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𝐀𝐛𝐬𝐭𝐫𝐚𝐜𝐭: 

 In this paper we study S-idempotents of the group ring  ℤ2G  where    is       

a finite cyclic group of order  𝑛. We  give  a condition on    such  that  every nonzero 

idempotent element of the group ring  ℤ2G  is Smarandache  idempotent  and  we    

find Smarandache  idempotents  of   the  group  ring   𝒦G,   where  𝒦    is  an  

algebraically  closed  field  of characteristic  0  and  G  is a finite cyclic group.  
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𝐈𝐧𝐭𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧: 

        Smarandache idempotent element 

in rings introduced by Vasantha 

Kandasamy [1]. A Smarandache 

idempotent (S-idempotent) of the ring  ℛ   

is an element 0 ≠ 𝑥 ∈ ℛ  such that   
         1)  𝑥2 = 𝑥  

         2) There exists 𝑎 ∈ ℛ\ {0, 1, 𝑥}  
           i) 𝑎2 = 𝑥   and 
             ii) 𝑥𝑎 = 𝑎    𝑎𝑥 = 𝑎  or  𝑎𝑥 = 𝑥 

                 (𝑥𝑎 = 𝑥). 

She introduced many Smarandache 

concepts [2]. Vasantha Kandasamy and 

Moon K. Chetry discuss S-idempotents 

in some type of group rings [3],. A prime 

number  𝑝 of  the form  𝑝 = 2𝑘 −1  

where  𝑘  is a prime  number called  

Mersenne prime [4]. In section one  of 

this  paper  we  study  S-idempotents of  

the group ring    ℤ2G where  𝐺  is a finite  

cyclic group of order  𝑛. If 𝑛 = 2𝑝, 𝑝 is 

a Mersenne prime, we show that  every  

nonzero  idempotent element is  S- 

idempotent and we  find  the  number  of   

S-idempotent element. In section two we 

study  S-idempotents  of  the  group  ring 

𝒦G where 𝒦 is an  algebraically closed 

field of characteristic 0  and  G  is a finite 

cyclic group, we show that every non 

trivial idempotent is S-idempotent. 
 

1.  S-idempotents of  ℤ𝟐𝐆 

In  this  section we  study  S-

idempotents  in the  group  ring  ℤ2G    

where G is a finite cyclic group of 

order 𝑛, specially where n=2p, p is a 

Mersenne prime (i.e. 𝑝 = 2𝑘 −1 for 

some prime 𝑘). 
 

Theorem 1.1. 

 The  group  ring   ℤ2G   where   

G=  g | gm = 1  is a cyclic group  of an 

odd order 𝑚 >1, has at  least  two  non 

trivial idempotent elements, moreover   

no non trivial idempotent  element  is  S-

idempotent.                                                                                                     
 Proof:  Consider the element 
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𝛼 = g + g2  + g3  +…+ g
𝑚−1

2  + g
𝑚−1

2
+1 

+…           

+ g𝑚−1, of    ℤ2𝐺.    Since the coefficient of 

each    gi  ,   𝑖 = 1 , … , 𝑚    is  in   ℤ2  , 
𝛼2 =  g2  +g4+ …+g𝑚−1  +g +g3  +…+ g𝑚−2. 

Hence  𝛼2  =  𝛼, that is  𝛼  is an idempotent 

element,   so (1 +  𝛼)   is also an idempotent 

element. It remains to show that no 

idempotent  element of   ℤ2𝐺   is an  S-

idempotent. Suppose 

  𝛼 = 𝑎1+ 𝑎2g+ 𝑎3g2  +…+  𝑎𝑚−1
2

+1 
g
𝑚−1

2 + 

 …+ 𝑎𝑚  g
𝑚−1, is a non trivial S-idempotent.                                       

Thus 𝛼  is different from 0 and 1, moreover  

there exists  𝛽  in  ℤ2𝐺\{0,1, 𝛼} such that   

𝛽2  = 𝛼,  let      𝛽 =  𝑏1  +  𝑏2g +  𝑏3g2   + … + 

                          𝑏𝑚−1
2

+1 
g
𝑚−1

2  + … +  𝑏𝑚  g
𝑚−1  ,                                                                                                                                                                                                                               

where  𝑏𝑖 ∈ ℤ2. But  𝛼2 = 𝛼,  which means 

that   

            𝑎1+ 𝑎2g2  + 𝑎3g4  +…+ 𝑎𝑚−1
2

+1 
g𝑚−1  + 

+…+ 𝑎𝑚   g
𝑚−2  = 𝑏1+  𝑏2  g2  + 𝑏3  g4   + … + 

𝑏𝑚−1
2

+1 
g𝑚−1  +…+  𝑏𝑚  g

𝑚−2. 

