 𝑐 ∈ [2, 8] such that 

{𝑔(𝑐)} ∋ 𝑘 . See the green vertical line above, 𝑥 = 𝑐 . For 

example 𝑐 = 4 ∈ [2, 8]. The idea is that if 𝑘 ∈ [4, 7] and we 

draw a horizontal red line 𝑔 = 𝑘, this horizontal red line 

will intersect the shaded blue area which actually 

represents the neutrosophic graph of the function 𝑔 on the 

interval [2, 8]. 
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III.14. Example for the Extended  
Intermediate Value Theorem 

 

Let  ℎ(𝑥) = [ℎ1(𝑥), ℎ2(𝑥)] , where ℎ: ℝ → ℝ2 , and 

ℎ1, ℎ2: ℝ → ℝ.  ℎ  is neutrosophically continuous on the 

interval [3, 12].  

Let 𝑚 = 𝑚𝑖𝑛{6, 8, 10, 12.5} = 6,  

and 𝑀 = 𝑚𝑎𝑥{6, 8, 10, 12.5} = 12.5,  

and let [𝑘1, 𝑘2] ∈ [6.5, 12] ⊂ [6, 12.5]. 

Then there exist 𝑐1 = 8 ∈ [3, 12]  and 𝑐2 = 10 ∈

[3, 12] such that 

ℎ(𝑐1) ∪ ℎ(𝑐2) = ℎ(8) ∪ ℎ(10) = [6.5, 11] ∪

[9.5, 12] = [6.5, 12] = [𝑘1, 𝑘2].               (140) 

 
Graph 22. 

Remark 
The more complicated (indeterminate) is a neutro-

sophic function, the more complex the neutrosophic 

intermediate value theorem becomes. 
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Actually, for each class of neutrosophic function, the 

neutrosophic intermediate value theorem has a special 

form. 

As a General Remark, we have: 

For each class of neutrosophic functions a theorem 

will have a special form. 
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III.15. Properties of Neutrosophic Mereo-
Continuity 

 

1. A neutrosophic 𝑓(𝑥)  is mereo-continuous on 

the interval [𝑎, 𝑏], if it’s possible to connect a point of the 

set {𝑓(𝑎)} with a point of the set {𝑓(𝑏)}  by a continuous 

classical curve ℂ  which is included in the (thick) 

neutrosophic function 𝑓(𝑥) on the interval [𝑎, 𝑏]. 

2. If 𝛼 ≠ 0 is a real number, and 𝑓 is a neutrosophic 

mereo-continuous function at 𝑥 = 𝑐 , then 𝛼 ∙ 𝑓  is also a 

neutrosophic mereo-continuous function at 𝑥 = 𝑐. 

Proof 
lim
𝑥→𝑐
𝑥<𝑐

[𝑎 ∙ 𝑓(𝑥)] ∩ lim
𝑥→𝑐
𝑥>𝑐

[𝑎 ∙ 𝑓(𝑥)] ∩ {𝛼 ∙ 𝑓(𝑐)} = 

{𝛼 ∙ lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥)]} ∩ {𝛼 ∙ lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥)]} ∩ {𝛼 ∙ 𝑓(𝑐)} = 𝛼 ∙

({lim
𝑥→𝑐

[𝑓(𝑥)]} ∩ {lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥)]} ∩ {𝑓(𝑐)}) ≠ ∅,              (141) 

because 𝛼 ≠ 0, and {lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥)]} ∩ lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥)] ∩ {𝑓(𝑐)} ≠ ∅, 

since 𝑓 is a neutrosophic continuous function.              (142) 

3. Let 𝑓(𝑥) and 𝑔(𝑥) be two neutrosophic mereo-

continuous functions at 𝑥 = 𝑐, where 𝑓, 𝑔: 𝐴 → 𝐵. Then, 

(𝑓 + 𝑔)(𝑥), (𝑓 − 𝑔)(𝑥), (𝑓 ∙ 𝑔)(𝑥), (
𝑓

𝑔
) (𝑥)              (143) 

are all neutrosophic mereo-continuous functions at 𝑥 = 𝑐. 

Proofs 
𝑓(𝑥) is mereo-continuous at 𝑥 = 𝑐 it means that 
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{lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)} ∩ {lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)} ∩ {𝑓(𝑐)} ≠ ∅              (144) 

therefore 

{lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)} = 𝑀1 ∪ 𝐿1                             (145) 

{lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)} = 𝑀1 ∪ 𝑅1                             (146) 

and  

{𝑓(𝑐)} = 𝑀1 ∪ 𝑉1                             (147) 

where all 𝑀1, 𝐿1, 𝑅1, 𝑉1 are subsets of 𝐵, and 𝑀1 ≠ ∅, while 

𝐿1 ∩ 𝑅1 ∩ 𝑉1 = ∅. 

