Author: Ramesh Chandra Bagadi

Affiliation1: Founder, Owner, Co-Director And Advising Scientist In Principal Ramesh Bagadi Consulting LLC, Madison, Wisconsin-53715, United States Of America.

White Paper One (TRL 6) of
Ramesh Bagadi Consuting LLC, Advanced Concepts \& Think-Tank, Technology Assistance \& Innovation Center, Madison, Wisconsin-53715, United States Of America

Abstract

In this research monograph, a novel type of Colloquial Definition of Euclidean Inner Product and Outer Product is advented. Based on this definition, the author consequently presents a Proof for the formula for the Euclidean Inner Product.

Theory I

Colloquial Definition of Euclidean Inner Product and Outer Product

Consider two vectors $\vec{A}=\sum_{i=1}^{n} a_{i} \hat{e}_{i}$ and $\vec{B}=\sum_{i=1}^{n} b_{i} \hat{e}_{i}$
We propose an Inner Product Of the kind detailed as below.
$\vec{A} \cdot \vec{B}=\sum_{i=1}^{n}\left\{b_{i}^{2} F_{1}+a_{i}^{2} F_{2}\right\}$
where $F_{1}=1, F_{2}=0$ when $a_{i}>b_{i}$
and $F_{2}=1, F_{1}=0$ when $a_{i}<b_{i}$
And we also propose an Outer Product of the kind detailed below.
Consider two vectors $\vec{A}=\sum_{i=1}^{n} a_{i} \hat{e}_{i}$ and $\vec{B}=\sum_{i=1}^{n} b_{i} \hat{e}_{i}$
Then their accurate Outer Product is given by

```
\(\vec{A} \cdot \vec{B}=\sum_{i=1}^{n}\left\{\left(a_{i} b_{i}-b_{i}^{2}\right) F_{1}+\left(a_{i} b_{i}-a_{i}^{2}\right) F_{2}\right\}\)
where \(F_{1}=1, F_{2}=0\) when \(a_{i}>b_{i}\)
    and \(F_{2}=1, F_{1}=0\) when \(a_{i}<b_{i}\)
```


Theory II

Proof for the formula of Euclidean Inner Product
The colloquial definition of Inner Product mentioned in the above section (Theory I) motivates us now to propose a Proof for the formula of Euclidean Inner Product computed as shown below:

..........	\ldots	\ldots	\ldots
.........	\ldots	\ldots	\ldots	\cdots
.........	\ldots	\ldots	\ldots	\ldots	\ldots
..........	\ldots	\ldots	\ldots	\ldots
..	\ldots		\cdots	-	$\ldots .$.	\ldots	
.........	\ldots	\ldots
.........	\ldots	\ldots	\ldots
					\cdots		\ldots	\ldots			

Therefore, we can write the net Holistic Inner Product for the explicitly computed first case (along a certain branch) as
$\vec{A} \cdot \vec{B}=\sum_{i=1}^{n}\left\{a_{i}^{2}\right\}+\sum_{i=1}^{n}\left\{\left(b_{i}-a_{i}\right)^{2}\right\}+\sum_{i=1}^{n}\left\{\left(a_{i}-\left(b_{i}-a_{i}\right)\right)^{2}\right\}+\ldots \ldots .$.

In this fashion, we can compute the net Holistic Inner Product along the appropriate branch as dictated by the numerical values of
a_{i}

And
b_{i}

We can note that this infinite sum is also equal to
$\vec{A} \cdot \vec{B}=\sum_{i=1}^{n}\left\{a_{i} b_{i}\right\}$

Therefore, this also forms the
$\vec{A} \cdot \vec{B}=\sum_{i=1}^{n}\left\{a_{i} b_{i}\right\}$

THEORY II.I

Euclidean Inner Product of two \boldsymbol{N}-Dimensional Matrices \boldsymbol{A} and \boldsymbol{B}

In this research section, the Euclidean Inner Product of two N-Dimensional Matrices A and B is slated by the author.
One can note that, one can find the Euclidean Inner Product of two N-Dimensional Matrices A and B using the following definition [1]

where $A_{\text {nibs...nn }}$ and $B_{\text {visb } \ldots, n}$ are the elements of the two N-Dimensional Matrices A and B.