It follows that  𝑎𝑖 = 𝑏𝑖   for each (1  i ≤ m). 

Therefore  𝛼 = 𝛽, which is an obvious 

contradiction.                                                                                           

The  group ring   ℤ2𝐺 , where  𝐺  is acyclic  

group  of  an odd order may  contains  more  

than  two  idempotent  elements  as it is 

shown by the    following  example. 

Example 1.1.  

         Consider the group ring   ℤ2𝐺 where 

𝐺   g| g7 = 1  is a cyclic group of order 7.  

By Theorem 1.1, g+g2 + g3 + g4 + g5 + g6 

and 1 + g + g2 + g3 + g4 + g5 +  g6      are    

idempotent    elements,         In       addition 

( g +  g2  + g4  )2 =   g2  +  g4 +  g     and 

(1 +  g + g2 + g4)2 = 1 + g2 + g4 +  g, so   

1 + g +  g2 +  g4   and  g +  g2 + g4    are  

idempotent  elements.  Therefore  ℤ2𝐺   has 

more than two idempotent elements. 

          The proof of the following result is 

not difficult.     

Theorem 1.2. 

           If 𝛼  is an S-idempotent of the group 

ring  ℤ2𝐺 where 𝐺  is a cyclic group of 

order  𝑛, then (1 + 𝛼) is an S-idempotent 

of   ℤ2𝐺.  

Theorem 1.3. 

           The group ring    ℤ2𝐺, where 

𝐺=  g | g2n = 1  is a cyclic group of order  

2𝑛, 𝑛  is an odd prime, has at least  two  S-

idempotents.                                                                             

Proof:  Let    𝛼 = g2 + g4 + ⋯+ gn−1 +
gn +1 + ⋯+ g2n−2.   Thus 

        𝛼2 = g4 + g8 + ⋯+ g2n−2 + g2 + g6 +
⋯+ g2n−4 = 𝛼. Hence  𝛼  is an idempotent 

element, so (1 + 𝛼) is  also an idempotent 

element .We  will show that  𝛼   is  S-

idempotent, so let                                                                

         𝛽 = g +  gn+2 + g3 +  gn +4 + ⋯+

g
n−1

2 + g
3n +1

2 + ⋯+ gn−2+ g2n−1 .                 

It is  clear  that   𝛽2 = 𝛼.   We  claim that 

𝛼𝛽 = 𝛽.   For  this  purpose  we  describe  

the  multiplication  𝛼𝛽  by  the  following  

array  say  𝒜: 
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𝒜 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 g3  g5 …   gn−2 gn gn +2 … g2n−3 g2n−1

gn +4   gn +6 …     g2n−1   g2n +1  g2n +3 …  gn−2 gn

g5  g7 …  gn  gn +2  gn +4 …   g2n−1  g

gn +6 gn +8 …   g  g3  g5 …  gn   gn +2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

g
3n +1

2   g
3n +5

2    …   g
5n−9

2     g
5n−5

2   g
5n−1

2 …   g
7n−11

2    g
7n−7

2

g
n +3

2 g
n +7

2 …    g
3n−7

2      g
3n−3

2   g
3n +1

2 …   g
5n−9

2   g
5n−5

2

g
3n +5

2 g
3n +9

2 …     g
5n−5

2      g
5n−1

2   g
5n +3

2 …   g
7n−7

2   g
7n−3

2

g
n +7

2 g
n +11

2 …      g
3n−3

2      g
3n +1

2      g
5n +3

2
+1 …    g

5n−5
2    g

5n−1
2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

gn−2 gn …     g2n−7  g2n−5  g2n−3 …      gn−8      gn−6

g2n−1 g …   gn−6 gn−4 gn−2 …    g2n−7       g2n−5

gn gn +2 …  g2n−5  g2n−3  g2n−1 …      gn−6      gn−4

g  g3 … gn−4 gn−2  gn …       g2n−5      g2n−3

g  g3  …   gp−4 gp−2 gp …  g2p−5  g2p−3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

