Smarandache idempotents in certain types of group rings

Parween Ali Hummadi

Shadan Abdulkadr Osmar

College of Science Education	College of Science
University of Salahaddin	University of Salahaddin
Erbil – Kurdistan Region- Iraq	Erbil- Kurdistan Region - Iraq

Abstract:

In this paper we study S-idempotents of the group ring \mathbb{Z}_2G where G is a finite cyclic group of order *n*. We give a condition on *n* such that every nonzero idempotent element of the group ring \mathbb{Z}_2G is Smarandache idempotent and we find Smarandache idempotents of the group ring $\mathcal{K}G$, where \mathcal{K} is an algebraically closed field of characteristic 0 and G is a finite cyclic group.

Keywords: Idempotent, S-idempotent, group ring, algebraically closed field.

Introduction:

Smarandache idempotent element in rings introduced by Vasantha Kandasamy [1]. A Smarandache idempotent (S-idempotent) of the ring \mathcal{R} is an element $0 \neq x \in \mathcal{R}$ such that

1)
$$x^2 = x$$

- 2) There exists $a \in \mathcal{R} \setminus \{0, 1, x\}$
 - i) $a^2 = x$ and
 - ii) xa = a (ax = a) or ax = x(xa = x).

She introduced many Smarandache concepts [2]. Vasantha Kandasamy and Moon K. Chetry discuss S-idempotents in some type of group rings [3],. A prime number p of the form $p = 2^k - 1$ where k is a prime number called Mersenne prime [4]. In section one of this paper we study S-idempotents of the group ring \mathbb{Z}_2 G where G is a finite cyclic group of order n. If n = 2p, p is a Mersenne prime, we show that every nonzero idempotent element is S-

idempotent and we find the number of S-idempotent element. In section two we study S-idempotents of the group ring $\mathcal{K}G$ where \mathcal{K} is an algebraically closed field of characteristic 0 and G is a finite cyclic group, we show that every non trivial idempotent is S-idempotent.

1. S-idempotents of \mathbb{Z}_2G

In this section we study Sidempotents in the group ring \mathbb{Z}_2G where G is a finite cyclic group of order *n*, specially where n=2p, p is a Mersenne prime (i.e. $p = 2^k - 1$ for some prime *k*).

Theorem 1.1.

The group ring $\mathbb{Z}_2 G$ where $G = \langle g | g^m = 1 \rangle$ is a cyclic group of an odd order m > 1, has at least two non trivial idempotent elements, moreover no non trivial idempotent element is S-idempotent.

Proof: Consider the element

$$\alpha = g + g^2 + g^3 + \ldots + g^{\frac{m-1}{2}} + g^{\frac{m-1}{2}+1} + \ldots$$

+ g^{m-1} , of $\mathbb{Z}_2 G$. Since the coefficient of each g^i , i = 1, ..., m is in \mathbb{Z}_2 , $\alpha^2 = g^2 + g^4 + ... + g^{m-1} + g + g^3 + ... + g^{m-2}$. Hence $\alpha^2 = \alpha$, that is α is an idempotent element, so $(1 + \alpha)$ is also an idempotent element. It remains to show that no idempotent element of $\mathbb{Z}_2 G$ is an Sidempotent. Suppose

$$\alpha = a_1 + a_2 g + a_3 g^2 + \ldots + a_{\frac{m-1}{2}+1} g^{\frac{m-1}{2}} +$$

...+ $a_m g^{m-1}$, is a non trivial S-idempotent. Thus α is different from 0 and 1, moreover there exists β in $\mathbb{Z}_2 G \setminus \{0,1,\alpha\}$ such that $\beta^2 = \alpha$, let $\beta = b_1 + b_2 g + b_3 g^2 + ... + b_{\frac{m-1}{2}+1} g^{\frac{m-1}{2}} + ... + b_m g^{m-1}$,

where $b_i \in \mathbb{Z}_2$. But $\alpha^2 = \alpha$, which means that

$$a_{1}+a_{2}g^{2}+a_{3}g^{4}+\ldots+a_{\frac{m-1}{2}+1}g^{m-1}+$$

+...+ $a_{m}g^{m-2} = b_{1}+b_{2}g^{2}+b_{3}g^{4}+\ldots+$
 $b_{\frac{m-1}{2}+1}g^{m-1}+\ldots+b_{m}g^{m-2}.$

It follows that $a_i = b_i$ for each $(1 \le i \le m)$. Therefore $\alpha = \beta$, which is an obvious contradiction.

