
Applied Mathematical Sciences, Vol. 9, 2015, no. 90, 4469 - 4477
HIKARI Ltd, www.m-hikari.com

http://dx.doi.org/10.12988/ams.2015.53279

Spherical Indicatrix Curves of Spatial

Quaternionic Curves
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Abstract

In this paper, the spherical indicatrix curves drawn by quaternionic
frenet vectors are computed. Also the quaternionic geodesic curvatures
of the spherical indicatrix curves to E3 and S2 are found.
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1 Introduction

Quaternions were discovered, for the first time in 1843, by the Irish mathe-
matician Sir William R. Hamilton [2]. Hamilton wanted to generalize complex
numbers in order to be used in geometric optics. In 1987, Bharathi and Na-
garaj defined the quaternionic curves in E3 and E4, they studied the differential
geometry of space curves and introduced Frenet frames and formulae by using
quaternions [4]. About a decade later, quaternionic inclined curves have been
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defined and harmonic curvatures studied by Karadağ and Sivridağ [6]. Tuna
and Çöken have studied quaternion valued functions and quaternionic inclined
curves in the semi-Euclidean space E4

2 [1]. They have given the Serret-Frenet
formulae and they have defined quaternionic inclined curves and harmonic cur-
vatures for the quaternionic curves in the semi-Euclidean space. Quaternionic
rectifying curves have been studied by Güngör and Tosun, [5]. Şenyurt and
Çalışkan have founded the Darboux vector of the spatial quaternionic curve ac-
cording to the Frenet frame. Then, they calculated the curvature and torsion
of the spatial quaternionic Smarandache curve formed by the unit Darboux
vector with the normal vector, [7].

2 Preliminaries

In this section, we give the basic elements of the theory of quaternions and
quaternionic curves. A more complete elementary treatment of quaternions
and quaternionic curves can be found in [3] and [4], respectively. A real quater-
nion q is an expression of the form

q = d+ ae1 + be2 + ce3 (2.1)

where a, b, c ∈ R and ei, 1 ≤ i ≤ 3, are quaternionic units which satisfy the
non-commutative multiplication rules{

e1
2 = e2

2 = e3
2 = e1 × e2 × e3 = −1, e1, e2, e3 ∈ R3

e1 × e2 = e3, e2 × e3 = e1, e2 × e3 = e1
(2.2)

The algebra of the quaternions is denoted by Q and its natural basis is given
by {e1, e2, e3}. A general quaternion can be given by the form

q = Sq + Vq (2.3)

where Sq = d is the scalar part and Vq = ae1 + be2 + ce3 is the vector part
of q. The Hamilton conjugate of q = Sq + Vq is defined by q̄ = Sq − Vq.
Summation of two quaternions q1 = Sq1 + Vq1 and q2 = Sq2 + Vq2 is defined as
q1 ⊕ q2 = (Sq1 + Sq2) + (Vq1 + Vq2). Multiplication of a quaternion q = Sq + Vq
with a scalar λ ∈ R is identified as λ � q = λSq + λVq. If ‖ q ‖= 1, then
q is called unit quaternion. Let q1 = Sq1 + Vq1 = d1 + a1e1 + b1e2 + c1e3
and q2 = Sq2 + Vq2 = d2 + a2e1 + b2e2 + c2e3 be two quaternions in, then the
quaternion product of q1 and q2 is given by

q1 × q2 = d1d2 − (a1a2 + b1b2 + c1c2) + (d1a2 + a1d2 + b1c2 − c1b2)e1
+ (d1b2 + b1d2 + b1a2 − a1b2)e2 + +(d1c2 + c1d2 + a1b2 − b1a2)e3
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or

q1 × q2 = Sq1Sq2 − 〈Vq1 , Vq2〉+ Sq1Vq2 + Sq2Vq1 + Vq1 ∧ Vq1 (2.4)

where 〈, 〉 and ∧ denote the inner product and vector product in Euclidean
3-space.