That is  𝒜 = [𝑎𝑖𝑗 ] 𝑛−1 ×(𝑛−1),  where   𝑎𝑖𝑗   is  

the  summand of  𝛼𝛽  which  is equal to the 

product  of  the   𝑖th  summand of    𝛽   with  

the    𝑗th    summand  of    𝛼.  This  means  

 𝛼𝛽 =    𝑎𝑖𝑗
𝑛−1
𝑗=1

𝑛−1
𝑖=1 . If we take the first 

and  the third  rows of  this  array we will  

see that  gi   occurs twice for each  𝑖 except 

(𝑖 = 1, 3). By adding  the terms of  this  two 

rows  it  remains only   g + g3 (observing 

that the coefficient of each  gi , i=1, 2, …,m 

is in  ℤ2 ). Again by adding the  second  and 

 

the fourth rows in this array,  according to 

the same argument it remains only 

gp +2+gp +4. Proceeding in this  manner we 

will  get  the  (𝑝 − 3)th  and the (𝑝 −1)th 

rows, and adding  their  terms it  remains 

only g2p−3 + g2p−1. Thus we get                

          𝛼𝛽 = g + gn+2 + g3 + gn +4 + ⋯+

g
n−1

2 + g
3n +1

2 + ⋯+ gn−2+g2n−1 = 𝛽. 
Hence 𝛼  is S-idempotent. By Theorem 1.2, 

(1+ 𝛼)  is also S-idempotent. This complete 

the proof.   
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Lemma 1.4. 

         In ℤ2𝐺, where 𝐺 =  g | g2p = 1 , 𝑝  is 

a Mersenne prime (i.e. 𝑝 = 2𝑘 −1 for some 

prime 𝑘)  g2𝑙 = g2𝑘+1𝑙   and  the  elements   

of   𝒮 = { g2𝑙 , g22𝑙 ,  g23𝑙 ,…  ,  g2𝑘−1𝑙 , g2𝑘𝑙}  are 

distinct for each odd number l  less than 𝑝.                                                                                                 

Proof: Since   2𝑘+1𝑙 − 2𝑙 = 2𝑙   2𝑘 − 1  =
2𝑙𝑝, 2𝑘+1𝑙 ≡ 2𝑙(mod2𝑝), which implies that 

g2𝑙 = g2𝑘+1𝑙 . Now suppose that g2𝑙 = g2t 𝑙         
(for some 1< 𝑡 ≤ 𝑘). This means 2t𝑙 ≡ 2𝑙              
(mod2𝑝), hence(2𝑘 − 1)|𝑙( 2𝑡−1 − 1)yields    

either ( 2𝑘 − 1)| 𝑙 or (2𝑘 − 1)|(2𝑡−1 − 1).  

But (2𝑘 − 1)|𝑙   contradicts the hypothesis 

that  𝑙 < 𝑝, and if   2𝑘 − 1 | (2𝑡−1 − 1), 

hence   𝑘 < 𝑡 − 1, contradiction with 

1< 𝑡 ≤ k.                                                                                                                           

Lemma 1.5.  

          If   𝑝= 2𝑘 −1  is a Mersenne  prime, 

then  𝑘 | (2𝑘 − 2). 
Proof: Since 𝑘 is prime, according to 

Fermat’s  Little Theorem, 𝑘 |  2𝑘 − 2 .                                                                                                                             

             Combining the  last  two lemmas 

we deduce that in the group ring  ℤ2𝐺, 

where 𝐺  is a cyclic group generated by      

g  of order  2𝑝, 𝑝  is a Mersenne prime 

(i. e.  𝑝 = 2𝑘 −1 for some prime 𝑘),  if    

𝑚 =
2𝑘−2

𝑘
,  then 𝛼 = g2 + g4 + ⋯+ gp−1 +

gp +1 + ⋯+ g2p−2, can be partitioned  to 

sum of  𝑚  elements  say   𝛼1 ,𝛼2  ,… ,  𝛼m     

each 𝛼i   (1 ≤  𝑖 ≤ 𝑚)  is of the form                 

          𝛼i = g2𝑙 + g22𝑙 +  …+  g2𝑘−1𝑙 +  g2𝑘 𝑙 ,   

where  l  is an odd number. 

Theorem 1.6.  