The group ring $\mathbb{Z}_2 G$, where *G* is acyclic group of an odd order may contains more than two idempotent elements as it is shown by the following example.

Example 1.1.

Consider the group ring $\mathbb{Z}_2 G$ where $G = \langle g | g^7 = 1 \rangle$ is a cyclic group of order 7. By Theorem 1.1, $g+g^2 + g^3 + g^4 + g^5 + g^6$ and $1 + g + g^2 + g^3 + g^4 + g^5 + g^6$ are idempotent elements, In addition $(g + g^2 + g^4)^2 = g^2 + g^4 + g$ and $(1 + g + g^2 + g^4)^2 = 1 + g^2 + g^4 + g$, so $1 + g + g^2 + g^4$ and $g + g^2 + g^4$ are idempotent elements. Therefore \mathbb{Z}_2G has more than two idempotent elements.

The proof of the following result is not difficult.

Theorem 1.2.

If α is an S-idempotent of the group ring $\mathbb{Z}_2 G$ where G is a cyclic group of order n, then $(1 + \alpha)$ is an S-idempotent of $\mathbb{Z}_2 G$.

Theorem 1.3.

The group ring $\mathbb{Z}_2 G$, where $G = \langle g | g^{2n} = 1 \rangle$ is a cyclic group of order 2n, n is an odd prime, has at least two S-idempotents.

Proof: Let $\alpha = g^2 + g^4 + \dots + g^{n-1} + g^{n+1} + \dots + g^{2n-2}$. Thus

 $\alpha^2 = g^4 + g^8 + \dots + g^{2n-2} + g^2 + g^6 + \dots + g^{2n-4} = \alpha$. Hence α is an idempotent element, so $(1 + \alpha)$ is also an idempotent element .We will show that α is S-idempotent, so let

$$\beta = g + g^{n+2} + g^3 + g^{n+4} + \dots + g^{\frac{n-1}{2}} + g^{\frac{3n+1}{2}} + \dots + g^{n-2} + g^{2n-1}.$$

It is clear that $\beta^2 = \alpha$. We claim that $\alpha\beta = \beta$. For this purpose we describe the multiplication $\alpha\beta$ by the following array say \mathcal{A} :

$$\mathcal{A} = \begin{bmatrix} g^3 & g^5 & \cdots & g^{n-2} & g^n & g^{n+2} & \cdots & g^{2n-3} & g^{2n-1} \\ g^{n+4} & g^{n+6} & \cdots & g^{2n-1} & g^{2n+1} & g^{2n+3} & \cdots & g^{n-2} & g^n \\ g^5 & g^7 & \cdots & g^n & g^{n+2} & g^{n+4} & \cdots & g^{2n-1} & [g] \\ g^{n+6} & g^{n+8} & \cdots & g & g^3 & g^5 & \cdots & g^n & [g^{n+2}] \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ [g^{n+1}] & g^{n+2} & g^{n+2} & \cdots & g^{2n-2} & g^{5n-5} & g^{5n-1} & \cdots & g^{7n-11} & g^{7n-7} \\ [g^{n+2}] & g^{n+2} & \cdots & g^{2n-2} & g^{5n-5} & g^{5n-1} & \cdots & g^{7n-11} & g^{7n-7} \\ [g^{n+2}] & g^{n+2} & \cdots & g^{2n-2} & g^{3n-2} & g^{3n+2} & \cdots & g^{2n-2} & g^{5n-5} \\ [g^{n+2}] & g^{n+2} & \cdots & g^{2n-2} & g^{3n-2} & g^{3n+2} & \cdots & g^{2n-2} & g^{2n-2} \\ [g^{n+2}] & g^{n+2} & \cdots & g^{2n-2} & g^{5n-2} & g^{5n-1} & \cdots & g^{7n-2} & g^{2n-2} \\ [g^{n+2}] & g^{n+2} & \cdots & g^{2n-2} & g^{3n-3} & g^{3n+1} & \cdots & g^{5n+3} & g^{2n-2} & g^{2n-3} \\ g^{n+2} & g^{n+11} & \cdots & g^{2n-7} & g^{2n-5} & g^{2n-3} & \cdots & g^{n-8} & g^{n-6} \\ [g^{n-2}] & g^n & \cdots & g^{2n-7} & g^{2n-5} & g^{2n-3} & \cdots & g^{n-8} & g^{n-6} \\ [g^{n-2}] & g^n & g^{n+2} & \cdots & g^{2n-5} & g^{2n-3} & g^{2n-1} & \cdots & g^{n-6} & [g^{n-4}] \\ g & g^3 & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g & g^3 & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g & g^3 & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g^{n-3} & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g & g^3 & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g^{n-3} & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g^{n-3} & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g^{n-3} & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g^{n-3} & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g^{n-3} & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g^{n-3} & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g^{n-3} & \cdots & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g^{n-4} & g^{n-4} & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2n-5} & [g^{2n-3}] \\ g^{n-4} & g^{n-4} & g^{n-4} & g^{n-2} & g^n & \cdots & g^{2$$