In this space it is defined a symmetric real-valued, non-degenerate, bilinear
form as follows:

〈, 〉|Q : Q×Q→ R , 〈q1, q2〉|Q =
1

2
(q1 × q̄2 + q2 × q̄1) (2.5)

which is called the quaternion inner product. As a result the norm of q is

N(q) =
√
q × q̄ =

√
a2 + b2 + c2 + d2. (2.6)

The element q is called a spatial quaternion whenever q + q̄ = 0 and called a
temporal quaternion whenever q− q̄ = 0. A general quaternion q can be given
as q = 1

2
(q+ q̄) + 1

2
(q− q̄). The three-dimensional Euclidean space is identified

with the space of spatial quaternions [4].
The space QH = {q ∈ Q | q + q̄ = 0} is defined in an obvious manner. Let
I = [0, 1] be an interval in the real line R and s ∈ I be the arc-length parameter
along the smooth curve

γ : [0, 1]→ QH , γ(s) =
3∑

i=1

γi(s)ei. (2.7)

The tangent vector γ′(s) = t(s) has unit length ‖t(s)‖ = 1 for all s.
Let γ : [0, 1] → QH be a differentiable spatial quaternions curve with arc-

length parameter s and {t(s), n1(s), n2(s)} be the Frenet frame of γ at the
point γ(s), where 

t(s) = γ′(s)

n1(s) =
γ′′(s)

N(γ′′(s))

n2(s) = t(s)× n1(s),

(2.8)

and if the curve γ(s) is a non unit speed curve then we say that
t(s) =

γ′(s)

ν(s)
, ν(s) = N(γ′(s))

n1(s) = n2(s)× t(s)

n2(s) =
γ′(s)× γ′′(s) + ν(s)ν ′(s)

N
(
γ′(s)× γ′′(s) + ν(s)ν ′(s)

) · (2.9)
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Let {t(s), n1(s), n2(s)} be the Frenet frame of γ(s). Then Frenet formula,
curvature and the torsion are given by

t′(s) = k(s)n1(s)

n1
′(s) = −k(s)t(s) + r(s)n2(s)

n2
′(s) = −r(s)n1(s),

(2.10)

and 
k(s) =

N
(
γ′(s)× γ′′(s) + ν(s)ν ′(s)

)
ν(s)3

r(s) =
〈γ′(s)× γ′′(s), γ′′′(s)〉|Q[

N
(
γ′(s)× γ′′(s) + ν(s)ν ′(s)

)]2 , (2.11)

where t(s), n1(s), n2(s) are, respectively, the unit tangent, the unit principal
normal and the unit binormal vector of a quaternionic curve [4]. The functions
k, r are called the principal curvature and the torsion, respectively.

Considering the spatial quaternions curve γ : [0, 1] → QH , the moving
frame {t(s), n1(s), n2(s)} moves with a certain angular velocity around each
axis for any s ∈ [0, 1]. This axis is called instantaneous rotation axis of the
spatial quaternionic curve. The Darboux axis vector in the direction indicated
by D in defined as follows:

D = rt+ kn2. (2.12)

Let D be the instantaneos Pfaff vector of curve γ. Let denote the angle between
D and n2 with ϕ,

cosϕ =
k√

k2 + r2
, sinϕ =

r√
k2 + r2

(2.13)

The unit vector of quaternionic Darboux vector [7] is indicated by w:

w =
D

N(D)
= sinϕt+ cosϕn2.

3 Spherical Indicatrix Curves of Spatial Quater-

nionic Curves

In this section we find the arc lenght of (t), (n1), (n2) and (w) for the Spherical
Indicatrix Curves, we compute the geodesic curvatures in E3 and S2.

