Smarandache idempotents in certain types of group rings

Parween Ali Hummadi
College of Science Education
University of Salahaddin
Erbil - Kurdistan Region- Iraq

Shadan Abdulkadr Osman
College of Science
University of Salahaddin
Erbil- Kurdistan Region - Iraq

Abstract

: In this paper we study S-idempotents of the group ring $\mathbb{Z}_{2} G$ where G is a finite cyclic group of order n. We give a condition on n such that every nonzero idempotent element of the group ring $\mathbb{Z}_{2} G$ is Smarandache idempotent and we find Smarandache idempotents of the group ring $\mathcal{K} G$, where \mathcal{K} is an algebraically closed field of characteristic 0 and G is a finite cyclic group.

Keywords: Idempotent, S-idempotent, group ring, algebraically closed field.

Introduction:

Smarandache idempotent element in rings introduced by Vasantha Kandasamy [1]. A Smarandache idempotent (S-idempotent) of the ring \mathcal{R} is an element $0 \neq x \in \mathcal{R}$ such that

1) $x^{2}=x$
2) There exists $a \in \mathcal{R} \backslash\{0,1, x\}$
i) $a^{2}=x$ and
ii) $x a=a(a x=a)$ or $a x=x$ ($x a=x$).
She introduced many Smarandache concepts [2]. Vasantha Kandasamy and Moon K. Chetry discuss S-idempotents in some type of group rings [3],. A prime number p of the form $p=2^{k}-1$ where k is a prime number called Mersenne prime [4]. In section one of this paper we study S -idempotents of the group ring $\mathbb{Z}_{2} G$ where G is a finite cyclic group of order n. If $n=2 p, p$ is a Mersenne prime, we show that every nonzero idempotent element is S-
idempotent and we find the number of S-idempotent element. In section two we study S-idempotents of the group ring $\mathcal{K} G$ where \mathcal{K} is an algebraically closed field of characteristic 0 and G is a finite cyclic group, we show that every non trivial idempotent is S-idempotent.

1. S-idempotents of $\mathbb{Z}_{2} G$

In this section we study S idempotents in the group ring $\mathbb{Z}_{2} G$ where G is a finite cyclic group of order n, specially where $\mathrm{n}=2 \mathrm{p}, \mathrm{p}$ is a Mersenne prime (i.e. $p=2^{k}-1$ for some prime k).

Theorem 1.1.

The group ring $\mathbb{Z}_{2} G$ where $\mathrm{G}=\left\langle\mathrm{g} \mid \mathrm{g}^{\mathrm{m}}=1\right\rangle$ is a cyclic group of an odd order $m>1$, has at least two non trivial idempotent elements, moreover no non trivial idempotent element is S idempotent.
Proof: Consider the element

$$
\alpha=\mathrm{g}+\mathrm{g}^{2}+\mathrm{g}^{3}+\ldots+\mathrm{g}^{\frac{m-1}{2}}+\mathrm{g}^{\frac{m-1}{2}+1}+\ldots
$$

$+\mathrm{g}^{m-1}$, of $\mathbb{Z}_{2} G$. Since the coefficient of each $\mathrm{g}^{\mathrm{i}}, \quad i=1, \ldots, m$ is in \mathbb{Z}_{2}, $\alpha^{2}=\mathrm{g}^{2}+\mathrm{g}^{4}+\ldots+\mathrm{g}^{m-1}+\mathrm{g}+\mathrm{g}^{3}+\ldots+\mathrm{g}^{m-2}$. Hence $\alpha^{2}=\alpha$, that is α is an idempotent element, so $(1+\alpha)$ is also an idempotent element. It remains to show that no idempotent element of $\mathbb{Z}_{2} G$ is an S idempotent. Suppose
$\alpha=a_{1}+a_{2} \mathrm{~g}+a_{3} \mathrm{~g}^{2}+\ldots+a_{\frac{m-1}{2}+1} \mathrm{~g}^{\frac{m-1}{2}}+$
$\ldots+a_{m} \mathrm{~g}^{m-1}$, is a non trivial S-idempotent. Thus α is different from 0 and 1 , moreover there exists β in $\mathbb{Z}_{2} G \backslash\{0,1, \alpha\}$ such that $\beta^{2}=\alpha$, let $\beta=b_{1}+b_{2} g+b_{3} g^{2}+\ldots+$

$$
b_{\frac{m-1}{2}+1} \mathrm{~g}^{\frac{m-1}{2}}+\ldots+b_{m} \mathbf{g}^{m-1}
$$

where $b_{i} \in \mathbb{Z}_{2}$. But $\alpha^{2}=\alpha$, which means that

$$
a_{1}+a_{2} \mathrm{~g}^{2}+a_{3} \mathrm{~g}^{4}+\ldots+a_{\frac{m-1}{2}+1} \mathrm{~g}^{m-1}+
$$

$$
+\ldots+a_{m} \mathrm{~g}^{m-2}=b_{1}+b_{2} \mathrm{~g}^{2}+b_{3} \mathrm{~g}^{4}+\ldots+
$$ $b_{\frac{m-1}{2}+1} \mathrm{~g}^{m-1}+\ldots+b_{m} \mathrm{~g}^{m-2}$.

It follows that $a_{i}=b_{i}$ for each $(1 \leq i \leq m)$. Therefore $\alpha=\beta$, which is an obvious contradiction.
The group ring $\mathbb{Z}_{2} G$, where G is acyclic group of an odd order may contains more than two idempotent elements as it is shown by the following example.

Example 1.1.