That is $\mathcal{A} = [a_{ij}]_{(n-1)\times(n-1)}$, where a_{ij} is the summand of $\alpha\beta$ which is equal to the product of the *i*th summand of β with the *j*th summand of α . This means $\alpha\beta = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} a_{ij}$. If we take the first and the third rows of this array we will see that g^i occurs twice for each *i* except (*i* = 1, 3). By adding the terms of this two rows it remains only $g + g^3$ (observing that the coefficient of each g^i , i=1, 2, ...,m is in \mathbb{Z}_2). Again by adding the second and the fourth rows in this array, according to the same argument it remains only $g^{p+2}+g^{p+4}$. Proceeding in this manner we will get the (p-3)th and the (p-1)th rows, and adding their terms it remains only $g^{2p-3} + g^{2p-1}$. Thus we get

$$\alpha\beta = g + g^{n+2} + g^3 + g^{n+4} + \dots + g^{\frac{n-1}{2}} + g^{\frac{3n+1}{2}} + \dots + g^{n-2} + g^{2n-1} = \beta.$$

Hence α is S-idempotent. By Theorem 1.2, $(1+\alpha)$ is also S-idempotent. This complete the proof.

Lemma 1.4.

In $\mathbb{Z}_2 G$, where $G = \langle g | g^{2p} = 1 \rangle$, p is a Mersenne prime (i.e. $p = 2^k - 1$ for some prime k) $g^{2l} = g^{2^{k+1}l}$ and the elements of $S = \{ g^{2l}, g^{2^2l}, g^{2^3l}, \dots, g^{2^{k-1}l}, g^{2^kl} \}$ are distinct for each odd number l less than p. **Proof:** Since $2^{k+1}l - 2l = 2l(2^k - 1) =$ $2lp, 2^{k+1}l \equiv 2l \pmod{2p}$, which implies that $g^{2l} = g^{2^{k+1}l}$. Now suppose that $g^{2l} = g^{2^{l}l}$ (for some $1 < t \le k$). This means $2^t l \equiv 2l$ (mod2p), hence $(2^k - 1)|l(2^{t-1} - 1)$ yields either $(2^k - 1)|l$ contradicts the hypothesis that l < p, and if $(2^k - 1)|(2^{t-1} - 1)$, hence k < t - 1, contradiction with $1 < t \le k$.

Lemma 1.5.

If $p=2^k-1$ is a Mersenne prime, then $k \mid (2^k-2)$.

Proof: Since k is prime, according to Fermat's Little Theorem, $k \mid (2^k - 2)$.

Combining the last two lemmas we deduce that in the group ring \mathbb{Z}_2G , where *G* is a cyclic group generated by g of order 2*p*, *p* is a Mersenne prime (i. e. $p = 2^k - 1$ for some prime *k*), if $m = \frac{2^{k-2}}{k}$, then $\alpha = g^2 + g^4 + \dots + g^{p-1} + g^{p+1} + \dots + g^{2p-2}$, can be partitioned to sum of *m* elements say $\alpha_1, \alpha_2, \dots, \alpha_m$ each α_i $(1 \le i \le m)$ is of the form $\alpha_i = g^{2l} + g^{2^{2}l} + ... + g^{2^{k-1}l} + g^{2^{k}l},$ where *l* is an odd number.

Theorem 1.6.

Let $\mathbb{Z}_2 G$ be a group ring, where $G = \langle g | g^{2p} = 1 \rangle$ is a cyclic group of order 2p, p is a Mersenne prime. Then every element of the form $\alpha = g^{2l} + g^{2^2l} + \dots + g^{2^{k_l}}$, is an S-idempotent (*l* is an odd number).