          Let ℤ2𝐺 be a group ring  where 

G =  g | g2p = 1  is a cyclic group of order 

2𝑝,  𝑝  is a Mersenne prime. Then every 

element of the form  𝛼 = g2𝑙 + g22𝑙 + ⋯+

g2𝑘 𝑙 , is an S-idempotent (l is an odd 

number).                                                                                             

Proof:  Let  𝛼 = g2𝑙 + g22𝑙 + ⋯  + g2𝑘 𝑙 .  
By Lemma1.4, all elements in                 

𝒮 = {g2𝑙 , g22𝑙 ,… , g2𝑘 𝑙} are distinct, moreover     

g2𝑙 = g2𝑘+1𝑙 . Hence 𝛼2  = 𝛼. Now, let                                                                                                                                                                                                                                                          

𝛽 = g𝑙 + gt2 + gt3 + ⋯+ gt𝑘  and 𝑥𝑖 , 𝑖 ≥ 2   

be  the smallest  positive integer such that 

𝑥𝑖 < 2𝑝. Thus 𝑥𝑖 ≡ 2i𝑙 (mod2𝑝), this means 

𝑥𝑖 = 2i𝑙 −2𝑝r, for some r  ∈ ℤ+. Define  𝑡𝑖   
by 

𝑡𝑖 =  

1

2
 𝑥𝑖     if  

1

2
 𝑥𝑖   is odd  2 ≤ 𝑖 ≤ 𝑘 

1

2
𝑥𝑖 + 𝑝  if  

1

2
 𝑥𝑖  is even  2 ≤ 𝑖 ≤ 𝑘 .

                         

If   
1

2
 𝑥𝑖   is odd,  then  (gti )2 =  g2i−1𝑙− pr  

2

 

= g2i 𝑙 . Hence 𝛽2 = 𝛼.  If    
1

2
 𝑥𝑖    is even, 

then      (gti )2  = g2i 𝑙 , and 𝛽2 = 𝛼   for each 

(2 ≤ 𝑖 ≤ 𝑘 ). We will show that   𝛼𝛽 = 𝛽.  

For  this purpose as before  we  describe  

the  multiplication  𝛼𝛽   in the  following  

array say  𝒜: 
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𝒜 = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 g3𝑙 g5𝑙 g9𝑙 ⋯ g𝑙(2k−2+1) g𝑙(2k−1+1) g𝑙 2k +1 

gt2+2𝑙 gt2+4𝑙 gt2+8𝑙 ⋯ gt2+2𝑘−2𝑙 gt2+2𝑘−1𝑙 gt2+2𝑘𝑙

gt3+2𝑙 gt3+4𝑙 gt3+8𝑙 ⋯ gt3+2𝑘−2𝑙 gt3+2𝑘−1𝑙 gt3+2𝑘𝑙

gt4+2𝑙 gt4+4𝑙 gt4+8𝑙 ⋯ gt4+2𝑘−2𝑙 gt4+2𝑘−1𝑙 gt4+2𝑘𝑙

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

gt𝑘−1+2𝑙 gt𝑘−1+4𝑙 gt𝑘−1+8𝑙 ⋯ gt𝑘−1+2𝑘−2𝑙 gt𝑘−1+2𝑘−1𝑙 gt𝑘−1+2𝑘 𝑙

gt𝑘+2𝑙 gt𝑘+4𝑙 gt𝑘+8𝑙 ⋯ gt𝑘+2𝑘−2 𝑙 gt𝑘+2𝑘−1𝑙 gt𝑘+2𝑘 𝑙
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= [𝑎𝑖𝑗 ]𝑘×𝑘  , 

where 𝑎𝑖𝑗   is the summand of  𝛼𝛽  which  is 

equal  to the product  of  the  𝑖th  summand 

of  𝛽  with  𝑗th  summand of  𝛼. This means 

𝛼𝛽 =   𝑎𝑖𝑗
𝑘
𝑗=1

𝑘
𝑖=1 .We complete the proof 

by the following three steps. 

Step 1: Considering the first and the  𝑘th 

column in this array we claim that                               

              𝑎1𝑗  =  𝑎 𝑗+1 𝑘                       ...(1),                                                                                       

for each   1 ≤  j ≤ k − 1 , equivalently       

               g(2j +1)𝑙 = gt j+1+2k 𝑙 . 

Let  𝜔 = 𝑡𝑗+1 + 2k 𝑙 −  2j + 1 𝑙. Now,  

𝑥𝑗+1 ≡ 2j+1𝑙 (mod 2𝑝), thus  𝑥𝑗+1 = 2j+1𝑙 −

2𝑝𝑟,    for some  r ∈ ℤ+.  If   
1

2
  𝑥𝑗+1  is odd, 

then 
1

2
𝑥𝑗+1 = 2j 𝑙 − 𝑝𝑟  is odd (this hold 

only if  r  is odd), hence   𝑡𝑗+1 = 2j 𝑙 − 𝑝𝑟.  