Consider the group ring $\mathbb{Z}_{2} G$ where $G=\left\langle\mathrm{g} \mid \mathrm{g}^{7}=1\right\rangle$ is a cyclic group of order 7 . By Theorem 1.1, $\mathrm{g}+\mathrm{g}^{2}+\mathrm{g}^{3}+\mathrm{g}^{4}+\mathrm{g}^{5}+\mathrm{g}^{6}$ and $1+g+g^{2}+g^{3}+g^{4}+g^{5}+g^{6} \quad$ are
idempotent elements, In addition $\left(g+g^{2}+g^{4}\right)^{2}=g^{2}+g^{4}+g \quad$ and $\left(1+g+g^{2}+g^{4}\right)^{2}=1+g^{2}+g^{4}+g$, so $1+g+g^{2}+g^{4}$ and $g+g^{2}+g^{4}$ are idempotent elements. Therefore $\mathbb{Z}_{2} G$ has more than two idempotent elements.

The proof of the following result is not difficult.

Theorem 1.2.

If α is an S-idempotent of the group ring $\mathbb{Z}_{2} G$ where G is a cyclic group of order n, then $(1+\alpha)$ is an S-idempotent of $\mathbb{Z}_{2} G$.

Theorem 1.3.

The group ring $\mathbb{Z}_{2} G$, where $G=\left\langle\mathrm{g} \mid \mathrm{g}^{2 \mathrm{n}}=1\right\rangle$ is a cyclic group of order $2 n, n$ is an odd prime, has at least two Sidempotents.
Proof: Let $\alpha=\mathrm{g}^{2}+\mathrm{g}^{4}+\cdots+\mathrm{g}^{\mathrm{n}-1}+$ $\mathrm{g}^{\mathrm{n}+1}+\cdots+\mathrm{g}^{2 \mathrm{n}-2}$. Thus

$$
\alpha^{2}=\mathrm{g}^{4}+\mathrm{g}^{8}+\cdots+\mathrm{g}^{2 \mathrm{n}-2}+\mathrm{g}^{2}+\mathrm{g}^{6}+
$$ $\cdots+\mathrm{g}^{2 \mathrm{n}-4}=\alpha$. Hence α is an idempotent element, so $(1+\alpha)$ is also an idempotent element. We will show that α is S idempotent, so let

$$
\begin{aligned}
& \beta=\mathrm{g}+\mathrm{g}^{\mathrm{n}+2}+\mathrm{g}^{3}+\mathrm{g}^{\mathrm{n}+4}+\cdots+ \\
& \mathrm{g}^{\frac{\mathrm{n}-1}{2}}+\mathrm{g}^{\frac{3 \mathrm{n}+1}{2}}+\cdots+\mathrm{g}^{\mathrm{n}-2}+\mathrm{g}^{2 \mathrm{n}-1} .
\end{aligned}
$$

It is clear that $\beta^{2}=\alpha$. We claim that $\alpha \beta=\beta$. For this purpose we describe the multiplication $\alpha \beta$ by the following array say \mathcal{A} :

	g^{3}	g^{5}	...	$\mathrm{g}^{\mathrm{n}-2}$	$\mathrm{g}^{\text {n }}$	$\mathrm{g}^{\mathrm{n}+2}$...	$\mathrm{g}^{2 \mathrm{n}-3}$	$\mathrm{g}^{2 \mathrm{n}-1}$
	$\mathrm{g}^{\mathrm{n}+4}$	$\mathrm{g}^{\mathrm{n}+6}$...	$\mathrm{g}^{2 \mathrm{n}-1}$	$\mathrm{g}^{2 \mathrm{n}+1}$	$\mathrm{g}^{2 \mathrm{n}+3}$...	$\mathrm{g}^{\mathrm{n}-2}$	g^{n}
	g^{5}	g^{7}	...	$\mathrm{g}^{\text {n }}$	$\mathrm{g}^{\mathrm{n}+2}$	$\mathrm{g}^{\mathrm{n}+4}$...	$\mathrm{g}^{2 \mathrm{n}-1}$	g
	$\mathrm{g}^{\mathrm{n}+6}$	$\mathrm{g}^{\mathrm{n}+8}$...	g	g^{3}	g^{5}	...	$\mathrm{g}^{\text {n }}$	$\mathrm{g}^{\mathrm{n}+2}$
	!	:	\because	:	.	:	\because	:	!
$\mathcal{A}=$	$\mathrm{g}^{\frac{3 n+1}{2}}$	$\mathrm{g}^{\frac{3 n+5}{2}}$...	$\mathrm{g}^{\frac{5 n-9}{2}}$	$g^{\frac{5 n-5}{2}}$	$g^{\frac{5 n-1}{2}}$...	$\mathrm{g}^{\frac{7 \mathrm{n}-11}{2}}$	$\mathrm{g}^{\frac{7 \mathrm{n}-7}{2}}$
	$\mathrm{g}^{\frac{n+3}{2}}$	$\mathrm{g}^{\frac{\mathrm{n}+7}{2}}$...	$\mathrm{g}^{\frac{3 n-7}{2}}$	$g^{\frac{3 n-3}{2}}$	$\mathrm{g}^{\frac{3 \mathrm{n}+1}{2}}$...	$g^{\frac{5 n-9}{2}}$	$\mathrm{g}^{\frac{5 n-5}{2}}$
	$\mathrm{g}^{\frac{3 n+5}{2}}$	$\mathrm{g}^{\frac{3 \mathrm{n}+9}{2}}$	\cdots	$\mathrm{g}^{\frac{5 \mathrm{n}-5}{2}}$	$\mathrm{g}^{\frac{5 \mathrm{n}-1}{2}}$	$\mathrm{g}^{\frac{5 \mathrm{n}+3}{2}}$...	$\mathrm{g}^{\frac{7 \mathrm{n}-7}{2}}$	$\mathrm{g}^{\frac{7 \mathrm{n}-3}{2}}$
	$\mathrm{g}^{\frac{\mathrm{n}+7}{2}}$	$\mathrm{g}^{\frac{\mathrm{n}+11}{2}}$...	$g^{\frac{3 n-3}{2}}$	$\mathrm{g}^{\frac{3 \mathrm{n}+1}{2}}$	$\mathrm{g}^{\frac{5 \mathrm{n}+3}{2}+1}$...	$g^{\frac{5 n-5}{2}}$	$\mathrm{g}^{\frac{5 n-1}{2}}$
	:	:	\because	!	:	:	\because	!	:
	$\mathrm{g}^{\mathrm{n}-2}$	$\mathrm{g}^{\text {n }}$...	$\mathrm{g}^{2 \mathrm{n}-7}$	$\mathrm{g}^{2 \mathrm{n}-5}$	$\mathrm{g}^{2 \mathrm{n}-3}$...	$\mathrm{g}^{\mathrm{n}-8}$	$\mathrm{g}^{\mathrm{n}-6}$
	$\mathrm{g}^{2 \mathrm{n}-1}$	g	...	$\mathrm{g}^{\mathrm{n}-6}$	$\mathrm{g}^{\mathrm{n}-4}$	$\mathrm{g}^{\mathrm{n}-2}$...	$\mathrm{g}^{2 \mathrm{n}-7}$	$\mathrm{g}^{2 \mathrm{n}-5}$
	g^{n}	$\mathrm{g}^{\mathrm{n}+2}$...	$\mathrm{g}^{2 \mathrm{n}-5}$	$\mathrm{g}^{2 \mathrm{n}-3}$	$\mathrm{g}^{2 \mathrm{n}-1}$...	$\mathrm{g}^{\mathrm{n}-6}$	$\mathrm{g}^{\mathrm{n}-4}$
	g	g^{3}	...	$\mathrm{g}^{\mathrm{n}-4}$	$\mathrm{g}^{\mathrm{n}-2}$	g^{n}	...	$\mathrm{g}^{2 \mathrm{n}-5}$	$\mathrm{g}^{2 \mathrm{n}-3}$
	g	g^{3}	...	$\mathrm{g}^{\mathrm{p}-4}$	$\mathrm{g}^{\mathrm{p}-2}$	$\mathrm{g}^{\text {p }}$...	$\mathrm{g}^{2 \mathrm{p}-5}$	$\mathrm{g}^{2 \mathrm{p}-3}$