Proof: Let $\alpha = g^{2l} + g^{2^{2}l} + \dots + g^{2^{k}l}$. By Lemma1.4, all elements in $S = \{g^{2l}, g^{2^{2}l}, \dots, g^{2^{k}l}\}$ are distinct, moreover $g^{2l} = g^{2^{k+1}l}$. Hence $\alpha^2 = \alpha$. Now, let $\beta = g^l + g^{t_2} + g^{t_3} + \dots + g^{t_k}$ and $x_i, i \ge 2$ be the smallest positive integer such that $x_i < 2p$. Thus $x_i \equiv 2^i l \pmod{2p}$, this means $x_i = 2^i l - 2pr$, for some $r \in \mathbb{Z}^+$. Define t_i by

$$t_i = \begin{cases} \frac{1}{2} x_i & \text{if } \frac{1}{2} x_i \text{ is odd } (2 \le i \le k) \\ \frac{1}{2} x_i + p & \text{if } \frac{1}{2} x_i \text{ is even } (2 \le i \le k). \end{cases}$$

If $\frac{1}{2} x_i \text{ is odd, then } (g^{t_i})^2 = (g^{2^{i-1}l - pr})^2$
 $= g^{2^{il}}$. Hence $\beta^2 = \alpha$. If $\frac{1}{2} x_i$ is even,
then $(g^{t_i})^2 = g^{2^{il}}$, and $\beta^2 = \alpha$ for each
 $(2 \le i \le k)$. We will show that $\alpha\beta = \beta$.
For this purpose as before we describe
the multiplication $\alpha\beta$ in the following
array say \mathcal{A} :

$$\mathcal{A} = \begin{bmatrix} \mathbf{g}^{3l} & \mathbf{g}^{5l} & \mathbf{g}^{9l} & \cdots & \mathbf{g}^{l(2^{k-2}+1)} & \mathbf{g}^{l(2^{k-1}+1)} & \mathbf{g}^{l(2^{k}+1)} \end{bmatrix} \\ \mathbf{g}^{t_{2}+2l} & \mathbf{g}^{t_{2}+4l} & \mathbf{g}^{t_{2}+8l} & \cdots & \mathbf{g}^{t_{2}+2^{k-2}l} & \mathbf{g}^{t_{2}+2^{k-1}l} & \mathbf{g}^{t_{2}+2^{k}l} \\ \mathbf{g}^{t_{3}+2l} & \mathbf{g}^{t_{3}+4l} & \mathbf{g}^{t_{3}+8l} & \cdots & \mathbf{g}^{t_{3}+2^{k-2}l} & \mathbf{g}^{t_{3}+2^{k-1}l} & \mathbf{g}^{t_{3}+2^{k}l} \\ \mathbf{g}^{t_{4}+2l} & \mathbf{g}^{t_{4}+4l} & \mathbf{g}^{t_{4}+8l} & \cdots & \mathbf{g}^{t_{4}+2^{k-2}l} & \mathbf{g}^{t_{4}+2^{k-1}l} & \mathbf{g}^{t_{4}+2^{k}l} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \mathbf{g}^{t_{k-1}+2l} & \mathbf{g}^{t_{k-1}+4l} & \mathbf{g}^{t_{k-1}+8l} & \cdots & \mathbf{g}^{t_{k-1}+2^{k-2}l} & \mathbf{g}^{t_{k-1}+2^{k-1}l} & \mathbf{g}^{t_{k-1}+2^{k}l} \\ \mathbf{g}^{t_{k}+2l} & \mathbf{g}^{t_{k}+4l} & \mathbf{g}^{t_{k}+8l} & \cdots & \mathbf{g}^{t_{k}+2^{k-2}l} & \mathbf{g}^{t_{k}+2^{k-1}l} & \mathbf{g}^{t_{k}+2^{k}l} \end{bmatrix}$$

where a_{ij} is the summand of $\alpha\beta$ which is equal to the product of the *i*th summand of β with *j*th summand of α . This means $\alpha\beta = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij}$. We complete the proof by the following three steps.

Step 1: Considering the first and the *k*th column in this array we claim that

 $a_{1j} = a_{(j+1)k}$...(1), for each $(1 \le j \le k-1)$, equivalently $g^{(2^{j+1})l} = g^{t_{j+1}+2^{k}l}$.