Similarly, 𝑔(𝑥) is mereo-continuous at 𝑥 = 𝑐 means 

that 

{lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥)} ∩ {lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥)} ∩ {𝑔(𝑐)} ≠ ∅,              (148) 

therefore 

{lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥)} = 𝑀2 ∪ 𝐿2                (149) 

{lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥)} = 𝑀2 ∪ 𝑅2                (150) 

and  

{𝑔(𝑐)} = 𝑀2 ∪ 𝑉2                (151) 

where all 𝑀2, 𝐿2, 𝑅2, 𝑉2 are subsets of 𝐵, and 𝑀2 ≠ ∅, while 

𝐿2 ∩ 𝑅2 ∩ 𝑉2 = ∅. 

Now,  

𝑓 + 𝑔: 𝐴 → 𝐵 

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)               (152) 
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and (𝑓 + 𝑔)(𝑥) is mereo-continuous at 𝑥 = 𝑐 if 

{lim
𝑥→𝑐
𝑥<𝑐

(𝑓 + 𝑔)} ∩ {lim
𝑥→𝑐
𝑥>𝑐

(𝑓 + 𝑔)(𝑥)} ∩ {(𝑓 + 𝑔)(𝑐)} ≠ ∅ 

(153) 

or 

{lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥) + 𝑔(𝑥)]} ∩ {lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥) + 𝑔(𝑥)]} ∩

{𝑓(𝑐) + 𝑔(𝑐)} ≠ ∅                 (154) 

or 

({lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)} + {lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥)}) ∩ ({lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)} +

{lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥)}) ∩ ({𝑓(𝑐)} + {𝑔(𝑐)}) ≠ ∅              (155) 

or 

(𝑀1 ∪ 𝐿1 + 𝑀2 ∪ 𝐿2) ∩ (𝑀1 ∪ 𝑅1 + 𝑀2 ∪ 𝑅2) ∩

(𝑀1 ∪ 𝑉1 + 𝑀2 ∪ 𝑉2) ≠ ∅.               (156) 

But this intersection is non-empty, because:  

if 𝑚1 ∈ 𝑀1 ≠ ∅ and 𝑚2 ∈ 𝑀2 ≠ ∅,  

then 𝑚1 ∈ 𝑀1 ∪ 𝐿1 , and 𝑚1 ∈ 𝑀1 ∪ 𝑅1 , and 𝑚1 ∈ 𝑀1 ∪ 𝑉1

  (*) 

and 𝑚2 ∈ 𝑀2 ∪ 𝐿2 , and 𝑚2 ∈ 𝑀2 ∪ 𝑅2 , and 𝑚2 ∈ 𝑀2 ∪ 𝑉2

  (**) 

whence 𝑚1 + 𝑚2 ∈ 𝑀1 ∪ 𝐿1 + 𝑀2 ∪ 𝐿2, 

and 𝑚1 + 𝑚2 ∈ 𝑀1 ∪ 𝑅1 + 𝑀2 ∪ 𝑅2, 

and 𝑚1 + 𝑚2 ∈ 𝑀1 ∪ 𝑉1 + 𝑀2 ∪ 𝑉2. 

Therefore (𝑓 + 𝑔)(𝑥)  is also mereo-neutrosophic 

function at 𝑥 = 𝑐. 
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Analogously, one can prove that 𝑓 − 𝑔 , 𝑓 · 𝑔  and 
𝑓

𝑔
 

are neutrosophic mereo-continuous functions at 𝑥 = 𝑐. 

From above, one has: 

𝑚1 − 𝑚2 ∈ 𝑀1 ∪ 𝐿1 − 𝑀2 ∪ 𝐿2;               (157) 

𝑚1 − 𝑚2 ∈ 𝑀1 ∪ 𝑅1 − 𝑀2 ∪ 𝑅2;                (158) 

𝑚1 − 𝑚2 ∈ 𝑀1 ∪ 𝑉1 − 𝑀2 ∪ 𝑉2.                (159) 

therefore (𝑓 − 𝑔)(𝑥) is a neutrosophic mereo-continuous 

function at 𝑥 = 𝑐. 

Again, from above one has: 

𝑚1 ∙ 𝑚2 ∈ (𝑀1 ∪ 𝐿1) ∙ (𝑀2 ∪ 𝐿2); .               (160) 

𝑚1 ∙ 𝑚2 ∈ (𝑀1 ∪ 𝑅1) ∙ (𝑀2 ∪ 𝑅2); .               (161) 

𝑚1 ∙ 𝑚2 ∈ (𝑀1 ∪ 𝑉1) ∙ (𝑀2 ∪ 𝑉2).               (162) 

therefore (𝑓 ∙ 𝑔)(𝑥)  is a neutrosophic mereo-continuous 

function at 𝑥 = 𝑐. 