That is $\mathcal{A}=\left[a_{i j}\right]_{(n-1) \times(n-1)}$, where $a_{i j}$ is the summand of $\alpha \beta$ which is equal to the product of the i th summand of β with the j th summand of α. This means $\alpha \beta=\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} a_{i j}$. If we take the first and the third rows of this array we will see that g^{i} occurs twice for each i except ($i=1,3$). By adding the terms of this two rows it remains only $g+g^{3}$ (observing that the coefficient of each $\mathrm{g}^{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{~m}$ is in \mathbb{Z}_{2}). Again by adding the second and
the fourth rows in this array, according to the same argument it remains only $\mathrm{g}^{\mathrm{p}+2}+\mathrm{g}^{\mathrm{p}+4}$. Proceeding in this manner we will get the $(p-3)$ th and the $(p-1)$ th rows, and adding their terms it remains only $g^{2 p-3}+g^{2 p-1}$. Thus we get

$$
\alpha \beta=\mathrm{g}+\mathrm{g}^{\mathrm{n}+2}+\mathrm{g}^{3}+\mathrm{g}^{\mathrm{n}+4}+\cdots+
$$

$\mathrm{g}^{\frac{\mathrm{n}-1}{2}}+\mathrm{g}^{\frac{3 \mathrm{n}+1}{2}}+\cdots+\mathrm{g}^{\mathrm{n}-2}+\mathrm{g}^{2 \mathrm{n}-1}=\beta$.
Hence α is S-idempotent. By Theorem 1.2, $(1+\alpha)$ is also S -idempotent. This complete the proof.

Lemma 1.4.

In $\mathbb{Z}_{2} G$, where $G=\left\langle\mathrm{g} \mid \mathrm{g}^{2 \mathrm{p}}=1\right\rangle, p$ is a Mersenne prime (i.e. $p=2^{k}-1$ for some prime k) $\mathrm{g}^{2 l}=\mathrm{g}^{2^{k+1} l}$ and the elements of $\mathcal{S}=\left\{\mathrm{g}^{2 l}, \mathrm{~g}^{2^{2} l}, \mathrm{~g}^{2^{3} l}, \ldots, \mathrm{~g}^{2^{k-1} l}, \mathrm{~g}^{2^{k} l}\right\}$ are distinct for each odd number l less than p. Proof: Since $2^{k+1} l-2 l=2 l\left(2^{k}-1\right)=$ $2 l p, 2^{k+1} l \equiv 2 l(\bmod 2 p)$, which implies that $\mathrm{g}^{2 l}=\mathrm{g}^{2^{k+1} l}$. Now suppose that $\mathrm{g}^{2 l}=\mathrm{g}^{2^{\mathrm{t}} l}$ (for some $1<t \leq k$). This means $2^{\mathrm{t}} l \equiv 2 l$ $(\bmod 2 p)$, hence $\left(2^{k}-1\right) \mid l\left(2^{t-1}-1\right)$ yields either $\left(2^{k}-1\right) \mid l$ or $\left(2^{k}-1\right) \mid\left(2^{t-1}-1\right)$. But $\left(2^{k}-1\right) \mid l$ contradicts the hypothesis that $l<p, \quad$ and \quad if $\left(2^{k}-1\right) \mid\left(2^{t-1}-1\right)$, hence $k<t-1$, contradiction with $1<t \leq \mathrm{k}$.

Lemma 1.5.

If $p=2^{k}-1$ is a Mersenne prime, then $k \mid\left(2^{k}-2\right)$.
Proof: Since k is prime, according to Fermat's Little Theorem, $k \mid\left(2^{k}-2\right)$.

