A functional recurrence to obtain the prime numbers using the Smarandache prime function.

Sebastián Martín Ruiz

Theorem: We are considering the function:
For n integer:

$$
F(n)=n+1+\sum_{m=n+1}^{2 n} \prod_{i=n+1}^{m}\left[-\left[-\frac{\sum_{j=1}^{i}\left(\left\lfloor\frac{i}{j}\right\rfloor-\left\lfloor\frac{i-1}{j}\right\rfloor\right)-2}{i}\right]\right]
$$

one has: $p_{k+1}=F\left(p_{k}\right)$ for all $k \geq 1$ where $\left\{p_{k}\right\}_{k \geq 1}$ are the prime numbers and $\lfloor x\rfloor$ is the greatest integer less than or equal to x .

Observe that the knowledge of p_{k+1} only depends on knowledge of p_{k} and the knowledge of the fore primes is unnecessary.

Proof:
Suppose that we have found a function $P(i)$ with the following property:

$$
P(i)=\left\{\begin{array}{l}
1 \text { if } i \text { is composite } \\
0 \text { if } i \text { is prime }
\end{array}\right.
$$

This function is called Smarandache prime function.(Ref.)
Consider the following product:

$$
\prod_{i=p_{k+1}}^{m} P(i)
$$

If $p_{k}<m<p_{k+1} \prod_{i=p_{k}+1}^{m} P(i)=1$ since $i: p_{k+1} \leq i \leq m$ are all composites.
If $m \geq p_{k+1} \quad \prod_{i=p_{k}+1}^{m} P(i)=0$ since $P\left(p_{k+1}\right)=0$

Here is the sum:

$$
\begin{aligned}
& \sum_{m=p_{k}+1}^{2 p_{k}} \prod_{i=p_{k}+1}^{m} P(i)=\sum_{m=p_{k}+1}^{p_{k+1}-1} \prod_{i=p_{k}+1}^{m} P(i)+\sum_{m=p_{k+1}}^{2 p_{k}} \prod_{i=p_{k}+1}^{m} P(i)=\sum_{m=p_{k}+1}^{p_{k+1}-1} 1= \\
& =p_{k+1}-1-\left(p_{k}+1\right)+1=p_{k+1}-p_{k}-1
\end{aligned}
$$

The second sum is zero since all products have the factor $P\left(p_{k+1}\right)=0$.

Therefore we have the following recurrence relation:

$$
p_{k+1}=p_{k}+1+\sum_{m=p_{k}+1}^{2 p_{k}} \prod_{i=p_{k}+1}^{m} P(i)
$$

Let's now see we can find $P(i)$ with the asked property.
Consider:

$$
\left\lfloor\frac{i}{j}\right\rfloor-\left\lfloor\frac{i-1}{j}\right\rfloor=\left\{\begin{array}{lll}
1 & \text { si } & j \mid i \\
0 & \text { si } & j \text { not } \mid i
\end{array} \quad j=1,2, \cdots, i \quad i \geq 1\right.
$$

We deduce of this relation:

$$
d(i)=\sum_{j=1}^{i}\left\lfloor\frac{i}{j}\right\rfloor-\left\lfloor\frac{i-1}{j}\right\rfloor
$$

where $d(i)$ is the number of divisors of i.

If i is prime $d(i)=2$ therefore:

$$
-\left\lfloor-\frac{d(i)-2}{i}\right\rfloor=0
$$

If i is composite $d(i)>2$ therefore:

$$
0<\frac{d(i)-2}{i}<1 \Rightarrow-\left\lfloor-\frac{d(i)-2}{i}\right\rfloor=1
$$

Therefore we have obtained the Smarandache Prime Function $P(i)$ which is:

$$
P(i)=-\left\{-\frac{\sum_{j=1}^{i}\left(\left\lfloor\frac{i}{j}\right\rfloor-\left\lfloor\frac{i-1}{j}\right\rfloor\right)-2}{i}\right] \quad i \geq 2 \text { integer }
$$

With this, the theorem is already proved .

References:
[1] E. Burton, "Smarandache Prime and Coprime functions".
www.gallup.unm.edu/~Smarandache/primfnct.txt
[2]F. Smarandache, "Collected Papers", Vol II 200 p.p. 137, Kishinev University Press, Kishinev, 1997.