And, from (*) and (**) one has: 
𝑚1

𝑚2
∈

𝑀1∪𝐿1

𝑀2∪𝐿2
;                          (163) 

𝑚1

𝑚2
∈

𝑀1∪𝑅1

𝑀2∪𝑅2
; .                                              (164) 

𝑚1

𝑚2
∈

𝑀1∪𝑉1

𝑀2∪𝑉2
 . .                              (165) 

therefore (
𝑓

𝑔
) (𝑥)  is a neutrosophic mereo-continuous 

function at 𝑥 = 𝑐. 
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III.16. Properties of Neutrosophic 
Continuity 

 

Similarly to the classical calculus, if 𝑓(𝑥), 𝑔(𝑥)  are 

neutrosophic continuous functions at 𝑥 = 𝑐, and 𝛼 ∈ ℝ is a 

scalar, then 𝛼 ∙ 𝑓(𝑥), (𝑓 + 𝑔)(𝑥), (𝑓 − 𝑔)(𝑥), (𝑓𝑔)𝑥 , and 

(
𝑓

𝑔
) 𝑥  for 𝑔(𝑥) ≠ 𝑐  are neutrosophic continuous functions 

at 𝑥 = 𝑐. 

The proofs are straightforward as in classical 

calculus. 

Since 𝑓(𝑥)  and 𝑔(𝑥)  are neutrosophic continuous 

functions, one has: 

lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) ≡ lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) ≡ 𝑓(𝑐)               (166) 

and  lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥) ≡ lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥) ≡ 𝑔(𝑐)               (167) 

1. If we multiply the relation (166) by 𝛼 we get: 

𝛼 ∙ lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) ≡ 𝛼 ∙ lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) ≡ 𝛼 ∙ 𝑓(𝑐)                      (168) 

or 

lim
𝑥→𝑐
𝑥<𝑐

[𝛼 ∙ 𝑓(𝑥)] ≡ lim
𝑥→𝑐
𝑥>𝑐

[𝛼 ∙ 𝑓(𝑥)] ≡ 𝛼 ∙ 𝑓(𝑐)              (169) 

or 𝛼 ∙ 𝑓(𝑥) is a neutrosophic continuous function at 𝑥 = 𝑐. 

2. If we add relations (166) and (167) term by term, 

we get: 

lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) + lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥) ≡ lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) + lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥) ≡ 𝑓(𝑐) + 𝑔(𝑐) 

(170) 

or 
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lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥) + 𝑔(𝑥)] ≡ lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥) + 𝑔(𝑥)] ≡ 𝑓(𝑐) + 𝑔(𝑐) 

(171) 

or (𝑓 + 𝑔)(𝑥) is a neutrosophic continuous function at 𝑥 =

𝑐. 

3. Similarly, if we subtract relations (#) and (##) 

term by term, we get: 

lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) − lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥) ≡ lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) − lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥) ≡ 𝑓(𝑐) − 𝑔(𝑐) 

(172) 

or 

lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥) − 𝑔(𝑥)] ≡ lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥) − 𝑔(𝑥)] ≡ 𝑓(𝑐) − 𝑔(𝑐) 

(173) 

or (𝑓 − 𝑔)(𝑥) is a neutrosophic continuous function at 𝑥 =

𝑐. 

4. If we multiply relations (#) and (##) term by term, 

we get: 

[lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)] ∙ [lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥)] ≡ [lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)] ∙ [lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥)]

≡ 𝑓(𝑐) ∙ 𝑔(𝑐) 

(174) 

or 

lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥) ∙ 𝑔(𝑥)] ≡ lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥) ∙ 𝑔(𝑥)] ≡ 𝑓(𝑐) ∙ 𝑔(𝑐) 

(175) 

or (𝑓 ∙ 𝑔)(𝑥) is a neutrosophic continuous function at 𝑥 =

𝑐. 
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5. If we divide relations (#) and (##) term by term, 

supposing 𝑔(𝑥) ≠ 0 for all 𝑥, we get: 
lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)

lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥)
≡

lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)

lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥)
≡

𝑓(𝑐)

𝑔(𝑐)
               (176) 

 

or 

lim
𝑥→𝑐
𝑥<𝑐

[
𝑓(𝑥)

𝑔(𝑥)
] ≡ lim

𝑥→𝑐
𝑥>𝑐

[
𝑓(𝑥)