Combining the last two lemmas we deduce that in the group ring $\mathbb{Z}_{2} G$, where G is a cyclic group generated by g of order $2 p, p$ is a Mersenne prime (i.e. $p=2^{k}-1$ for some prime k), if $m=\frac{2^{k}-2}{k}$, then $\alpha=\mathrm{g}^{2}+\mathrm{g}^{4}+\cdots+\mathrm{g}^{\mathrm{p}-1}+$ $\mathrm{g}^{\mathrm{p}+1}+\cdots+\mathrm{g}^{2 \mathrm{p}-2}$, can be partitioned to sum of m elements say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ each $\alpha_{\mathrm{i}} \quad(1 \leq i \leq m)$ is of the form

$$
\alpha_{\mathrm{i}}=\mathrm{g}^{2 l}+\mathrm{g}^{2^{2} l}+\ldots+\mathrm{g}^{2^{k-1} l}+\mathrm{g}^{2^{k^{l}}},
$$

where l is an odd number.

Theorem 1.6.

Let $\mathbb{Z}_{2} G$ be a group ring, where $G=\left\langle\mathrm{g} \mid \mathrm{g}^{2 \mathrm{p}}=1\right\rangle$ is a cyclic group of order $2 p, p$ is a Mersenne prime. Then every element of the form $\alpha=\mathrm{g}^{2 l}+\mathrm{g}^{2^{2} l}+\cdots+$ $\mathrm{g}^{2^{k} l}$, is an S -idempotent (l is an odd number).
Proof: Let $\quad \alpha=\mathrm{g}^{2 l}+\mathrm{g}^{2^{2} l}+\cdots+\mathrm{g}^{2^{k} l}$. By Lemma1.4, all elements in $\mathcal{S}=\left\{\mathrm{g}^{2 l}, \mathrm{~g}^{2^{2 l}}, \ldots, \mathrm{~g}^{2^{k} l}\right\}$ are distinct, moreover $\mathrm{g}^{2 l}=\mathrm{g}^{2^{k+1} l}$. Hence $\alpha^{2}=\alpha$. Now, let $\beta=\mathrm{g}^{l}+\mathrm{g}^{\mathrm{t}_{2}}+\mathrm{g}^{\mathrm{t}_{3}}+\cdots+\mathrm{g}^{\mathrm{t}_{k}}$ and $x_{i}, i \geq 2$ be the smallest positive integer such that $x_{i}<2 p$. Thus $x_{i} \equiv 2^{\mathrm{i}} l(\bmod 2 p)$, this means $x_{i}=2^{\mathrm{i}} l-2 p \mathrm{r}$, for some $r \in \mathbb{Z}^{+}$. Define t_{i} by
$t_{i}=\left\{\begin{array}{l}\frac{1}{2} x_{i} \text { if } \frac{1}{2} x_{i} \text { is odd }(2 \leq i \leq k) \\ \frac{1}{2} x_{i}+p \text { if } \frac{1}{2} x_{i} \text { is even }(2 \leq i \leq k) .\end{array}\right.$ If $\frac{1}{2} x_{i}$ is odd, then $\left(\mathrm{g}^{\mathrm{t}_{\mathrm{i}}}\right)^{2}=\left(\mathrm{g}^{\mathrm{z}^{\mathrm{i}-1} l-\mathrm{pr}}\right)^{2}$ $=\mathrm{g}^{2^{\mathrm{i}} l}$. Hence $\beta^{2}=\alpha$. If $\frac{1}{2} x_{i}$ is even, then $\quad\left(\mathrm{g}^{\mathrm{t}_{\mathrm{i}}}\right)^{2}=\mathrm{g}^{2^{\mathrm{i}} l}$, and $\beta^{2}=\alpha$ for each $(2 \leq i \leq k)$. We will show that $\alpha \beta=\beta$. For this purpose as before we describe the multiplication $\alpha \beta$ in the following array say \mathcal{A} :

$$
\mathcal{A}=\left[\begin{array}{ccccccc}
\mathrm{g}^{3 l} & \mathrm{~g}^{5 l} & \mathrm{~g}^{9 l} & \cdots & \mathrm{~g}^{l\left(2^{\mathrm{k}-2}+1\right)} & \mathrm{g}^{l\left(2^{\mathrm{k}-1}+1\right)} & \boxed{\mathrm{g}^{\left(2^{\mathrm{k}}+1\right)}} \\
\mathrm{g}^{\mathrm{t}_{2}+2 l} & \mathrm{~g}^{\mathrm{t}_{2}+4 l} & \mathrm{~g}^{\mathrm{t}_{2}+8 l} & \cdots & \mathrm{~g}^{\mathrm{t}_{2}+2^{k-2} l} & \mathrm{~g}^{\mathrm{t}_{2}+2^{k-1} l} & \mathrm{~g}^{\mathrm{t}_{2}+2^{k_{l}}} \\
\mathrm{~g}^{\mathrm{t}_{3}+2 l} & \mathrm{~g}^{\mathrm{t}_{3}+4 l} & \mathrm{~g}^{\mathrm{t}_{3}+8 l} & \cdots & \mathrm{~g}^{\mathrm{t}_{3}+2^{k-2} l} & \mathrm{~g}^{\mathrm{t}_{3}+2^{k-1} l} & \mathrm{~g}^{\mathrm{t}_{3}+2^{k} l} \\
\mathrm{~g}^{\mathrm{t}_{4}+2 l} & \mathrm{~g}^{\mathrm{t}_{4}+4 l} & \mathrm{~g}^{\mathrm{t}_{4}+8 l} & \cdots & \mathrm{~g}^{\mathrm{t}_{4}+2^{k-2} l} & \mathrm{~g}^{\mathrm{t}_{4}+2^{k-1} l} & \mathrm{~g}^{\mathrm{t}_{4}+2^{k} l} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\mathrm{~g}^{\mathrm{t}_{k-1}+2 l} & \mathrm{~g}^{\mathrm{t}_{k-1}+4 l} & \mathrm{~g}^{\mathrm{t}_{k-1}+8 l} & \cdots & \mathrm{~g}^{\mathrm{t}_{k-1}+2^{k-2} l} & \mathrm{~g}^{\mathrm{t}_{k-1}+2^{k-1} l} & \mathrm{~g}^{\mathrm{t}_{k-1}+2^{k} l} \\
\mathrm{~g}^{\mathrm{t}_{k}+2 l} & \mathrm{~g}^{\mathrm{t}_{k}+4 l} & \mathrm{~g}^{\mathrm{t}_{k}+8 l} & \cdots & \mathrm{~g}^{\mathrm{t}_{k}+2^{k-2} l} & \mathrm{~g}^{\mathrm{t}_{k}+2^{k-1} l} & \mathrm{~g}^{\mathrm{t}_{k}+2^{k} l}
\end{array}\right]=\left[a_{i j}\right]_{k \times k},
$$

