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Abstract  

In this research monograph, a novel type of Colloquial Definition of Euclidean Inner Product and Outer Product is advented. Based on this definition, the author consequently 

presents a Proof for the formula for the Euclidean Inner Product. 

 

Theory I 

Colloquial Definition of Euclidean Inner Product and Outer Product 
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We propose an Inner Product Of the kind detailed as below. 
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And we also propose an Outer Product of the kind detailed below. 
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Then their accurate Outer Product is given by 
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Theory II 

Proof for the formula of Euclidean Inner Product 

The colloquial definition of Inner Product mentioned in the above section (Theory I) motivates us now to propose a Proof for the formula of Euclidean Inner Product computed as 

shown below: 
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Which is the area gotten by squaring the lower dimension 

Then, the left over area is given by 
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Now, the Left over area is given by  
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Now, the Left over area is given by  
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Now the left over area is given by 
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Now the left over area is given by 
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Now the left over area is given 

by 
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Therefore, we can write the net Holistic Inner Product for the explicitly computed first case (along a certain branch) as 
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In this fashion, we can compute the net Holistic Inner Product along the appropriate branch as dictated by the numerical values of 
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Therefore, this also forms the Proof of  
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THEORY II.I 

Euclidean Inner Product of two N-Dimensional Matrices A and B 

In this research section, the Euclidean Inner Product of two N-Dimensional Matrices A and B is slated by the author. 

One can note that, one can find the Euclidean Inner Product of two N-Dimensional Matrices A and B using the following definition [1] 





1

.. . . . .321. . . . . .321

1 2 n n

niiiiniiii

i ii i

BABA

   

where 
niiiiA . . . . . .321
and 

niiiiB . . . . . .321
 are the elements of the two N-Dimensional Matrices A and B. 

 THEORY III 

Geometrical Inner Product And The Fundamental Postulate Of Modern Quantum Theory 

In this research section, a novel type of Geometrical Inner Product And The Fundamental Postulate Of Modern Quantum Theory Is Advented. 
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We propose a Geometrical Inner Product Of the kind detailed as below. 
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Now, we can write the Fundamental Postulate Of The Modern Quantum Theory as the Similarity between any two normalized states Â  and B̂   is given by 


















2
1ˆˆ 

SinBA .
 

 

 

 

 

 

 

 

 



 

 

THEORY III.I 

A Novel Type Of Geometric Inner Product And The Fundamental Postulate Of Quantum Theory (Version 2) 

In this research section the author has presented ‘A Novel Type Of Geometric Inner Product And The Fundamental Postulate Of Quantum Theory (Version 2) 

 

 



 

THEORY IV, V 

Curved Path Geometric Inner Product And Outer Product and In N-Dimensional Space and the consequential Fundamental Postulate Of Quantum Theory 

In this research section, a novel type of Curved Path Geometric Inner Product And Outer Product and In N-Dimensional Space and the consequential Fundamental Postulate Of 

Quantum Theory is advented. 
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We propose a Geometric Inner Product Of the kind detailed as below. 
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where theta (in radians) is the smaller angle between the two vectors considered. 

The motivation to present such a Geometric Inner Product is described below. 

Firstly, we consider a circle with the center of it as the origin for the three orthogonal Cartesian axes, and considering any two points on it and joining these points to the origin we 

form two position vectors. Let these be denoted by the vectors  
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Since these vectors are normalized, the only aspect that determines their similarity is the extent of their nearness. This extent of nearness is the curved distance between them 

(between the two points (arrowheads of the two position vectors) on the circle). 

This distance is given by 
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 where theta is the smaller angle between the two position vectors. 

However, since , we have to take care of the condition that when they are nearest (i.e., the same), the similarity is maximum, i.e., their dot product should be 1. And when they are 

totally apart, it must be 0. Therefore, to achieve this we rewrite the dot product as 
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Outer Product 

The Outer Product will therefore be 
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Curved Inner Product In N-Dimensional Space 
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We propose a Geometric Inner Product Of the kind detailed as below. 
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where thetan (in radians) is the hyper angle (in n dimensional space) between the two vectors considered in n dimensional space. And  
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The motivation to present such a Geometric Inner Product is described below. 

Firstly, we consider a hyper sphere (in n dimensional space with unit radius) with the center of it as the origin for the n orthogonal axes, and considering any two points on it and 

joining these points to the origin we form two position vectors. Let these be denoted by the vectors  
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where thetan is the smaller hyper angle (in n dimensional space) between the two position vectors. 

However, since , we have to take care of the condition that when they are nearest (i.e., the same), the similarity is maximum, i.e., their dot product should be 1. And when they are 

totally apart, it must be 0. Therefore, to achieve this we rewrite the dot product as 
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Is the total hyper-steradianical type angle in n dimensional space. 

 

Outer Product 

The Outer Product will therefore be 
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Fundamental Postulate Of Quantum Theory
 

Such outer product is useful in characterizing NP problems. And also in characterizing large primes.
 

Now, we can simply state the Fundamental Postulate Of Quantum Theory which states that the similarity between any two states is given by their dot product, in this case, 
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THEORY VI 

The Universal Quantum Basis 

 

In this research section, the author presents a novel concept of Universal Quantum Basis 

For The Inner Product, the Universal Quantum Basis can be given by 
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Similarly, a seasoned reader of our research monographs can derive the Universal Quantum Basis for the case of Outer Product. 
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