Let $\omega = t_{j+1} + 2^k l - (2^j + 1)l$. Now, $x_{j+1} \equiv 2^{j+1}l \pmod{2p}$, thus $x_{j+1} = 2^{j+1}l - 2pr$, for some $r \in \mathbb{Z}^+$. If $\frac{1}{2} x_{j+1}$ is odd, then $\frac{1}{2}x_{j+1} = 2^j l - pr$ is odd (this hold only if r is odd), hence $t_{j+1} = 2^j l - pr$. So, $\omega = 2^j l - pr + 2^k l - 2^j l - l \equiv 0 \pmod{2p}$. Therefore $(2^j + 1)l \equiv t_{j+1} + 2^k l \pmod{2p}$. This yields (1). If $\frac{1}{2} x_{j+1}$ is even, then $\frac{1}{2} x_{j+1} = 2^j l - pr$ is even (this hold only if r is even), hence $t_{j+1} = 2^j l - pr + p$. So, $\omega = (1 - r) p + lp \equiv 0 \pmod{2p}$. This also yields (1). This implies that $a_{1j} + a_{(j+1)k} = 0 \pmod{2p}$, therefore by adding the terms of the first row and the *k*th column it remains only $a_{1k} = g^{l(2^{k}+1)}$.

Step 2: Consider the subarray $\mathcal{B} = (b_{ij})_{k-1 \times k-1}$ of $\mathcal{A} = (a_{ij})_{k \times k}$, where $b_{ij} = a_{(i+1)j}$ for each $(1 \le i, j \le k-1)$, by neglecting the first row and the *k*th column, we will show that

 $b_{ij} = b_{ji}$...(2), for all $(1 \le i, j \le k - 1)$ such that $(i \ne j)$, equivalently $g^{t_{(i+1)}+2^{j}l} = g^{t_{(j+1)}+2^{i}l}$. Let $\omega = t_{i+1} + 2^{j}l - t_{j+1} - 2^{i}l$. Now Now, $x_{i+1} = 2^{i+1}l - 2pr$ and $x_{j+1} = 2^{j+1}l - 2ps$, for some $r, s \in \mathbb{Z}^+$. Thus $\frac{1}{2} x_{i+1} = 2^i l - 2^i l$ pr and $\frac{1}{2} x_{j+1} = 2^{j}l - ps$. If $\frac{1}{2} x_{i+1}$ and $\frac{1}{2} x_{j+1}$ are even, hence $2^i l - pr$ and $2^{j}l - ps$ are even (this hold only if r and s are even), it follows $t_{i+1} = 2^i l - 1$ pr + p and $t_{j+1} = 2^{j}l - ps + p$. So, $\omega = (s - r)p \equiv 0 \pmod{2p}.$ Hence $t_{i+1} + 2^{j}l \equiv t_{j+1} + 2^{i}l \pmod{2p}.$ This yields (2). If $\frac{1}{2} x_{i+1}$ and $\frac{1}{2} x_{j+1}$ are odd, it is clearly $\omega = (s - r)p \equiv 0 \pmod{2p}$. Hence $t_{i+1} + 2^{j}l \equiv t_{j+1} + 2^{i}l \pmod{2p}$.

This also establishes (2). If $\frac{1}{2} x_{i+1}$ is odd and $\frac{1}{2} x_{j+1}$ is even, it is also clear that $\omega = (s - r - 1)p \equiv 0 \pmod{2p}$. Thus $t_{i+1} + 2^{j}l \equiv t_{j+1} + 2^{j}l \pmod{2p}$. This also yields (2). If $\frac{1}{2} x_{i+1}$ is even and $\frac{1}{2} x_{j+1}$ is odd, thus by using similar argument we get $t_{i+1} + 2^{j}l \equiv t_{j+1} + 2^{i}l \pmod{2p}$. This also yields (2). For all cases we get $b_{ij} + b_{ji} = 0$ ($1 \leq i, j \leq k - 1$).

Step 3: From Step 1 and Step 2 we get that $\alpha\beta = a_{1k} + \sum_{i=1}^{k-1} b_{ii}$ and it is not difficult to show that $\alpha\beta = \beta$ which means that α is an S-idempotent.

We call an S-idempotent of $\mathbb{Z}_2 G$ of the form $\alpha = g^{2l} + g^{2^{2}l} + \dots + g^{2^{k}l}$, where *l* is an odd number a basic Sidempotent.

Example 1.2.