where $a_{i j}$ is the summand of $\alpha \beta$ which is equal to the product of the i th summand of β with j th summand of α. This means $\alpha \beta=\sum_{i=1}^{k} \sum_{j=1}^{k} a_{i j}$. We complete the proof by the following three steps.
Step 1: Considering the first and the k th column in this array we claim that

$$
\begin{equation*}
a_{1 j}=a_{(j+1) k} \tag{1}
\end{equation*}
$$

for each ($1 \leq \mathrm{j} \leq \mathrm{k}-1$), equivalently

$$
\mathbf{g}^{\left(2^{\mathrm{j}}+1\right) l}=\mathbf{g}^{\mathrm{t}_{\mathrm{j}++^{2}}+2^{\mathrm{k}^{\prime}}}
$$

Let $\quad \omega=t_{j+1}+2^{\mathrm{k}} l-\left(2^{\mathrm{j}}+1\right) l$. Now, $x_{j+1} \equiv 2^{j+1} l(\bmod 2 p)$, thus $x_{j+1}=2^{j+1} l-$ $2 p r$, for some $r \in \mathbb{Z}^{+}$. If $\frac{1}{2} x_{j+1}$ is odd, then $\frac{1}{2} x_{j+1}=2^{j} l-p r$ is odd (this hold only if r is odd), hence $t_{j+1}=2^{\mathrm{j}} l-p r$. So, $\quad \omega=2^{\mathrm{j}} l-p r+2^{\mathrm{k}} l-2^{\mathrm{j}} l-l \equiv$ $0(\bmod 2 p)$. Therefore $\left(2^{\mathrm{j}}+1\right) l \equiv \mathrm{t}_{\mathrm{j}+1}+$ $2^{\mathrm{k}} l(\bmod 2 \mathrm{p})$. This yields (1). If $\frac{1}{2} x_{j+1}$ is even, then $\frac{1}{2} x_{j+1}=2^{\mathrm{j}} l-p r$ is even (this hold only if r is even), hence $\mathrm{t}_{\mathrm{j}+1}=2^{\mathrm{j}} l-p r+p$. So, $\quad \omega=(1-\mathrm{r}) p+$ $l p \equiv 0(\bmod 2 p)$. Hence $\left(2^{j}+1\right) l \equiv t_{j+1}+$ $2^{\mathrm{k}} l(\bmod 2 \mathrm{p})$. This also yields (1). This implies that $a_{1 j}+a_{(j+1) k}=0(\bmod 2 p)$,
therefore by adding the terms of the first row and the k th column it remains only $a_{1 k}=\mathrm{g}^{l\left(2^{\mathrm{k}}+1\right)}$.
Step 2: Consider the subarray $\mathcal{B}=\left(b_{i j}\right)_{k-1 \times k-1}$ of $\mathcal{A}=\left(a_{i j}\right)_{k \times k}$, where $b_{i j}=a_{(i+1) j}$ for each $(1 \leq i, j \leq k-1)$, by neglecting the first row and the k th column, we will show that

$$
\begin{equation*}
b_{i j}=b_{j i} \tag{2}
\end{equation*}
$$

for all $(1 \leq i, j \leq k-1)$ such that ($i \neq j$), equivalently $\mathrm{g}^{\mathrm{t}_{(\mathrm{i}+1)}+2^{\mathrm{j}} l}=\mathrm{g}^{\mathrm{t}(\mathrm{j}+1)^{+2^{\mathrm{i}} l}}$. Let $\omega=t_{i+1}+2^{\mathrm{j}} l-t_{j+1}-2^{\mathrm{i}} l$. Now, $x_{i+1}=2^{i+1} l-2 p r$ and $x_{j+1}=2^{j+1} l-2 \mathrm{ps}$, for some $r, s \in \mathbb{Z}^{+}$. Thus $\frac{1}{2} x_{i+1}=2^{\mathrm{i}} l-$ $p r$ and $\frac{1}{2} x_{j+1}=2^{\mathrm{j}} l-p s$. If $\frac{1}{2} x_{i+1}$ and $\frac{1}{2} x_{j+1}$ are even, hence $2^{\mathrm{i}} l-p r$ and $2^{\mathrm{j}} l-p s$ are even (this hold only if r and s are even), it follows $t_{i+1}=2^{\mathrm{i}} l-$ $p r+p \quad$ and $t_{j+1}=2^{j} l-p s+p . \quad$ So, $\omega=(s-r) p \equiv 0(\bmod 2 p) . \quad$ Hence $t_{i+1}+2^{\mathrm{j}} l \equiv t_{j+1}+2^{\mathrm{i}} l(\bmod 2 \mathrm{p})$. This yields (2). If $\frac{1}{2} x_{i+1}$ and $\frac{1}{2} x_{j+1}$ are odd, it is clearly $\omega=(s-r) p \equiv 0(\bmod 2 p)$. Hence $t_{i+1}+2^{\mathrm{j}} l \equiv t_{j+1}+2^{\mathrm{i}} l(\bmod 2 p)$.