𝑔(𝑥)
] ≡

𝑓(𝑐)

𝑔(𝑐)
                               (177) 

or (
𝑓

𝑔
) (𝑥) is a neutrosophic continuous function at 𝑥 = 𝑐. 
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III.17. The M-δ Definitions of the 
Neutrosophic Infinite Limits 

 

The 𝑀 − 𝛿  definitions of the neutrosophic infinite 

limits are extensions of the classical infinite limits. 

a. lim
𝑥→𝑐

𝑓(𝑥) = +∞ means that ∀𝑀 > 0, ∃𝛿 =

𝛿(𝑀) > 0, such that if 𝜂(𝑥, 𝑐) < 𝛿, then 

𝑖𝑛𝑓{𝑓(𝑥)} > 𝑀. 

b. lim
𝑥→𝑐

𝑓(𝑥) = −∞ means that ∀𝑁 < 0, ∃𝛿 =

𝛿(𝑁) > 0, such that if 𝜂(𝑥, 𝑐) < 𝛿, then 

𝑠𝑢𝑝{𝑓(𝑥)} < 𝑁. 
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III.18. Examples of Neutrosophic Infinite 
Limits 

 

1. Let’s have the neutrosophic function 𝑓(𝑥) =
[2,   5]

𝑥−1
. 

lim
𝑥→1
𝑥<1

[2,5]

𝑥−1
= −∞                (178) 

 

and 

 lim
𝑥→1
𝑥>1

[2,5]

𝑥−1
= +∞ .                                            (179) 

Therefore, 𝑥 =  1 is a vertical asymptote for 𝑓(𝑥). 

Let’s apply the definition for the neutrosophic left 

limit. 

Let 𝑁 < 0. If, for 𝑥 < 1,  

𝜂(𝑥, 𝑐) = 𝜂(𝑥, 1) = |𝑥 − 1| <
[2,5]

|𝑁|
= 𝛿(𝑁) = 𝛿, 

(180) 

which is equivalent to 

−
[2,5]

|𝑁|
< 𝑥 − 1 <

[2,5]

|𝑁|
                (181) 

 

then 

𝑓(𝑥) =
[2,5]

𝑥−1
<

[2,5]

−
[2,5]

|𝑁|

= −|𝑁| = 𝑁              (182) 

Therefore,  

lim
𝑥→1
𝑥<1

𝑓(𝑥) = −∞                (183) 
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2. Let (𝑥) =
4

(1,3)𝑥2 . 

lim
𝑥→0
𝑥<0

4

(1,3)𝑥2 = +∞                 (184) 

and 

lim
𝑥→0
𝑥>0

4

(1,3)𝑥2 = +∞,                 (185) 

hence 

lim
𝑥→0

4

(1,3)𝑥2 = +∞.                 (186) 

Therefore 𝑥 = 0  is a vertical asymptote for the 

neutrosophic function 𝑔(𝑥). 

Let’s apply the 𝑀 − 𝛿 definition to compute the same 

limit. 

Let 𝑀 > 0. If 

𝜂(𝑥, 𝑐) = 𝜂(𝑥, 0) = 𝜂(𝑥) = |𝑥| <
1

(√1, √3)√𝑀
= 𝛿(𝑚) = 𝛿 

(187) 

then 

𝑔(𝑥) =
4

(1,3)𝑥2 >
4

(1,3)∙[
1

(√1,√3) √𝑀
]

2 =
4

(1,3)∙
1

(1,3)𝑀

=

4
(1,3)/(1,3)

𝑀

= 4𝑀/(
1

3
, 3) = 

because (1,3)/(1,3) = (1/3, 3/1) = (1/3, 3)  

= (
4

3
M, 12M) = M(

4

3
, 12), and inf{M(

4

3
, 12)} = 

4

3
𝑀 > 𝑀. 

(188) 

Therefore, 

lim
𝑥→0

𝑔(𝑥) = +∞.                 (189) 
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2. Let ℎ(𝑥) =
𝑥2+7

𝑥−(either 2 or 3)
                (190) 

be a neutrosophic function [meaning that we are not sure if 

it is 𝑥 − 2 or 𝑥 − 3], which is actually equivalent to either 

the classical function ℎ1(𝑥) =
𝑥2+7

𝑥−2
 or to the classical 

function ℎ1(𝑥) =
𝑥2+7

𝑥−3
.                 (191) 

Thus,  

lim
𝑥→either 2 or 3

𝑥<either 2 or 3 respectively

𝑥2 + 7

𝑥 − (either 2 or 3)
= −∞ 

(192) 

and 

lim
𝑥→either 2 or 3

𝑥>either 2 or 3 respectively

𝑥2 + 7

𝑥 − (either 2 or 3)
= +∞ 

(193) 

Therefore, either 𝑥 = 2  or 𝑥 = 3  is a vertical 

asymptote for ℎ(𝑥). 

