Recursive Consecutive Element Differential Of Prime Sequence (And/ Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern (Version II)

September 2nd, 2015.

Author: Ramesh Chandra Bagadi
Founder, Owner, Co-Director And Advising Scientist In Principal Ramesh Bagadi Consulting LLC, Madison, Wisconsin-53715, United States Of America.
Email: rameshebagadi@netscape.net

White Paper One (TRL 8)
of
Ramesh Bagadi Consulting LLC, Advanced Concepts & Think-Tank, Technology Assistance & Innovation Center, Madison, Wisconsin-53715, United States Of America
Abstract

In this research investigation, the authors have advented ‘Recursive Consecutive Element Differential Of Prime Sequence (And/ Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern’.

Theory

One can note that since all the manifestations of the Universe are based on the Sequence Of Primes and Prime Sequences In Higher Order Spaces [1], [2], we should use Recursive Consecutive Element Differential Of Prime Sequence (And/ Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern to find its evolved {along the Prime Metric (and also the Prime Metric Constructed using Prime Sequences In Higher Order Spaces)} Image at any instant. We detail how one can achieve this in the following lines.

We first make note of the following:

For base 1:

0=1^{(1-1)} - 1^{(1-1)}
1=1
2=1+1
3=1+1+1
4=1+1+1+1
5=1+1+1+1+1
6=1+1+1+1+1+1
7=1+1+1+1+1+1+1
8=1+1+1+1+1+1+1+1
9 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

For base 2:

0 = 2 - 2

1 = 2^0 where 0 is given in terms of 2 by the previous equation

2 = 2^1 where 1 is given in terms of 2 by the previous equation

3 = 2^2 - 2^0 where 0 is given in terms of 2 as already shown

4 = 2^2

5 = 2^2 + 2^0 where 0 is given in terms of 2 as already shown

6 = 2^2 + 2^1 where 1 is given in terms of 2 as already shown

7 = 2^2 + 2^2 - 2^0 where 0 is given in terms of 2 as already shown

8 = 2^2 + 2^2

9 = 2^2 + 2^2 + 2^1 where 1 is given in terms of 2 as already shown

Similarly, we find such expressions for all the numbers from 3 through 9 as well.

Therefore, when we wish to slate the Image Of Any Set with respect to the Prime Sequence of concern, say we consider the Prime Sequence \{1, 2, 3, 5, 7, \ldots\}, we can note that the 1^{st} image of the considered Set is the Set itself, as \{1+1=2 \text{ (the second number of the prime sequence)}\}. The 2^{nd} image is gotten by noting that 2 becomes 3, i.e., therefore we slate the above considered set in the basis of number ‘2’, i.e., in terms of ‘2’ and slate the Primality \{see author’s research papers on ‘Primality’ at www.vixra.org in the General Mathematics Category at http://www.vixra.org/author/ramesh_chandra_bagadi\} of this set in terms of the Number 2 and then replace wherever this number 2 occurs by 3 \{the third number of the prime sequence\}. The image thusly gotten is the 2^{nd} cumulative image of the considered set. Similarly, if we wish to find the 3^{rd} cumulative image of the considered set, we consider the thusly found 2^{nd} cumulative image of the considered set and slate the Primality of this set in
terms of the Number 3 and then replace wherever this number 3 occurs by 5
{the fourth number of the prime sequence}. In this fashion, one can find the N
Cumulative Image Of any set of concern. One can also note that this is also the
grand ‘Evolution Transformation Scheme’ (see [3], [4]) along the Prime Metric. One can note that one can similarly implement and compute the desired
aspects using Primes In Any Higher Order Space by using the appropriate
Prime Metric Constructed using Primes In the corresponding Higher Order
Space.

References

 ‘The Prime Sequence Generating Algorithm’.
 ‘The Prime Sequence’s (Of Higher Order Space’s) Generating Algorithm’.
 ‘Universal Natural Recursion Schemes Of Rth Order Space Prime Sequence’s (Of
 Higher Order Space’s) Generating Algorithm’.
 ‘Universal One Step Natural Evolution And/ Or Growth Scheme Of Any Set Of
 Concern And Consequential Evolution Quantization Based Recursion Scheme
 Characteristically Representing Such Aforementioned Evolution And/ Or Growth’

Acknowledgements

The author would like to express his deepest gratitude to all the members of his loving
family, respectable teachers, en-dear-able friends, inspiring Social Figures, highly
esteemed Professors, reverence deserving Deities that have deeply contributed in the
formation of the necessary scientific temperament and the social and personal
outlook of the author that has resulted in the conception, preparation and authoring
of this research manuscript document.

Note

Note Of Importance: Also, it is to be understood clearly that the author has not given any body consent either in native instantaneous
causality culture and/ or non-native implied future causality culture to embed, super-set and subset the author in true form or as a quantum
signature entity form, spirit form and/ or any other extra-human form of intelligence during the conception, development, analysis and
preparation of this research manuscript. Any such aforementioned actions would be deemed illegal and therefore any of such entities claims on the authorship of this research manuscript stands defeated and annulled despite their, such actions of unrequited and unrequested servitude.

Note: The red and black coloured portion of this research article document was uploaded and published in the ‘General Mathematics’ Category and was live until Wednesday, September 23rd, 2015 with the following details:
http://viXra.org/abs/1509.0195
request reference: 8596951
request timestamp: 2015-09-23 07:53:23
viXra citation number: 1509.0195
latest version: v1
subject category: General Mathematics
Title: Recursive Consecutive Element Differential Of Prime Sequence (And/ Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern
Authors: Ramesh Chandra Bagadi, Roderic S. Lakes, Ta Han, Peter T. Timbie
However, due to authorship claimlessness disputes the authors list has been truncated in this version.