We indicate the arc length for (t) with st, that is
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st =

s∫
0

N(
dt

ds
)ds

=

s∫
0

N(kn1)ds

=

s∫
0

√
1

2
(kn1 × kn1) + (kn1 × kn1)ds

=

s∫
0

kds. (3.1)

If the arc length for (n1), (n2) and (w) are sn1 , sn2 and sw, we have:

sn1 =

s∫
0

N(
dn1

ds
)ds

=

s∫
0

N(−kt+ rn2)ds

=
1√
2

s∫
0

√
((−kt+ rn2)× (−kt+ rn2) + (−kt+ rn2)× (−kt+ rn2))ds

=
1√
2

s∫
0

√
2(k2 + r2)ds

=

s∫
0

N(w(s))ds, (3.2)
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sn2 =

s∫
0

N(
dn2

ds
)ds

=

s∫
0

N(−rn2)ds

=
1√
2

s∫
0

√
(−rn2 ×−rn2)− (rn2 ×−rn2)ds

=

s∫
0

rds, (3.3)

sw =

s∫
0

N(
dw

ds
)ds

=

s∫
0

N
(d(sinϕt+ cosϕn2)

ds

)
ds

=

s∫
0

N(ϕ′(cosϕt− sinϕn2))ds

=

s∫
0

ϕ′ds. (3.4)

Let αt(st) = t(s) be a unit speed regular spherical curves. We denote st as the
arc-lenght parameter of tangents indicatrix (t)

αt(st) = t(s) (3.5)

Let us consider the tangent vector tt of curve (t). Supposing that the tangent
vector of the (t) geodeseic curvature is Λt, we get

Λt = N(Dtttt). (3.6)

Differentiating (3.5), we have

dαt

dst

dst
ds

= t′(s)
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and

tt
dst
ds

= kn1. (3.7)

From the equation (3.7)
tt(st) = n1(s).

Computing the derivatives and after some algebra we get,

Dtttt = −t+
r

k
n2. (3.8)

By substituting (3.5), we obtain

Λt =

√
1

2
(−t+

r

k
n2)× (−t+

r

k
n2),

Λt =

√
1 +

( r
k

)2
or from the equation (2.13),

Λt = secϕ. (3.9)

Likewise, let us suppose that the tangent vector of the curve (n1) is tn1 . Sup-
posing that Λn1 is the geodesic curvature of (n1) at E3, we get

Λn1 =

√
1 +

( ϕ′

N(w)

)2
. (3.10)

Let us define the tangent vector of the curve (n2) as tn2 . Supposing that Λn2

is the geodesic curvature of (n2) at E3, we get

Λn2 =

√
1 +

(k
r

)2
Λn2 = cscϕ. (3.11)

Following a similar approach, we consider the tangent vector is tw of the
curve (w). Supposing that Λw is the geodesic curvature of (w) at E3, we get

Λw =

√
1 +

(N(w)

ϕ′

)2
. (3.12)

Let find the geodesic curvatures of (t), (n1), (n2) and (w) to S2. Supposing
that the geodesic curvature for (t) is Γt, it is Γt = N(Dtttt). Because of the
Gauss equation and S(tt) = tt, we have
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Dtttt = Dtttt + 〈S(tt), tt〉|Qt,
Dtttt = Dtttt + t,

Dtttt =
r

k
n2 = tanφn2.

Then,

Γt = tanφ (3.13)

will be achieved. Likewise, Supposing that the geodesic curvature for (n1) is
Γn1 , it is Γn1 = N(Dtn1

tn1). Because 〈S(tn1), tn1〉|Q = 1 at the statement

Dtn1
tn1 = Dtn1

tn1 + 〈S(tn1), tn1〉|Qt,

Dtn1
tn1 =

ϕ′

N(w)
(sinϕt+ cosϕn2)

will be found out. Then,

Γn1 =
ϕ′

N(w)
(3.14)

will be achieved. Likewise, supposing that the geodesic curvatures for (n2) are
(w) are Γn2 and Γw, these are Γn2 = N(Dtn2

tn2) and Γw = N(Dtwtw). Then,

Γn2 = cotϕ,

Γw =
N(w)

ϕ′ ·

will be achieved.
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