5. Another type of neutrosophic limit: 

lim
𝑥→2+2𝐼

𝑥2 + (1 + 𝐼)𝑥

2𝑥 + 4 − 6𝐼

=
(2 + 3𝐼)2 + (1 + 𝐼)(2 + 3𝐼)

2(2 + 3𝐼) + 4 − 6𝐼

=
4 + 12𝐼 + 9𝐼2 + 2 + 3𝐼 + 2𝐼 + 3𝐼2

4 + 6𝐼 + 4 − 6𝐼

=
6 + 17𝐼 + 12𝐼2

8
=

6 + 17𝐼 + 12𝐼

8
=

6 + 29𝐼

8

=
6

8
+

29

8
𝐼, 

where I = indeterminacy with 0 ∙ 𝐼 = 0 and 𝐼2 = 𝐼.          (194) 
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III.19. Set-Argument Set-Values Function 
 

𝑓: 𝒫(𝑀) → 𝒫(𝑁), 𝑓(𝐴) = 𝐵,               (195) 

where 𝑀  and 𝑁  are sets, 𝐴 ∈ 𝒫(𝑀)  or 𝐴 ⊆ 𝑀 , and 𝐵 ∈

𝒫(𝑁) or 𝐵 ⊆ 𝑁. 

This is a generalization of the interval-argument 

interval-valued function. 

Example: 

𝑓: 𝒫(𝑅) → 𝒫(𝑅)                 (196) 

𝑓({1, 3, 5}) = {2, 6}                (197) 

𝑓([1, 4]) = [2, 3]                 (198) 

𝑓((1, 0)) = 5                 (199) 

𝑓([−2,  3) ∪ {6}) = 𝑥2 = [4, 9) ∪ {36}.                      (200) 

𝒫(𝑀) is the set of all subsets of M, and 𝒫(𝑁) is the set 

of all subsets of N. 

The partial-metric 𝜂  and the norm 𝜇  are very well 

defined on 𝒫(𝑀)  and 𝒫(𝑁),  and the definitions of 

neutrosophic limit, neutrosophic continuity, neutrosophic 

derivative, and neutrosophic integral are extensions from 

classical calculus definitions by using the partial-metric 𝜂 

and/or the norm 𝜇. 
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III.20. Neutrosophic Derivative 

The general definition of the neutrosophic derivative 

of function fN(x) is: 

𝑓𝑁
′ (𝑋) = lim

𝜇(𝐻)→0

<inf𝑓(𝑋+𝐻)−inf𝑓(𝑋),sup𝑓(𝑋+𝐻)−sup𝑓(𝑋)>

𝐻
. 

(201) 

where <a, b> means any kind of open / closed / half open-

closed interval. 

As particular definitions for the cases when H is an 

interval one has: 
𝑓𝑁

′ (𝑋)

= lim
[inf𝐻,   sup𝐻]→[0,   0]

[inf𝑓(𝑋 + 𝐻) − inf𝑓(𝑋), sup𝑓(𝑋 + 𝐻) − sup𝑓(𝑋)]

[inf𝐻, sup𝐻]

(202) 

is the neutrosophic derivative of 𝑓(𝑋). 

In a simplified way, one has: 

𝑓𝑁
′ (𝑋) = lim

ℎ→0

[inf𝑓(𝑋 + ℎ) − inf𝑓(𝑋), sup𝑓(𝑋 + ℎ) − sup𝑓(𝑋)]

ℎ
. 

(203) 

Both definitions above are generalizations of the 

classical derivative definition, since for crisp functions and 

crisp variables one has: 

[inf𝐻, sup𝐻] ≡ ℎ    (204) 

and    inf𝑓(𝑋 + 𝐻) ≡ sup𝑓(𝑥 + 𝐻) ≡ 𝑓(𝑥 + ℎ)   (205) 

inf𝑓(𝑋) ≡ sup𝑓(𝑋) ≡ 𝑓(𝑥).   (206) 

Let’s see some examples: 

1) 𝑓(𝑋) = [2𝑥3 + 7𝑥, 𝑥5].   (207) 
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𝑓𝑁
′ (𝑋)

= lim
ℎ→0

[2(𝑥 + ℎ)3 + 7(𝑥 + ℎ) − 2𝑥3 − 7𝑥, (𝑥 + ℎ)5 − 𝑥5]

ℎ

= [lim
ℎ→0

2(𝑥 + ℎ)
3

+ 7(𝑥 + ℎ − 2𝑥3 − 7𝑥

ℎ
, lim

ℎ→0

(𝑥 + ℎ)
5

− 𝑥5

ℎ
]

= [
𝑑

𝑑𝑥
(2𝑥3 + 7𝑥),

𝑑

𝑑𝑥
(𝑥5)] = [6𝑥2 + 7, 5𝑥4]. 