This also establishes (2). If $\frac{1}{2} x_{i+1}$ is odd and $\frac{1}{2} x_{j+1}$ is even, it is also clear that $\omega=(s-r-1) p \equiv 0(\bmod 2 p)$. Thus $t_{i+1}+2^{\mathrm{j}} l \equiv t_{j+1}+2^{\mathrm{i}} l(\bmod 2 \mathrm{p})$.This also yields (2). If $\frac{1}{2} x_{i+1}$ is even and $\frac{1}{2} x_{j+1}$ is odd, thus by using similar argument we get $t_{i+1}+2^{\mathrm{j}} l \equiv \mathrm{t}_{\mathrm{j}+1}+2^{\mathrm{i}} l(\bmod 2 p)$. This also yields (2). For all cases we get $b_{i j}+$ $b_{j i}=0(1 \leq i, j \leq k-1)$.
Step 3: From Step 1 and Step 2 we get that $\alpha \beta=a_{1 k}+\sum_{i=1}^{k-1} b_{i i}$ and it is not difficult to show that $\alpha \beta=\beta$ which means that α is an S -idempotent.

We call an S-idempotent of $\mathbb{Z}_{2} G$ of the form $\quad \alpha=\mathrm{g}^{2 l}+\mathrm{g}^{2^{2} l}+\cdots+\mathrm{g}^{2^{k} l}$, where l is an odd number a basic S idempotent.

Example 1.2.

Consider the group ring $\mathbb{Z}_{2} G$ where $G=\left\langle\mathrm{g} \mid \mathrm{g}^{62}=1\right\rangle$ is a cyclic group of order 62 (i.e. $p=31$ and $k=5$). By Theorem 1.7, if $l=1$, then $\alpha=\mathrm{g}^{2}+\mathrm{g}^{4}+\mathrm{g}^{8}+\mathrm{g}^{16}+\mathrm{g}^{32}$ and $\quad \beta=\mathrm{g}+\mathrm{g}^{33}+\mathrm{g}^{35}+\mathrm{g}^{39}+\mathrm{g}^{47}$. It is clear that $\beta^{2}=\alpha$. Let us describe the multiplication $\alpha \beta$ by the following array say \mathcal{A} :
$\mathcal{A}=\left[\begin{array}{lllll}\mathrm{g}^{3} & \mathrm{~g}^{5} & \mathrm{~g}^{9} & \mathrm{~g}^{17} & \mathrm{~g}^{33} \\ \mathrm{~g}^{35} & \mathrm{~g}^{37} & \mathrm{~g}^{41} & \mathrm{~g}^{49} & \mathrm{~g}^{3} \\ \mathrm{~g}^{37} & \mathrm{~g}^{39} & \mathrm{~g}^{43} & \mathrm{~g}^{51} & \mathrm{~g}^{5} \\ \mathrm{~g}^{41} & \mathrm{~g}^{43} & \mathrm{~g}^{47} & \mathrm{~g}^{55} & \mathrm{~g}^{9} \\ \mathrm{~g}^{49} & \mathrm{~g}^{51} & \mathrm{~g}^{55} & \mathrm{~g} & \mathrm{~g}^{17}\end{array}\right]$.
Hence applying Theorem 1.6, we get $\alpha \beta=\mathrm{g}+\mathrm{g}^{33}+\mathrm{g}^{35}+\mathrm{g}^{39}+\mathrm{g}^{47}=\beta$.

Theorem 1.7.

If α_{1} and α_{2} are two basic S -
idempotents in $\mathbb{Z}_{2} G$, where G is a cyclic group of order $2 p, p$ a Mersenne prime, then $\alpha_{1}+\alpha_{2}$ is S -idempotent.
Proof: Let α_{1}, α_{2} be two distinct basic S-idempotents in $\mathbb{Z}_{2} G$, so there exist β_{1} and β_{2} such that $\beta_{1}{ }^{2}=\alpha_{1}, \alpha_{1} \beta_{1}=\beta_{1}, \beta_{2}{ }^{2}=$ α_{2} and $\alpha_{2} \beta_{2}=\beta_{2}$.
Now, $\left(\beta_{1}+\beta_{2}\right)^{2}=\beta_{1}{ }^{2}+\beta_{2}{ }^{2}=\alpha_{1}+\alpha_{2}$, and $\left(\alpha_{1}+\alpha_{2}\right)\left(\beta_{1}+\beta_{2}\right)=\alpha_{1} \beta_{1}+\alpha_{1} \beta_{2}+$ $\alpha_{2} \beta_{1}+\alpha_{2} \beta_{2}=\beta_{1}+\beta_{2}+\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$.
We show that $\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}=0$. By describing the multiplications $\alpha_{1} \beta_{2}$ and $\alpha_{2} \beta_{1}$ by the two arrays \mathcal{A} and \mathcal{B} respectively and using similar argument of Theorem 1.6, we get $\mathcal{A}+\mathcal{B}=0$ that is $\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}=0$. Therefore $\alpha_{1}+\alpha_{2}$ is an S-idempotent.

Theorem 1.8.

If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are n basic S-idempotents in $\mathbb{Z}_{2} G$ where G is a cyclic group of order $2 p, p$ is a Mersenne prime, then $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{\mathrm{n}}$ is S-idempotent.
Proof: Follows from Theorem 1.7.
By combining all previous results concerning the group ring $\mathbb{Z}_{2} G$, where G is a cyclic group of order $2 p, p$ is a Mersenne prime we get the following result

Theorem 1.9.

Consider the group ring $\mathbb{Z}_{2} G$ where G is a cyclic group of order $2 p, p$ is a Mersenne prime. Then
1)Every non trivial idempotent is S idempotent
2) The number of non trivial S-idempotents is $2\left(2^{m}-1\right)$, where $m=\frac{p-1}{k}$.
Proof: 1) Follows from Theorems 1.6, 1.7, 1.8 and Theorem 1.2.
2) From Theorems 1.6, 1.7, and 1.8 , by using the concepts of probability theory we conclude that the number of S idempotent in $\mathbb{Z}_{2} G$ is
$\lambda=2\left(\binom{m}{1}+\binom{m}{2}+\cdots+\binom{m}{m}\right)=$ $2\left(2^{\mathrm{m}}-1\right)$, where $m=\frac{p-1}{k}$.

