Smarandache's function applied to perfect numbers

Sebastián Martín Ruiz
Avda. de Regla 43, Chipiona 11550 Spain
smruiz@telefonica.net
5 August 1998

Abstract:

Smarandache's function may be defined as follows:
$\mathrm{S}(\mathrm{n})=$ the smallest positive integer such that $\mathrm{S}(\mathrm{n})$! is divisible by n . [1]

In this article we are going to see that the value this function takes when n is a perfect number of the form $n=2^{k-1} \cdot\left(2^{k}-1\right), p=2^{k}-1$ being a prime number.

Lemma 1: Let $n=2^{i} \cdot p$ when p is an odd prime number and i an integer such that:

$$
0 \leq i \leq E\left(\frac{p}{2}\right)+E\left(\frac{p}{2^{2}}\right)+E\left(\frac{p}{2^{3}}\right)+\cdots+E\left(\frac{p}{2^{E\left(\log _{2} p\right)}}\right)=e_{2}(p!)
$$

where $e_{2}(p!)$ is the exponent of 2 in the prime number decomposition of $p!$. $\mathrm{E}(\mathrm{x})$ is the greatest integer less than or equal to x .

One has that $S(n)=p$.

Demonstration:
Given that $G C D\left(2^{i}, p\right)=1(\mathrm{GCD}=$ greatest common divisor) one has that
$S(n)=\max \left\{S\left(2^{i}\right), S(p)\right\} \geq S(p)=p$. Therefore $S(n) \geq p$.
If we prove that p ! is divisible by n then one would have the equality.

$$
p!=p_{1}{ }^{e_{p 1}(p!)} \cdot p_{2}{ }^{e_{p_{2}}(p!)} \cdots p_{s}{ }^{e_{p_{s}}(p!)}
$$

where p_{i} is the $i-t h$ prime of the prime number decomposition of $p!$. It is clear that $p_{1}=2, p_{s}=p, e_{p_{s}}(p!)=1$ for which:

$$
p!=2^{e_{2}(p!)} \cdot p_{2}{ }^{e_{p_{2}}\left(p^{\prime}\right)} \cdots p_{s-1}{ }^{e_{p_{s-1}}(p!)} \cdot p
$$

From where one can deduce that:

$$
\frac{p!}{n}=2^{e_{2}(p!)-i} \cdot p_{2}^{e_{p_{2}}(p!)} \cdots p_{s-1}^{e_{p_{s-1}}(p!)}
$$

is a positive integer since $e_{2}(p!)-i \geq 0$.

Therefore one has that $S(n)=p$

Proposition: If n is a perfect number of the form $n=2^{k-1} \cdot\left(2^{k}-1\right)$ with k is a positive integer, $2^{k}-1=p$ prime, one has that $S(n)=p$.

Proof:

For the Lemma it is sufficient to prove that $k-1 \leq e_{2}(p!)$. If we can prove that:

$$
\begin{equation*}
k-1 \leq 2^{k-1}-\frac{1}{2} \tag{1}
\end{equation*}
$$

we will have proof of the proposition since:

$$
k-1 \leq 2^{k-1}-\frac{1}{2}=\frac{2^{k}-1}{2}=\frac{p}{2}
$$

As $k-1$ is an integer one has that $k-1 \leq E\left(\frac{p}{2}\right) \leq e_{2}(p!)$
Proving (1) is the same as proving $k \leq 2^{k-1}+\frac{1}{2}$ at the same time, since k is integer, is equivalent to proving $k \leq 2^{k-1}$ (2).

In order to prove (2) we may consider the function: $f(x)=2^{x-1}-x \quad x$ real number.
This function may be derived and its derivate is $f^{\prime}(x)=2^{x-1} \ln 2-1$.
f will be increasing when $2^{x-1} \ln 2-1>0$ resolving x :

$$
x>1-\frac{\ln (\ln 2)}{\ln 2} \cong 1^{\prime} 5287
$$

In particular f will be increasing $\forall x \geq 2$.
Therefore $\forall x \geq 2 \quad f(x) \geq f(2)=0$ that is to say $2^{x-1}-x \geq 0 \quad \forall x \geq 2$.
Therefore: $2^{k-1} \geq k \forall k \geq 2$ integer.
And thus is proved the proposition.

EXAMPLES:

$$
\begin{aligned}
6 & =2 \cdot 3 & & S(6)=3 \\
28 & =2^{2} \cdot 7 & & S(28)=7 \\
496 & =2^{4} \cdot 31 & & S(496)=31 \\
8128 & =2^{6} \cdot 127 & & S(8128)=127
\end{aligned}
$$

References:

[1] C. Dumitrescu and R. Müller: To Enjoy is a Permanent Component of Mathematics. SMARANDACHE NOTIONS JOURNAL Vol. 9 No 1-2, (1998) pp 21-26