Consider the group ring $\mathbb{Z}_2 G$ where $G = \langle g | g^{62} = 1 \rangle$ is a cyclic group of order 62 (i.e. p = 31 and k = 5). By Theorem 1.7, if l = 1, then $\alpha = g^2 + g^4 + g^8 + g^{16} + g^{32}$ and $\beta = g + g^{33} + g^{35} + g^{39} + g^{47}$. It is clear that $\beta^2 = \alpha$. Let us describe the multiplication $\alpha\beta$ by the following array say \mathcal{A} :

$$\mathcal{A} = \begin{bmatrix} g^3 & g^5 & g^9 & g^{17} & g^{33} \\ g^{35} & g^{37} & g^{41} & g^{49} & g^3 \\ g^{37} & g^{39} & g^{43} & g^{51} & g^5 \\ g^{41} & g^{43} & g^{47} & g^{55} & g^9 \\ g^{49} & g^{51} & g^{55} & g & g^{17} \end{bmatrix}.$$

Hence applying Theorem 1.6, we get $\alpha\beta = g + g^{33} + g^{35} + g^{39} + g^{47} = \beta$.

Theorem 1.7.

If α_1 and α_2 are two basic S-

idempotents in $\mathbb{Z}_2 G$, where G is a cyclic group of order 2p, p a Mersenne prime, then $\alpha_1 + \alpha_2$ is S-idempotent.

Proof: Let α_1, α_2 be two distinct basic S-idempotents in $\mathbb{Z}_2 G$, so there exist β_1 and β_2 such that $\beta_1^2 = \alpha_1, \alpha_1 \beta_1 = \beta_1, \beta_2^2 = \alpha_2$ and $\alpha_2 \beta_2 = \beta_2$. Now, $(\beta_1 + \beta_2)^2 = \beta_1^2 + \beta_2^2 = \alpha_1 + \alpha_2$, and $(\alpha_1 + \alpha_2)(\beta_1 + \beta_2) = \alpha_1 \beta_1 + \alpha_1 \beta_2 + \alpha_2 \beta_1 + \alpha_2 \beta_2 = \beta_1 + \beta_2 + \alpha_1 \beta_2 + \alpha_2 \beta_1$. We show that $\alpha_1 \beta_2 + \alpha_2 \beta_1 = 0$. By describing the multiplications $\alpha_1 \beta_2$ and $\alpha_2 \beta_1$ by the two arrays \mathcal{A} and \mathcal{B} respectively and using similar argument of Theorem 1.6, we get $\mathcal{A} + \mathcal{B} = 0$ that is $\alpha_1 \beta_2 + \alpha_2 \beta_1 = 0$. Therefore $\alpha_1 + \alpha_2$ is an S-idempotent.

Theorem 1.8.

If $\alpha_1, \alpha_2, ..., \alpha_n$ are *n* basic S-idempotents in \mathbb{Z}_2G where *G* is a cyclic group of order 2*p*, *p* is a Mersenne prime, then $\alpha_1 + \alpha_2 + \cdots + \alpha_n$ is S-idempotent.

Proof: Follows from Theorem 1.7.

By combining all previous results concerning the group ring \mathbb{Z}_2G , where *G* is a cyclic group of order 2p, *p* is a Mersenne prime we get the following result

Theorem 1.9.

Consider the group ring $\mathbb{Z}_2 G$ where *G* is a cyclic group of order 2*p*, *p* is a Mersenne prime. Then

1)Every non trivial idempotent is S-idempotent

2) The number of non trivial S-idempotents is $2(2^m - 1)$, where $m = \frac{p-1}{k}$.

Proof: 1) Follows from Theorems 1.6, 1.7, 1.8 and Theorem 1.2.

2) From Theorems 1.6, 1.7, and 1.8, by using the concepts of probability theory we conclude that the number of S-idempotent in \mathbb{Z}_2G is

$$\lambda = 2\left(\binom{m}{1} + \binom{m}{2} + \dots + \binom{m}{m}\right) = 2(2^m - 1), \text{ where } m = \frac{p-1}{k}.$$

In this section, we study the group ring $\mathcal{K}G$ where \mathcal{K} is an algebraically closed field of characteristic 0 and G is a finite cyclic group of order n. We get that every nontrivial idempotent element in this group ring $\mathcal{K}G$ is an S-idempotent element.

Theorem 2.1.

Let \mathcal{K} be algebraically closed field of characteristic 0 and *G* is a finite cyclic group of order *n*. Then every nontrivial idempotent element in $\mathcal{K}G$ is an Sidempotent.

Proof: By [5], $\mathcal{K}G$ has $2^n - 2$ nontrivial

idempotent elements, let $\alpha = \sum_{i=0}^{n-1} r_i g^i \in \mathcal{K}G$ be an idempotent element.