(208) 

 

2) Let 𝑔: 𝑅 → 𝒫(𝑅), by 

𝑔(𝑥) = {
[𝑓1(𝑥), 𝑓2(𝑥)], if 𝑥 ≤ 5;
[𝑓3(𝑥), 𝑓4(𝑥)], if 𝑥 > 5.

               (209) 

 
Graph 23. 

A classical function is differentiable at a given point 

𝑥 = 𝑐 if: 𝑓 is continuous at 𝑥 = 𝑐, 𝑓 is smooth at 𝑥 = 𝑐, and 

𝑓 does not have a vertical tangent at 𝑥 = 𝑐. 
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𝑔(𝑥)  is neutrosophically differentiable on ℝ ∖

{5} if f1, f2, f3, and f4 are differentiable: 

𝑔′(𝑥) = {
[𝑓′1(𝑥), 𝑓′2(𝑥)], if 𝑥 < 5;

[𝑓′3(𝑥), 𝑓′4(𝑥)], if 𝑥 > 5.
              (210) 

At  𝑥 = 5 , the neutrosophic function 𝑔(𝑥)  is 

differentiable if: 

[𝑓′1(5), 𝑓′2(5)] ≡ [𝑓′3(5), 𝑓′4(5)],              (211) 

otherwise 𝑔(𝑥) has a mereo-derivative at 𝑥 = 5 (as in the 

above figure) if 

[𝑓′1(5), 𝑓′2(5)] ∩ [𝑓′
3

(5), 𝑓′
4

(5)] ≠ ∅,              (212) 

or 𝑔(𝑥) is not differentiable at 𝑥 = 5 if 

[𝑓′1(5), 𝑓′2(5)] ∩ [𝑓′
3

(5), 𝑓′
4

(5)] = ∅.              (213) 

 

3) Another example of neutrosophic derivative. 

Let 𝑓 ∶ ℝ → ℝ ∪ {𝐼}, where 𝐼 = indeterminacy,  

𝑓(𝑥) = 3𝑥 − 𝑥2𝐼                 (214) 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

= lim
ℎ→0

[3(𝑥 + ℎ) − (𝑥 + ℎ)2𝐼] − [3𝑥 − 𝑥2𝐼]

ℎ

= lim
ℎ→0

3𝑥 + 3ℎ − 𝑥2𝐼 − 2𝑥ℎ𝐼 − ℎ2𝐼 − 3𝑥 + 𝑥2𝐼

ℎ

= lim
ℎ→0

ℎ(3 − 2𝑥𝐼 − ℎ𝐼)

ℎ
= 3 − 2𝑥𝐼 − 0 ∙ 𝐼 = 3 − 2𝑥𝐼. 

(215) 

Therefore, directly  

𝑓’(𝑥) =
𝑑

𝑑𝑥
(3𝑥) −

𝑑

𝑑𝑥
(𝑥2𝐼) = 3 − 𝐼

𝑑

𝑑𝑥
(𝑥2) = 3 − 2𝑥𝐼. 

(216) 
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4) An example with refined indeterminacy: 

𝐼1 = indeterminacy of first type; 

𝐼2 = indeterminacy of second type. 

Let 𝑔: ℝ → ℝ ∪ {𝐼1} ∪ {𝐼2},               (217) 

𝑔(𝑥) = −𝑥 + 2𝑥𝐼1 + 5𝑥3𝐼2,               (218) 

Then 𝑔′(𝑥) =
𝑑

𝑑𝑥
(−𝑥) +

𝑑

𝑑𝑥
(2𝑥𝐼1) +

𝑑

𝑑𝑥
(5𝑥3𝐼2) =

−1 + 2𝐼1 + 15𝑥2𝐼2.                 (219) 
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III.21. Neutrosophic Indefinite Integral 
 

We just extend the classical definition of anti-

derivative. 

The neutrosophic antiderivative of neutrosophic 

function 𝑓(𝑥) is the neutrosophic function 𝐹(𝑥) such that 

𝐹′(𝑥) = 𝑓(𝑥). 