So, 𝜔 = 2j 𝑙 −  𝑝𝑟 +  2k 𝑙 − 2j 𝑙 – 𝑙 ≡
0  (mod 2𝑝). Therefore  (2j + 1)𝑙  ≡ tj+1 +

2k 𝑙   ( mod 2p ). This  yields (1). If   
1

2
  𝑥𝑗+1  

is  even,  then    
1

2
 𝑥𝑗+1 = 2j 𝑙 − 𝑝𝑟   is even 

(this  hold  only  if   r   is even),   hence  

tj+1 = 2j 𝑙 − 𝑝𝑟 + 𝑝. So,    𝜔 =  1 − r  𝑝 +

𝑙𝑝 ≡ 0 (mod 2𝑝). Hence (2j + 1)𝑙 ≡ 𝑡𝑗+1 +

2k 𝑙 (mod 2p). This  also yields (1). This  

implies  that  𝑎1𝑗  +  𝑎 𝑗+1 𝑘 = 0   mod 2p ), 

therefore  by  adding  the  terms of  the  

first  row and  the   𝑘th  column  it  remains  

only  𝑎1𝑘 = g𝑙 2k +1 . 

Step 2:  Consider             the          subarray             

   ℬ =  𝑏𝑖𝑗  𝑘−1×𝑘−1
 of 𝒜 =  𝑎𝑖𝑗  𝑘×𝑘

, where 

𝑏𝑖𝑗 = 𝑎 𝑖+1 𝑗   for each   1 ≤  𝑖, 𝑗 ≤  𝑘 − 1 ,  

by  neglecting  the  first  row and  the   𝑘th  

column, we will show that 

                 𝑏𝑖𝑗 =  𝑏𝑗𝑖                          …(2),                                                                                        

for all   1 ≤  i, j ≤ k − 1   such that  (i ≠ j),  

equivalently    gt(i+1)+2j 𝑙 = gt(j+1)+2i 𝑙 .   Let  

 𝜔 =  𝑡𝑖+1 + 2j𝑙 − 𝑡𝑗+1 −  2i 𝑙.    Now,     

𝑥𝑖+1 = 2i+1𝑙 − 2𝑝𝑟 and 𝑥𝑗+1 = 2j+1𝑙 − 2ps,  

for  some  𝑟 , 𝑠  ∈ ℤ+. Thus    
1

2
 𝑥𝑖+1 = 2i𝑙 −

𝑝𝑟   and   
1

2
 𝑥𝑗+1 = 2j 𝑙 − 𝑝𝑠. If    

1

2
 𝑥𝑖+1  and  

  
1

2
 𝑥𝑗+1  are even,  hence  2i𝑙 − 𝑝𝑟   and  

 2j 𝑙 − 𝑝𝑠  are even ( this hold only if  𝑟 

and 𝑠  are even), it follows 𝑡𝑖+1 = 2i𝑙 −

𝑝𝑟 + 𝑝  and  𝑡𝑗+1 = 2j 𝑙 – 𝑝𝑠 + 𝑝. So,  

𝜔 =  𝑠 − 𝑟 𝑝 ≡ 0 (mod 2𝑝).  Hence   

𝑡𝑖+1 + 2j 𝑙 ≡ 𝑡𝑗+1 + 2i 𝑙 mod 2p).  This 

yields (2).  If   
1

2
 𝑥𝑖+1  and    

1

2
 𝑥𝑗+1  are odd, 

it is clearly   𝜔 =  𝑠 − 𝑟 𝑝 ≡ 0  (mod 2𝑝). 

Hence 𝑡𝑖+1 + 2j 𝑙 ≡ 𝑡𝑗+1 + 2i𝑙 mod 2𝑝). 
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 This also establishes (2). If  
1

2
 𝑥𝑖+1  is odd 

and 
1

2
 𝑥𝑗+1is even, it is also clear                                                                                                                          

that 𝜔= 𝑠 − 𝑟 − 1 𝑝 ≡ 0 (mod 2p). Thus 

𝑡𝑖+1 + 2j 𝑙 ≡ 𝑡𝑗+1 + 2i 𝑙 mod 2p).This also 

yields (2). If  
1

2
 𝑥𝑖+1  is even and  

1

2
 𝑥𝑗+1  is 

odd, thus by using similar argument we                                                                                                                                        

get  𝑡𝑖+1 + 2j 𝑙 ≡ tj+1 + 2i 𝑙  (mod 2𝑝). This 

also yields (2).    For all cases we get  𝑏𝑖𝑗 +

𝑏𝑗𝑖 = 0  1 ≤  𝑖, 𝑗 ≤  𝑘 − 1 .                                                                                                   

Step 3:  From Step 1 and Step 2 we get  

that   𝛼𝛽 = 𝑎1𝑘 +  𝑏𝑖𝑖   
𝑘−1
𝑖=1  and it is not 

difficult to show that 𝛼𝛽 = 𝛽  which means 

that 𝛼  is an S-idempotent.  