Put
$$\beta = \sum_{i=0}^{n-1} (-r_i)g^i \in \mathcal{R}G.$$
 Hence
 $\beta^2 = (\sum_{i=0}^{n-1} (-r)_i g^i)^2 = ((-1) \sum_{i=0}^{n-1} r_i g^i)^2$
 $= \sum_{i=0}^{n-1} r_i g^i = \alpha$
Now, $\alpha\beta = \sum_{i=0}^{n-1} r_i g^i \sum_{i=0}^{n-1} (-r_i)g^i$
 $= (-1)(\sum_{i=0}^{n-1} r_i g^i)^2 = \sum_{i=0}^{n-1} (-r_i)g^i = \beta.$

Therefore every nontrivial idempotent in $\mathcal{K}G$ is an S-idempotent.

Recall that β called Smarandache Co-idempotent of α [1]. The following example shows that the Smarandache co-idempotent need not be unique in general.

Example 2.1.

Let *G* be a cyclic group of order 3, and \mathcal{K} is an algebraically closed field of characteristic 0, and let $\alpha = \sum_{i=0}^{n-1} r_i g^i \in \mathcal{K}G$. If α is an idempotent element, then by [5], the values of r_0 , r_1 and r_2 are followings

r_{0}	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1
r_1	0	$\frac{1}{3}$	$\frac{-1+\sqrt{3} i}{6}$	$\frac{-1+\sqrt{3} i}{6}$	$\frac{1}{3}$	$\frac{-1+\sqrt{3} i}{6}$	$\frac{-1+\sqrt{3} i}{6}$	0
r_2	0	$\frac{1}{3}$	$\frac{-1+\sqrt{3} i}{6}$	$\frac{-1+\sqrt{3} i}{6}$	$\frac{1}{3}$	$\frac{-1+\sqrt{3} i}{6}$	$\frac{-1+\sqrt{3} i}{6}$	0

Consider the S-idempotents,

 $\begin{aligned} \alpha_1 &= \frac{2}{3} - \frac{1}{3}g - \frac{1}{3}g^2, \qquad \alpha_2 = \frac{2}{3} + \frac{1 + \sqrt{3}i}{6}g \\ &+ \frac{1 - \sqrt{3}i}{6}g^2 \text{ and } \alpha_3 = \frac{2}{3} + \frac{1 - \sqrt{3}i}{6}g + \frac{1 + \sqrt{3}i}{6}g^2. \end{aligned}$ For each $(1 \le i \le 3), \alpha_i$ has three Co-idempotents we denote them by β_{ij} $(1 \le j \le 3)$. They are $\beta_{11} = \frac{-2}{3} + \frac{1}{3}g + \frac{1}{3}g^2, \qquad \beta_{12} = \frac{\sqrt{3}i}{3}g - \frac{\sqrt{3}i}{3}g^2, \qquad \beta_{13} = \frac{-\sqrt{3}i}{3} + \frac{\sqrt{3}i}{3}g, \qquad \beta_{21} = \frac{-2}{3} - \frac{1 - \sqrt{3}i}{6}g + \frac{-1 + \sqrt{3}i}{6}g^2, \end{aligned}$

$$\beta_{22} = \frac{-3+\sqrt{3} i}{6}g^{+} \frac{-3-\sqrt{3} i}{6}g^{2}, \ \beta_{23} = \frac{3-\sqrt{3} i}{6}g \\ + \frac{1+\sqrt{3} i}{6}g^{2}, \ \beta_{31} = \frac{-2}{3} - \frac{1-\sqrt{3} i}{6}g - \frac{1+\sqrt{3} i}{6}g^{2}, \\ \beta_{32} = \frac{-3-\sqrt{3} i}{6}g + \frac{3+\sqrt{3} i}{6}g^{2}, \ \beta_{33} = \frac{3+\sqrt{3} i}{6}g + \frac{-3-\sqrt{3} i}{6}g^{2}, \ \text{respectively. We see that} \\ \frac{-3-\sqrt{3} i}{6}g^{2}, \ \text{respectively. We see that} \\ \alpha_{1}\beta_{1j} = \beta_{1j}, \ \alpha_{2}\beta_{2j} = \beta_{2j} \text{ and } \alpha_{3}\beta_{3j} = \beta_{3j}, \\ \beta_{1j}^{2} = \alpha_{1}, \ \beta_{2j}^{2} = \alpha_{2} \text{ and } \beta_{3j}^{2} = \alpha_{3}, \text{ for each} \ (1 \le i \le 3).$$

Theorem 2.2.