THEORY III

Geometrical Inner Product And The Fundamental Postulate Of Modern Quantum Theory

In this research section, a novel type of Geometrical Inner Product And The Fundamental Postulate Of Modern Quantum Theory Is Advented.
Consider two normalized vectors $\hat{A}=\frac{1}{\sqrt{\sum_{i=1}^{n} a_{i}^{2}}} \sum_{i=1}^{n} a_{i} \hat{e}_{i}$ and $\hat{B}=\frac{1}{\sqrt{\sum_{i=1}^{n} b_{i}^{2}}} \sum_{i=1}^{n} b_{i} \hat{e}_{i}$
We propose a Geometrical Inner Product Of the kind detailed as below.
$\hat{A} \cdot \hat{B}=\left\{1-\left\lvert\, \operatorname{Sin}\left(\frac{\theta}{2}\right)\right.\right\}$

Example:

Now, we can write the Fundamental Postulate Of The Modern Quantum Theory as the Similarity between any two normalized states \hat{A} and \hat{B} is given by $\hat{A} \cdot \hat{B}=\left\{1-\sin \left(\frac{\theta}{2}\right)\right\}$

THEORY III.

A Novel Type Of Geometric Inner Product And The Fundamental Postulate Of Quantum Theory (Version 2)

In this research section the author has presented "A Novel Type Of Geometric Inner Product And The Fundamental Postulate Of Quantum Theory (Version 2)
Consider two normalized vectors $\hat{A}=\frac{1}{\sqrt{\sum_{i=1}^{n} a_{i}^{2}}} \sum_{i=1}^{n} a_{i} \hat{e}_{i}$ and $\hat{B}=\frac{1}{\sqrt{\sum_{i=1}^{n} b_{i}^{2}}} \sum_{i=1}^{n} b_{i} \hat{e}_{i}$
We propose a Geometric Inner Product of the kind detailed as below.

$\hat{A} \cdot \hat{B}=\left\{1-\left|\operatorname{Sin}\left(\frac{\theta}{2}\right)\right|\right.$

where theta is the smaller angle between the two vectors considered.
The motivation to present such a Geometric Inner Product is described below.
Firstly, we consider a circle with the center of it as the origin for the three orthogonal Cartesian axes and considering any two points on it and joining these points to the origin we form two position vectors. Let these be denoted by the vectors
\hat{A} and \hat{B}
Since these vectors are normalized, the only aspect that determines their similarity is the extent of their nearness. This extent of nearness is the distance between them (between the two points (arrowheads of the two position vectors) on the circle)
This distance is given by
$2 \operatorname{Sin}\left(\frac{\theta}{2}\right)$

Where theta is the smaller angle between the two position vectors.
However, since, we have to take care of the condition that when they are nearest (i.e., the same), the imilarity is maximum, i.e., their dot product should be 1 . And when they are totally apart, it must be 0 . Therefore, to achieve this we rewrite the dot product as
\square
$\hat{A} \cdot \hat{B}=\left\{1-\operatorname{Sin}\left(\frac{\theta}{2}\right)\right\}$

Wherein, we have divided the extent of nearness distance

```
2Sin(\frac{0}{2})
is divided by 2, a modulus operator applied (to take care of theta more than 180 degrees) and the
whole term is subtracted from 1.
Note:
larger magnitude vector upto the smaller magnitude vector and can find their extent of similarity
larger magnitude vector upto the smaller magnitude vector and can find their extent of similarity
using
the two vectors are as much similar as given b
k>1
```

Now, we can simply state the Fundamental Postulate Of Quantum Theory which states that the
similarity between any two states is given by their dot product, in this case.

```
\hat { A } \cdot \hat { B } = \{ 1 - \operatorname { S i n } ( \frac { \theta } { 2 } ) \}
```


THEORY IV, V

Curved Path Geometric Inner Product And Outer Product and In N-Dimensional Space and the consequential Fundamental Postulate Of Quantum Theory

 Quantum Theory is advented.