For example, 

1. Let 𝑓: 𝑅 → 𝑅 ∪ {𝐼}, 𝑓(𝑥) = 5𝑥2 + (3𝑥 + 1)𝐼. 

(220) 

Then, 

𝐹(𝑋) = ∫[5𝑥2 + (3𝑥 + 1)𝐼]𝑑𝑥

= ∫ 5𝑥2𝑑𝑥

+ ∫(3𝑥 + 1)𝐼𝑑𝑥

= 5 ∙
𝑥3

3
+ 𝐼 ∫(3𝑥 + 1)𝑑𝑥 =

5𝑥3

3

+ (
3𝑥2

2
+ 𝑥) 𝐼 + 𝐶, 

(221) 

where C is an indeterminate real constant (i.e. constant of 

the form a+bI, where a, b are real numbers, while I = 

indeterminacy). 

 

2. Refined Indeterminacy. 

Let 𝑔: ℝ → ℝ ∪ {𝐼1} ∪ {𝐼2} ∪ {𝐼3},               (222) 

were 𝐼1, 𝐼2, and 𝐼3 are types of subindeterminacies, 

𝑔(𝑥) = −5 + 2𝐼1 − 𝑥4𝐼2 + 7𝑥𝐼3.               (223) 
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Then, 

∫ 𝑔(𝑥)𝑑𝑥 = ∫[−5 + 2𝐼1 − 𝑥4𝐼2 + 7𝑥𝐼3]𝑑𝑥 = −5𝑥 +

2𝑥𝐼1 −
𝑥5

5
𝐼2 +

7𝑥2

2
𝐼3 + 𝑎 +

𝑏𝐼, where 𝑎 and 𝑏 are real constants.              (224) 
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III.22. Neutrosophic Definite Integral 
 

1. Let ℎ: ℝ → 𝒫(ℝ)                (225) 

 

Graph 24. 

such that 

ℎ(𝑥) = {
[𝑓1(𝑥), 𝑓2(𝑥)], if 𝑥 ≤ 𝑎2

𝑓3(𝑥), if 𝑎 > 𝑎2
.               (226) 

ℎ(𝑥) is a thick neutrosophic function for 𝑥 ∈ (−∞, 𝑎2], and 

a classical function for 𝑥 ∈ (𝑎2, +∞). 

 

We now compute the neutrosophic definite integral: 

𝛼 = ∫ ℎ(𝑥)𝑑𝑥 = ∫ [𝑓1(𝑥), 𝑓2(𝑥)]𝑑𝑥 +
𝑎1

0

𝑎3

0

∫ [𝑓2(𝑥), 𝑓1(𝑥)]𝑑𝑥 +
𝑎2

𝑎1
∫ 𝑓(𝑥)𝑑𝑥 =

𝑎3

𝑎2
[∫ 𝑓1(𝑥)𝑑𝑥, ∫ 𝑓2(𝑥)𝑑𝑥 

𝑎1

0

𝑎1

0
] +

[∫ 𝑓2(𝑥)𝑑𝑥, ∫ 𝑓1(𝑥)𝑑𝑥 
𝑎2

𝑎1

𝑎2

𝑎1
] + ∫ 𝑓3(𝑥)𝑑𝑥

𝑎3

𝑎2
= [𝐴, 𝐵] +

[𝐶, 𝐷] + [𝐸, 𝐸] = [𝐴 + 𝐵 + 𝐸, 𝐵 + 𝐷 + 𝐸],              (227) 

where, of course, 
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𝐴 = ∫ 𝑓1(𝑥)𝑑𝑥
𝑎1

0
, 𝐵 = ∫ 𝑓2(𝑥)𝑑𝑥

𝑎1

0
, 𝐶 = ∫ 𝑓2(𝑥)𝑑𝑥

𝑎2

𝑎1
, 

𝐷 = ∫ 𝑓1(𝑥)𝑑𝑥
𝑎2

𝑎1
, and 𝐶 = ∫ 𝑓3(𝑥)𝑑𝑥

𝑎3

𝑎3
. 

(228) 

Since ℎ(𝑥) is a thick function between 0 and 𝑎2, we 

interpret the result 𝛼 of our neutrosophic definite integral 

in general as: 

𝛼 ∈ [𝐴 + 𝐵 + 𝐸, 𝐵 + 𝐷 + 𝐸],               (229) 

since one may take: 𝛼 = 𝐴 + 𝐵 + 𝐸 as in classical calculus 

(i.e. the area are below the lowest curve), or an average:  

𝛼 =
(𝐴 + 𝐵 + 𝐸) + (𝐵 + 𝐷 + 𝐸)

2
=

𝐴 + 𝐷

2
+ 𝐵 + 𝐸 

(230) 

(i.e. the area below a curve passing through the middle of 

the shaded area), or the maximum possible area: 