           We call an  S-idempotent of    ℤ2𝐺   

of the form   𝛼 = g2𝑙 + g22𝑙 + ⋯+ g2𝑘𝑙  , 
where  𝑙   is an odd number a basic  S-

idempotent.   
[                                                                                                                                                                                                                        
Example 1.2. 

          Consider the group ring ℤ2𝐺   where  

𝐺 =  g | g62 = 1   is a cyclic group of order 

62 (i.e. 𝑝 =31 and 𝑘 = 5). By Theorem 1.7,  

if 𝑙 = 1, then 𝛼 = g2 + g4 + g8 + g16 + g32    

and   𝛽 = g + g33 + g35 + g39 +  g47 . It is 

clear that  𝛽2 = 𝛼 . Let us describe the 

multiplication 𝛼𝛽  by the following array 

say  𝒜:  

𝒜 =

 
 
 
 
 
 
 
 
 

g3 g5 g9 g17 g33

g35 g37 g41 g49 g3

g37 g39 g43 g51 g5

g41 g43 g47 g55 g9

g49 g51 g55 g g17 
 
 
 
 
 
 
 
 

. 

 Hence applying Theorem 1.6,  we get  

𝛼𝛽 = g + g33 + g35 + g39 + g47 = 𝛽.                                                                             

Theorem 1.7.  

           If    𝛼1   and    𝛼2    are  two  basic  S- 

 

 

idempotents in   ℤ2𝐺,  where  𝐺   is  a cyclic 

group of order 2𝑝,  𝑝  a Mersenne  prime,  

then  𝛼1  +  𝛼2    is  S-idempotent.  

Proof: Let  𝛼1 ,𝛼2    be  two  distinct basic  
S-idempotents in ℤ2𝐺, so there exist 𝛽1  and  

𝛽2 such that  𝛽1
2 = 𝛼1 ,  𝛼1 𝛽1 = 𝛽1  ,𝛽2

2 =
𝛼2   and 𝛼2 𝛽2 = 𝛽2 . 
Now,     𝛽1 + 𝛽2 

2 = 𝛽1
2 + 𝛽2

2 = 𝛼1 + 𝛼2 , 

and (𝛼1 + 𝛼2 ) 𝛽1 + 𝛽2 = 𝛼1 𝛽1 + 𝛼1 𝛽2 +
𝛼2 𝛽1 + 𝛼2 𝛽2 = 𝛽1 + 𝛽2 + 𝛼1 𝛽2 + 𝛼2 𝛽1.   

We  show that   𝛼1 𝛽2  +  𝛼2 𝛽1 = 0.   By 

describing the multiplications  𝛼1 𝛽2   and  

 𝛼2 𝛽1   by the two arrays  𝒜  and    

respectively and using  similar  argument  

of  Theorem 1.6,   we  get   𝒜 + ℬ =  0  

that is  𝛼1 𝛽2 + 𝛼2 𝛽1 = 0 . Therefore  

𝛼1 +  𝛼2  is an S-idempotent.         

Theorem 1.8. 

           If    𝛼1 ,  𝛼2  , …  ,  𝛼n      are   𝑛   basic  

S-idempotents  in   ℤ2𝐺  where 𝐺  is  a 

cyclic  group  of  order   2𝑝,  𝑝  is  a  

Mersenne  prime,   then  𝛼1 + 𝛼2 + ⋯+ 𝛼n     

is  S-idempotent.  

Proof: Follows from Theorem 1.7.            

        By combining all previous results 

concerning the group ring  ℤ2𝐺, where  𝐺  

is a cyclic group of order  2𝑝, 𝑝  is a 

Mersenne prime we get the following result 

Theorem 1.9.      

        Consider the group ring  ℤ2𝐺  where  

𝐺 is a cyclic group of  order  2𝑝, 𝑝   is a  

Mersenne  prime. Then 

1)Every non trivial idempotent  is  S-

idempotent .                                                                                                                    

2) The number of non trivial S-idempotents 

is 2(2m − 1), where  𝑚 =
𝑝−1

𝑘
.  