Theory

Consider two normalized vectors $\hat{A}=\frac{1}{\sqrt{\sum_{i=1}^{n} a_{i}^{2}}} \sum_{i=1}^{n} a_{i} \hat{e}_{i}$ and $\hat{B}=\frac{1}{\sqrt{\sum_{i=1}^{n} b_{i}^{2}}} \sum_{i=1}^{n} b_{i} \hat{e}_{i}$
We propose a Geometric Inner Product Of the kind detailed as below.
\square for
where theta (in radians) is the smaller angle between the two vectors considered.
The motivation to present such a Geometric Inner Product is described below.
 form two position vectors. Let these be denoted by the vectors
\hat{A} and \hat{B}
 (between the two points (arrowheads of the two position vectors) on the circle).
This distance is given by
θ
where theta is the smaller angle between the two position vectors.
 totally apart, it must be 0 . Therefore, to achieve this we rewrite the dot product as

```
A}\cdot\hat{B}=|\frac{0}{\pi}-1|\quad0\leq0\leq2
for
```


Outer Product

The Outer Product will therefore be
$\hat{A} \cdot \hat{B}=\left|\left(\frac{\pi-\theta}{\pi}\right)-1\right|_{\text {for }}$

Curved Inner Product In N-Dimensional Space

Consider two normalized vectors $\hat{A}=\frac{1}{\sqrt{\sum_{i=1}^{n} a_{i}^{2}}} \sum_{i=1}^{n} a_{i} \hat{e}_{i}$ and $\hat{B}=\frac{1}{\sqrt{\sum_{i=1}^{n} b_{i}^{2}}} \sum_{i=1}^{n} b_{i} \hat{e}_{i}$
We propose a Geometric Inner Product Of the kind detailed as below.
\square
\square
where thetan (in radians) is the hyper angle (in \boldsymbol{n} dimensional space) between the two vectors considered in \boldsymbol{n} dimensional space. And $(2 \pi)_{n}$
Is the total hyper-steradianical type angle in \boldsymbol{n} dimensional space.
The motivation to present such a Geometric Inner Product is described below.
 joining these points to the origin we form two position vectors. Let these be denoted by the vectors
\hat{A}_{n} and \hat{B}_{n}
 them (between the two points (arrowheads of the two position vectors) on the hyper sphere (in \boldsymbol{n} dimensional space with unit radius)) .

This distance is denoted by
θ_{n}
where thetan is the smaller hyper angle (in \boldsymbol{n} dimensional space) between the two position vectors.
 totally apart, it must be 0 . Therefore, to achieve this we rewrite the dot product as

```
\mp@subsup{\hat{A}}{n}{}\cdot\mp@subsup{\hat{B}}{n}{}=|\frac{\mp@subsup{0}{n}{}}{\mp@subsup{\pi}{n}{}}-1|\mathrm{ for 0}0\leq\mp@subsup{0}{n}{}\leq(2\pi\mp@subsup{)}{n}{}
```

and
$(2 \pi)_{n}$
Is the total hyper-steradianical type angle in \boldsymbol{n} dimensional space.

Outer Product

The Outer Product will therefore be
$\hat{A}_{n} \cdot \hat{B}_{n}=\left(\frac{\pi_{n}-\theta}{\pi_{n}}\right)-1$
where
π_{n}
Is the appropriate (with respect to the inertia of context) hyper-steradianical type angle in \boldsymbol{n} dimensional space.

Fundamental Postulate Of Quantum Theory

Such outer product is useful in characterizing NP problems. And also in characterizing large primes.
 $\hat{A}_{n} \cdot \hat{B}_{n}=\left|\frac{\theta_{n}}{\pi_{n}}-1\right| \quad 0 \leq \theta_{n} \leq(2 \pi)_{n}$ where the description of the variables used already detailed in the previous paragraphs.

THEORY VI

The Universal Quantum Basis

In this research section, the author presents a novel concept of Universal Quantum Basis
For The Inner Product, the Universal Quantum Basis can be given by
$U Q B=\sum_{i=1}^{n} \left\lvert\, \frac{\theta_{i}}{\pi_{i}}-1 \hat{e}_{i} \quad\right.$ i.e., for $\quad 0 \leq \theta_{n} \leq(2 \pi)_{n}$

Similarly, a seasoned reader of our research monographs can derive the Universal Quantum Basis for the case of Outer Product.

References

1. http://arxiv.org/abs/1009.3809v1 'One, Two, Three and N Dimensional String Search Algorithms'
2. Modern Quantum Mechanics by J.J. Sakurai.
3. Linear Algebra by Hoffman, Kunze.