 𝛼 = 𝐵 + 𝐷 + 𝐸.                 (231) 

Depending on the problem to solve, a neutrosophic 

expert can choose the most appropriate 

 𝛼 ∈ [𝐴 + 𝐵 + 𝐸, 𝐵 + 𝐷 + 𝐸].               (232) 
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III.23. Simple Definition of Neutrosophic 
Definite Integral 
 

Let 𝑓𝑁 be a neutrosophic function  

𝑓𝑁: ℝ → 𝒫(ℝ)               (233) 
which is continuous or mereo-continous on the interval 

[𝑎, 𝑏]. Then, 

Σ𝑎
𝑏𝑓𝑁(𝑥)𝑑𝑥 = lim

𝑛→∞
Σ𝑖=1

𝑛 𝑓𝑁(𝐶𝑖)
𝑏−𝑎

𝑛
              (234) 

where 𝐶𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖], for 𝑖 ∈ {1, 2, … , 𝑛}, and 𝑎 ≡ 𝑥0 < 𝑥1 <

𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 ≡ 𝑏  are subdivision of the interval 

[𝑎, 𝑏]: exactly as the definition of the classical integral, but 

𝑓𝑁(𝐶𝑖)  may be a real set (not necessarily a crisp real 

number as in classical calculus), or 𝑓𝑁(𝐶𝑖) may have some 

indeterminacy. 
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III.24. General Definition of Neutrosophic 
Definite Integral 
 

Let 

𝑓𝑁: 𝒫(𝑀), → 𝒫(𝑁),                 (235) 

where 𝑀, 𝑁  are given sets, and 𝒫(𝑀) and 𝒫(𝑁)  are the 

power sets of 𝑀 and 𝑁 respectively. 

𝑓𝑁  is a set-argument set-valued function which, in 

addition, has some indeterminacy. So, 𝑓𝑁 is a neutrosophic 

set-argument set-valued function. 

𝑓𝑁 maps a set in 𝑀 into a set in 𝑁. Therefore, 𝐴, 𝐵 ∈

𝒫(𝑀). Then: 

∫ 𝑓𝑁(𝑥)𝑑𝑥 = lim
𝑛→∞

∑ 𝑓𝑁(𝐶𝑖) ∙
𝜂(𝐵,𝐴)

𝑛
𝑛
𝑖=1

𝐵

𝐴
,               (236) 

where 
inf𝐴 ≡ inf𝑥0 < inf𝑥1 < ⋯ < inf𝑥𝑛−1 < inf𝑥𝑛 ≡ inf𝐵

sup𝐴 ≡ sup𝑥0 < sup𝑥1 < ⋯ < sup𝑥𝑛−1 < sup𝑥𝑛 ≡ sup𝐵
 

and (𝐶𝑖) ∈ 𝒫(𝑀) such that: 

inf𝑋𝑖−1 ≤ inf𝐶𝑖 ≤ inf𝑋𝑖  

and  

sup𝑋𝑖−1 ≤ sup𝐶𝑖 ≤ sup𝑋𝑖, for 𝑖 ∈ {1, 2, … , 𝑛}. 

Therefore, the neutrosophic integral lower and upper 

limits are sets (not necessarily crisp numbers as in classical 

calculus), 𝐶𝑖, for all 𝑖 ∈ {1, 2, … , 𝑛}, and similarly 𝑓𝑁(𝐶𝑖) are 

sets (not crisp numbers as in classical calculus). And, in 

addition, there may be some indeterminacy as well with 

respect to their values. 
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IV. Conclusion 
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Neutrosophic Analysis is a generalization of Set 

Analysis, which in its turn is a generalization of Interval 

Analysis. 

Neutrosophic Precalculus is referred to 

indeterminate staticity, while Neutrosophic Calculus is the 

mathematics of indeterminate change. 

The Neutrosophic Precalculus and Neutrosophic 

Calculus can be developed in many ways, depending on the 

types of indeterminacy one has and on the methods used to 

deal with such indeterminacy. 

We introduce for the first time the notions of 

neutrosophic mereo-limit, neutrosophic mereo-continuity (in 

a different way from the classical semi-continuity), 

neutrosophic mereo-derivative and neutrosophic mereo-

integral (both in different ways from the fractional 

calculus), besides the classical definitions of limit, 

continuity, derivative, and integral respectively.  

Future research can be done in neutrosophic 

fractional calculus. 

In this book, we present a few examples of 

indeterminacies and several methods to deal with these 

specific indeterminacies, but many other indeterminacies 

there exist in our everyday life, and they have to be studied 

and resolved using similar of different methods. Therefore, 

more research should to be done in the field of 

neutrosophics. 
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