Let \mathcal{K} b an algebraically closed field of characteristic 0 and $G = \mathbb{Z}_m \times \mathbb{Z}_n$. Then every nontrivial idempotent element in $\mathcal{K}G$ is an S-idempotent.

Proof: If m, n are relatively prime, then the proof is given in Theorem 2.1, since $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$ is cyclic. If m and n are not relatively prime, for each $(k, j) \in G$ let $(k, j) = g_{kn+j}$ $(0 \le k \le m-1, 0 \le j \le n-1)$, and let

 $\alpha = \sum_{i=0}^{mn-1} r_i g_i \in \mathcal{K}G$ be an idempotent element [6].Take $\beta = \sum_{i=0}^{mn-1} (-r_i) g_i \in \mathcal{K}G$, then it is clear that

$$\beta^2 = \alpha$$
 and $\alpha\beta = \beta$.

Therefore every idempotent element in $\mathcal{K}G$ is an S-idempotent.

Finally we concern the group ring $\mathcal{R}G$ where \mathcal{R} is an integral domain and G is a finite group of order n. We give a condition under which $\mathcal{R}G$ contains S-idempotents.

Theorem 2.3.

Let \mathcal{R} be an integral domain, and let

G be a finite group of order n. If some prime divisor p of n is a unit in \mathcal{R} and

1)
$$p^3 = p^{-1}$$
 or

2) $p = p^{-1}$ or

$$p = 2.$$

Then the group ring $\mathcal{R}G$ has S-idempotent. **Proof:** 1) Since p is a prime dividing n,

and *p* is a unit in \mathcal{R} then by [7] $\alpha = p^{-1} \sum_{x \in H} x$ is a nontrivial idempotent where \mathcal{H} is a subgroup of *G* of order *p*. Let $\beta = p \sum_{x \in H} x$. Then

$$\begin{aligned} \alpha\beta &= p^{-1}p\sum_{x\in H}x\sum_{x\in H}x = p\sum_{x\in H}x = \beta, \\ \text{and} \qquad \beta^2 &= p^2(\sum_{x\in H}x)^2 = p^3\sum_{x\in H}x \\ &= p^{-1}\sum_{x\in H}x = \alpha. \end{aligned}$$

Hence α is a S-idempotent.

2) we have $\alpha = p^{-1} \sum_{x \in H} x$ is a nontrivial idempotent. Let $\beta = \sum_{x \in H} x$. Then

$$\begin{array}{l} \alpha\beta = p^{-1}\sum_{x\in H} x\sum_{x\in H} x=\sum_{x\in H} x=\beta, \\ \text{and} \qquad \beta^2 = (\sum_{x\in H} x)^2 = p\sum_{x\in H} x=p-1x\in Hx=\alpha. \end{array}$$

Therefore α is a S-idempotent.

3) Since p = 2 divides n, then |G| = 2k and $\alpha = 2^{-1}(1 + g^k)$. Let $\beta = (1 + g^k) - \alpha$. Then it is clear that $\beta^2 = \alpha$ and $\alpha\beta = \beta$. So α is an S-idempotent.

References

[1] W. B. Vasantha Kandasamy: Smarandache Rings, American Research Press, 2002.

[2] W. B. Vasantha Kandasamy: Smarandache special definite algebraic structures, American Research Press, **2009**.

[3] W. B. Vasantha Kandasamy and Moon K. chetry: Smarandache Idempotents in finite ring \mathbb{Z}_n and in Group Rings \mathbb{Z}_n G, Scientia Magna. 2005, 2(1), 179-187.

[4] K. H. Rosen: Elementary Number Theory and Its Applications, Addison- Welsey Welsey Longman, **2000**.

[5] W. S. Park: The Units and Idempotents in the Group Ring of a Finite Cyclic Group , Comm. Korean Math. Soc. **1997**, 4 (12), 855- 864.

[6] W. S. Park: The Units and Idempotents in the Group Ring $\mathcal{K}(\mathbb{Z}_m \times \mathbb{Z}_n)$, Comm. Korean Math. Soc. **2000**, 4 (15), 597-603.

[7] D. B. Coleman: Shorter Notes: Idempotents in Group Rings, Proceeding of the American Math. Soc. **1966**, 4 (17), 962.