2. S-idempotents in the group ring of a finite cyclic group over a field of characteristic zero

In this section, we study the group ring $\mathcal{K} G$ where \mathcal{K} is an algebraically closed field of characteristic 0 and G is a finite cyclic group of order n. We get that every nontrivial idempotent element in this group ring $\mathcal{K} G$ is an S-idempotent element.

Theorem 2.1.

Let \mathcal{K} be algebraically closed field of characteristic 0 and G is a finite cyclic group of order n. Then every nontrivial idempotent element in $\mathcal{K} G$ is an Sidempotent.
Proof: By [5], $\mathcal{K} G$ has $2^{\text {n }}-2$ nontrivial
idempotent elements, let $\alpha=\sum_{i=0}^{n-1} r_{i} g^{i} \in$ $\mathcal{K} G$ be an idempotent element.
Put $\quad \beta=\sum_{\mathrm{i}=0}^{\mathrm{n}-1}\left(-\mathrm{r}_{\mathrm{i}}\right) \mathrm{g}^{\mathrm{i}} \in \mathcal{K} G$. Hence

$$
\begin{gathered}
\beta^{2}=\left(\sum_{\mathrm{i}=0}^{\mathrm{n}-1}(-\mathrm{r})_{\mathrm{i}} \mathrm{~g}^{\mathrm{i}}\right)^{2}=\left((-1) \sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{r}_{\mathrm{i}} \mathrm{~g}^{\mathrm{i}}\right)^{2} \\
=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{r}_{\mathrm{i}} \mathrm{~g}^{\mathrm{i}}=\alpha
\end{gathered} \quad \begin{gathered}
\text { Now, } \quad \alpha \beta=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{r}_{\mathrm{i}} \mathrm{~g}^{\mathrm{i}} \sum_{\mathrm{i}=0}^{\mathrm{n}=1}\left(-\mathrm{r}_{\mathrm{i}}\right) \mathrm{g}^{\mathrm{i}} \\
=(-1)\left(\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{r}_{\mathrm{i}} \mathrm{~g}^{\mathrm{i}}\right)^{2}=\sum_{\mathrm{i}=0}^{\mathrm{n}-1}\left(-\mathrm{r}_{\mathrm{i}}\right) \mathrm{g}^{\mathrm{i}}=\beta
\end{gathered}
$$

Therefore every nontrivial idempotent in $\mathcal{K} G$ is an S-idempotent.

Recall that β called Smarandache Co-idempotent of α [1]. The following example shows that the Smarandache coidempotent need not be unique in general.

Example 2.1.

Let G be a cyclic group of order 3, and \mathcal{K} is an algebraically closed field of characteristic 0 , and let $\alpha=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{r}_{\mathrm{i}} \mathrm{g}^{\mathrm{i}} \in$ $\mathcal{K} G$. If α is an idempotent element, then by [5], the values of r_{0}, r_{1} and r_{2} are followings

$\boldsymbol{r}_{\mathbf{0}}$	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1
$\boldsymbol{r}_{\mathbf{1}}$	0	$\frac{1}{3}$	$\frac{-1+\sqrt{3} \mathrm{i}}{6}$	$\frac{-1+\sqrt{3} \mathrm{i}}{6}$	$\frac{1}{3}$	$\frac{-1+\sqrt{3} \mathrm{i}}{6}$	$\frac{-1+\sqrt{3} \mathrm{i}}{6}$	0
$\boldsymbol{r}_{\boldsymbol{2}}$	0	$\frac{1}{3}$	$\frac{-1+\sqrt{3} \mathrm{i}}{6}$	$\frac{-1+\sqrt{3} \mathrm{i}}{6}$	$\frac{1}{3}$	$\frac{-1+\sqrt{3} \mathrm{i}}{6}$	$\frac{-1+\sqrt{3} \mathrm{i}}{6}$	0

Consider the S-idempotents,
$\alpha_{1}=\frac{2}{3}-\frac{1}{3} \mathrm{~g}-\frac{1}{3} \mathrm{~g}^{2}, \quad \alpha_{2}=\frac{2}{3}+\frac{1+\sqrt{3} \mathrm{i}}{6} \mathrm{~g}$ $+\frac{1-\sqrt{3} \mathrm{i}}{6} \mathrm{~g}^{2}$ and $\alpha_{3}=\frac{2}{3}+\frac{1-\sqrt{3} \mathrm{i}}{6} \mathrm{~g}+\frac{1+\sqrt{3} \mathrm{i}}{6} \mathrm{~g}^{2}$. For each $(1 \leq i \leq 3), \alpha_{i}$ has three Co-idempotents we denote them by $\beta_{i j}$ $(1 \leq j \leq 3)$. They are $\beta_{11}=\frac{-2}{3}+\frac{1}{3} \mathrm{~g}+\frac{1}{3} \mathrm{~g}^{2}$, $\beta_{12}=\frac{\sqrt{3} i}{3} g-\frac{\sqrt{3} i}{3} g^{2}, \quad \beta_{13}=\frac{-\sqrt{3} i}{3}+\frac{\sqrt{3} i}{3} g$,
$\beta_{21}=\frac{-2}{3}-\frac{1-\sqrt{3} \mathrm{i}}{6} \mathrm{~g}+\frac{-1+\sqrt{3} \mathrm{i}}{6} \mathrm{~g}^{2}$,
$\beta_{22}=\frac{-3+\sqrt{3}}{6} \mathrm{i} \mathrm{g}+\frac{-3-\sqrt{3} \mathrm{i}}{6} \mathrm{~g}^{2}, \beta_{23}=\frac{3-\sqrt{3}}{6} \mathrm{i} \mathrm{g}$
$+\frac{1+\sqrt{3} \mathrm{i}}{6} \mathrm{~g}^{2}, \quad \beta_{31}=\frac{-2}{3}-\frac{1-\sqrt{3} \mathrm{i}}{6} \mathrm{~g}-\frac{1+\sqrt{3} \mathrm{i}}{6} \mathrm{~g}^{2}$, $\beta_{32}=\frac{-3-\sqrt{3} \mathrm{i}}{6} \mathrm{~g}+\frac{3+\sqrt{3} \mathrm{i}}{6} \mathrm{~g}^{2}, \beta_{33}=\frac{3+\sqrt{3} \mathrm{i}}{6} \mathrm{~g}+$ $\frac{-3-\sqrt{3} i}{6} \mathrm{~g}^{2}$, respectively. We see that $\alpha_{1} \beta_{1 j}=\beta_{1 j}, \quad \alpha_{2} \beta_{2 j}=\beta_{2 j}$ and $\alpha_{3} \beta_{3 j}=\beta_{3 j}$, $\beta_{1 j}{ }^{2}=\alpha_{1}, \quad \beta_{2 j}{ }^{2}=\alpha_{2}$ and $\beta_{3 j}{ }^{2}=\alpha_{3}$, for each $(1 \leq i \leq 3)$.