Proof: 1)  Follows from Theorems 1.6, 1.7, 

1.8 and  Theorem  1.2. 

2)  From Theorems 1.6, 1.7,  and  1.8,  by 

using the concepts of  probability  theory  

we  conclude  that the  number of  S-

idempotent  in   ℤ2G   is  
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          𝜆 = 2   m
1
 +  m

2
 + ⋯+  m

m
  =

2 2m − 1 ,  where   𝑚 =
𝑝−1

𝑘
.  

2.  S-idempotents in the group ring of 

a finite cyclic group over a field of 

characteristic zero 

             In this section,we  study  the  group  

ring    𝒦G   where   𝒦  is an algebraically 

closed field of characteristic 0 and 𝐺 is a 

finite cyclic group of order 𝑛. We get that 

every nontrivial idempotent  element in this  

group ring  𝒦G   is  an  S-idempotent  

element.     

Theorem 2.1. 

           Let  𝒦  be  algebraically closed field 

of  characteristic 0 and  𝐺  is a finite  cyclic  

group of  order   𝑛.   Then  every  nontrivial  

idempotent  element in   𝒦G    is  an  S-

idempotent.                                                                                                                     

Proof: By [5], 𝒦𝐺  has   2n − 2  nontrivial 

idempotent elements, let 𝛼 =   ri
n−1
i=0 gi ∈

𝒦𝐺  be an idempotent element. 

Put           𝛽 =   (−ri )gin−1
i=0   ∈ 𝒦𝐺.   Hence 

𝛽2 =   (−r)i g
in−1

i=0  2  =  (−1) ri  g
i  n−1

i=0  2  

                                        =   ri  g
in−1

i=0 = 𝛼  
Now,     𝛼𝛽 =   ri g

in−1
i=0     (−ri )gin−1

i=0   

 =  −1    ri g
in−1

i=0  2 =   (−ri )gin−1
i=0  = 𝛽. 

Therefore  every nontrivial  idempotent in   

𝒦𝐺  is an S-idempotent.    

            Recall  that  𝛽  called  Smarandache  

Co-idempotent of   𝛼   [1].  The  following               

example shows  that the Smarandache  co-

idempotent need not be unique in general. 

Example 2.1.   

           Let  𝐺 be a cyclic group of order 3,  

and  𝒦  is an algebraically closed field of 

characteristic 0, and let 𝛼 =   ri
n−1
i=0 gi ∈

𝒦𝐺. If  𝛼  is an idempotent element, then 

by  [5],  the values of   𝑟0 ,  𝑟1   and    𝑟2   are 

followings 

      

Consider  the  S-idempotents,  

 𝛼1 =
2

3
 −  

1

3
 g−  

1

3
 g2,   𝛼2 =

2

3
+

1+ 3  i

6
 g 

+
1− 3  i

6
g2and 𝛼3 =

2

3
+

1− 3  i

6
 g+

1+ 3  i

6
g2.  

For each ( 1 ≤ 𝑖 ≤ 3 ), 𝛼𝑖   has three       

Co-idempotents we denote them by  𝛽𝑖𝑗  

 1 ≤ 𝑗 ≤ 3 . They are 𝛽11 =
−2

3
 + 

1

3
 g+ 

1

3
 g2, 

 𝛽12 =
 3 i

3
g −

 3 i

3
 g2,    𝛽13 =

− 3 i

3
+ 

 3 i

3
g,     

𝛽21 =
−2

3
−

1− 3  i

6
 g + 

−1+ 3  i

6
g2,  

 

 

𝛽22 =
−3+ 3  i

6
g+ 

−3− 3  i

6
g2, 𝛽23 =

3− 3  i

6
g 

+ 
1+ 3  i

6
g2,  𝛽31 =

−2

3
−

1− 3  i

6
 g−

1+ 3  i

6
g2,  

𝛽32 =
−3− 3  i

6
 g+ 

3+ 3  i

6
g2,  𝛽33 =

3+ 3  i

6
 g+ 

 
−3− 3  i

6
g2 ,   respectively. We  see  that   

𝛼1𝛽1𝑗 = 𝛽1𝑗 , 𝛼2𝛽2𝑗 = 𝛽2𝑗   and  𝛼3𝛽3𝑗 = 𝛽3𝑗 ,  

𝛽1𝑗
2 = 𝛼1 ,  𝛽2𝑗

2 = 𝛼2  and   𝛽3𝑗
2 = 𝛼3, for 

each   (1 ≤ 𝑖 ≤ 3).   