Acknowledgements

 conception, preparation and authoring of this research manuscript document

Note

Note: The red and black coloured portion Theory I part of this research article document was uploaded and published in the 'General Mathematics' Category and was live until Wednesday, September 23 red 2015 with the following details:
http://viX ra.org/abs/1504.0139
equest reference: 8406833
equest timestamp: 2015-04-18 23:52:50
iXra citation number: 1504.0139
test version: vl
Title: A NOVEL TYPE OF INNER PRODUCT AND OUTER PRODUCT
Authors: Ramesh Chandra Bagadi, Roderic S. Lakes
However, due to authorship claid disputes the ars list has bee trucated in this version.
Note: The red and black coloured portion Theory II part of this research article document was uploaded and published in the 'General Mathematics' Category and was live until Wednesday, September $23^{\text {rd }}$, 2015 with the following details:
http://viXra.org/abs/1504.0212
equest reference: 8416556
equest timestamp: 2015-04-27 11:41:09
iXra citation number: 1504.0212
version: vl
Title: A NOVEL TYPE OF HOLISTIC INNER PRODUCT
Authors: Ramesh Chandra Bagadi, Roderic S. Lakes

Note: The red and black coloured portion Theory III part of this research article document was uploaded and published in the 'General Mathematics' Category and was live until Wednesday, September 23 rrd, 2015 with the following details: http://viXra.org/abs/1504.0245
request reference: 8420687
|Xuest timestamp: 2015-04-30 08:1
latest version: vl
subject category: General Mathematics
itle: A NOVEL TYPE
Title: A NOVEL TYPE OF GEOMETRIC INNER PRODUCT AND THE FUNDAMENTAL POSTULATE OF QUANTUM THEORY
Authors: Ramesh Chandra Bagadi, Roderic S. Lakes
Note: The red and black coloured portion Theory III.I part of this research article document was uploaded and published in the 'General Mathematics' Category and was live until Wednesday, September $23^{\text {red }}$, 2015 with the following details http://viXra.org/abs/1505.0006
equest reference8421876
request timestamp: 2015-05-01 07:42:1
viXra citation number: 1505.0006
Xra citation number: 1505.000
htest version: vl
subject category: General Mathematics
Title: A Novel type of geometric inner product and the fundamental postulate of quantum theory (Version 2)
Authors: Ramesh Chandra Bagadi, Roderic S. Lakes
However, due to authorship claimlessness disputes th
Note: The red and black coloured portion Theory IV part of this research article document was uploaded and published in the 'General Mathematies' Category and was live until Wednesday, September $23^{\text {red }}$, 2015 with the following details: http://viXra.org/abss/1505.0004
request reference8421898
request timestamp: 2015-05-01 08:07:1
viX $\mathbf{X a}$ c citation numer. 15050001
iXra citation number: 1505.0004
latest version: v
subject category: General Mathematics
Title: A NOVEL TYPE OF CURVED PATH GEOMETRIC INNER PRODUCT AND OUTER PRODUCT AND THE FUNDAMENTAL POSTULATE OF QUANTUM THEORY
Authors: Ramesh Chandra Bagadi, Roderic S. Lakes
However, due to authorship claimlessness disputes th
Authors: Ramesh Chandra Bagadi, Roderic S. Lakes
However, due to authorship claimessness disputes the authors list has been truncated in this version.
Vote: The red and black coloured portion Theory V part of this research article document was uploaded and published in the 'General Mathematics' Category and was live until Wednesday, September 23 rd, 2015 with the following details: http://viX ra.org/abs/1505.0062
request reference8431472
request timestamp: 2015-05-08 00:11:3
Xra citation number: 1505.0062
ubject category: General Mathematics
Title: a novel type of curved path geometric inner product and outer product and in n dimensional space and the fundamental postulate of quantum theory
Authors: Ramesh Chandra Bagadi, Roderic S. Lakes
Note: The red and black coloured portion Theory VI part of this research article document was uploaded and published in the 'General Mathematics' Category and was live until Wednesday, September 23 red 2015 with the following details: http://viXra.org/abs/1506.0110
request reference8475580
equest timestamp: 2015-06-14 08:57:5
iXra citation number: 1506.0110
bject catego
abject category: General Mathematics
itle: Title: UNIVERSAL QANTUM BA
Authors: Ramesh Chandra Bagadi, Roderic S. Lakes
However, due to authorship claimlessness disputes the authors list has been truncated in this version

Note

 or any other extra-human form of intelligence during the conception,