Theorem 2.2.

Let $\mathcal{K} \mathrm{b}$ an algebraically closed field of characteristic 0 and $G=\mathbb{Z}_{\mathrm{m}} \times \mathbb{Z}_{\mathrm{n}}$. Then every nontrivial idempotent element in $\mathcal{K} G$ is an S -idempotent.
Proof: If m, n are relatively prime, then the proof is given in Theorem 2.1, since $\mathbb{Z}_{\mathrm{m}} \times \mathbb{Z}_{\mathrm{n}} \cong \mathbb{Z}_{\mathrm{mn}}$ is cyclic. If m and n are not relatively prime, for each $(\mathrm{k}, \mathrm{j}) \in G \quad$ let $\quad(k, j)=\mathrm{g}_{\mathrm{kn}+\mathrm{j}}(0 \leq k \leq$ $m-1,0 \leq j \leq n-1$, and let
$\alpha=\sum_{\mathrm{i}=0}^{\mathrm{mn}-1} \mathrm{r}_{i} \mathrm{~g}_{i} \in \mathcal{K} G$ be an idempotent element [6].Take $\beta=\sum_{\mathrm{i}=0}^{\mathrm{mn}-1}\left(-\mathrm{r}_{i}\right) \mathrm{g}_{i} \in \mathcal{K} G$, then it is clear that

$$
\beta^{2}=\alpha \text { and } \alpha \beta=\beta
$$

Therefore every idempotent element in $\mathcal{K} G$ is an S-idempotent.

Finally we concern the group ring $\mathcal{R} G$ where \mathcal{R} is an integral domain and G is a finite group of order n. We give a condition under which $\mathcal{R} G$ contains S idempotents.

Theorem 2.3.

Let \mathcal{R} be an integral domain, and let
G be a finite group of order n. If some prime divisor p of n is a unit in \mathcal{R} and

1) $p^{3}=p^{-1}$ or
2) $p=p^{-1}$ or
3) $\quad p=2$.

Then the group ring $\mathcal{R} G$ has S-idempotent. Proof: 1) Since p is a prime dividing n, and p is a unit in \mathcal{R} then by [7] $\alpha=$ $p^{-1} \sum_{x \in H} x$ is a nontrivial idempotent where \mathcal{H} is a subgroup of G of order p. Let $\beta=\mathrm{p} \sum_{\mathrm{x} \in \mathrm{H}} \mathrm{x}$. Then $\alpha \beta=p^{-1} p \sum_{x \in H} x \sum_{x \in H} x=p \sum_{x \in H} x=\beta$, and $\quad \beta^{2}=p^{2}\left(\sum_{x \in H} x\right)^{2}=p^{3} \sum_{x \in H} x$

$$
=p^{-1} \sum_{x \in H} x=\alpha
$$

Hence α is a S-idempotent.
2) we have $\alpha=p^{-1} \sum_{x \in H} x$ is a nontrivial idempotent. Let $\beta=\sum_{x \in H} x$. Then
$\alpha \beta=p^{-1} \sum_{x \in H} x \sum_{x \in H} x=\sum_{x \in H} x=\beta$, and $\quad \beta^{2}=\left(\sum_{x \in H} x\right)^{2}=p \sum_{x \in H} x=$ $p-1 x \in H x=\alpha$.
Therefore α is a S-idempotent.
3) Since $p=2$ divides n, then $|G|=2 k$ and $\alpha=2^{-1}\left(1+\mathrm{g}^{\mathrm{k}}\right)$. Let $\beta=\left(1+\mathrm{g}^{\mathrm{k}}\right)-\alpha$. Then it is clear that $\beta^{2}=\alpha$ and $\alpha \beta=\beta$. So α is an S-idempotent.

References

[1] W. B. Vasantha Kandasamy: Smarandache Rings, American Research Press, 2002.
[2] W. B. Vasantha Kandasamy: Smarandache special definite algebraic structures, American Research Press, 2009.
[3] W. B. Vasantha Kandasamy and Moon K. chetry: Smarandache Idempotents in finite ring \mathbb{Z}_{n} and in Group Rings $\mathbb{Z}_{\mathrm{n}} \mathrm{G}$, Scientia Magna. 2005, 2(1), 179-187.
[4] K. H. Rosen: Elementary Number Theory and Its Applications, Addison- Welsey Welsey Longman, 2000.
[5] W. S. Park: The Units and Idempotents in the Group Ring of a Finite Cyclic Group , Comm. Korean Math. Soc. 1997, 4 (12), 855- 864.
[6] W. S. Park: The Units and Idempotents in the Group Ring $\mathcal{K}\left(\mathbb{Z}_{\mathrm{m}} \times \mathbb{Z}_{\mathrm{n}}\right)$, Comm. Korean Math. Soc. 2000, 4 (15), 597-603.
[7] D. B. Coleman: Shorter Notes: Idempotents in Group Rings, Proceeding of the American Math. Soc. 1966, 4 (17), 962.