 

 

  

 

𝒓𝟎 0 
1

3
 

1

3
 

1

3
 

1

3
 

1

3
 

1

3
 1 

𝒓𝟏 0 
1

3
 

−1 +  3  i 

6
 

−1 +  3  i 

6
 

1

3
 

−1 +  3  i 

6
 

−1 +  3  i 

6
 0 

𝒓𝟐 0 
1

3
 

−1 +  3  i 

6
 

−1 +  3  i 

6
 

1

3
 

−1 +  3  i 

6
 

−1 +  3  i 

6
 0 
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Theorem 2.2.  

         Let 𝒦 b an algebraically  closed  field  

of   characteristic  0    and  𝐺 =  ℤm ×  ℤn  . 
Then  every nontrivial  idempotent  element 

in  𝒦G  is an  S-idempotent.   

Proof:  If   𝑚, 𝑛  are  relatively  prime,  

then the  proof  is  given in  Theorem  2.1, 

since  ℤm × ℤn ≅ ℤmn   is cyclic.  If  𝑚  and  

𝑛   are not  relatively  prime,  for each   

 k , j ∈ 𝐺    let   (𝑘 , 𝑗) = gkn +j    0 ≤ 𝑘 ≤

𝑚−1 , 0≤𝑗≤𝑛−1,  and  let  

  𝛼 =  r𝑖
mn −1
i=0 g𝑖 ∈ 𝒦𝐺    be  an idempotent 

element [6].Take𝛽 =  (−r𝑖)
mn −1
i=0 g𝑖 ∈ 𝒦𝐺,  

then it is clear that 

              𝛽2 = 𝛼   and   𝛼𝛽 = 𝛽.                                                                                         
Therefore every idempotent element in 𝒦𝐺  

is an  S-idempotent. 

             Finally we concern the group ring  

ℛG  where    is  an integral  domain  and  

𝐺   is  a  finite  group  of  order  𝑛. We  give  

a condition  under which   ℛG  contains  S-

idempotents. 

Theorem 2.3.  

           Let  be an integral domain, and let   

 

 

 

 

 

𝐺  be  a finite  group  of order  𝑛.  If some 

prime divisor 𝑝  of  𝑛  is a unit in    and 

          1)        𝑝3 = 𝑝−1    or 
          2)         𝑝 = 𝑝−1     or 
         3)         𝑝 = 2.                                                                                                        

Then the group ring  ℛG  has S-idempotent. 

Proof: 1) Since 𝑝  is a prime dividing 𝑛,  

and  𝑝  is a unit in   then by [7]   𝛼 =
𝑝−1  𝑥𝑥∈𝐻   is a nontrivial idempotent 

where   is a  subgroup of  𝐺  of  order  𝑝. 

Let   𝛽 = p xx∈H . Then 
𝛼𝛽 =  𝑝−1𝑝 𝑥𝑥∈𝐻   𝑥𝑥∈𝐻 = 𝑝 𝑥𝑥∈𝐻 = 𝛽, 

and 𝛽2 = 𝑝2  𝑥𝑥∈𝐻  2 = 𝑝3  𝑥𝑥∈𝐻   

                             = 𝑝−1  𝑥𝑥∈𝐻 = 𝛼.                                                                                                                                

Hence  𝛼  is a S-idempotent.                

2) we have  𝛼 = 𝑝−1  𝑥𝑥∈𝐻    is a nontrivial  

idempotent. Let   𝛽 =  𝑥𝑥∈𝐻 . Then 

𝛼𝛽 =  𝑝−1  𝑥𝑥∈𝐻   𝑥𝑥∈𝐻 =  𝑥𝑥∈𝐻 = 𝛽, 

and 𝛽2 =   𝑥𝑥∈𝐻  2 = 𝑝 𝑥𝑥∈𝐻 =
                            𝑝−1𝑥∈𝐻𝑥=𝛼. 

Therefore  𝛼  is a  S-idempotent. 

3) Since 𝑝 = 2 divides 𝑛, then 𝐺 = 2𝑘 and   

 𝛼 = 2−1(1 + gk ). Let 𝛽 =  1 + gk − 𝛼. 

Then it is clear that 𝛽2 = 𝛼 and  𝛼𝛽 = 𝛽.   
So  𝛼  is an  S-idempotent.   
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