Smarandache's Cevian Triangle Theorem in The Einstein Relativistic Velocity Model of Hyperbolic Geometry

Cătălin Barbu
"Vasile Alecsandri" College - Bacău, str. Iosif Cocea, nr. 12, sc. A, ap. 13, Romania
kafka_mate@yahoo.com

Abstract

In this note, we present a proof of Smarandache's cevian triangle hyperbolic theorem in the Einstein relativistic velocity model of hyperbolic geometry.

2000 Mathematical Subject Classification: 51K05, 51M10, 30F45, 20N99, 51B10

Keywords and phrases: hyperbolic geometry, hyperbolic triangle, Smarandache's cevian triangle, gyrovector, Einstein relativistic velocity model

1. Introduction

Hyperbolic geometry appeared in the first half of the $19^{\text {th }}$ century as an attempt to understand Euclid's axiomatic basis for geometry. It is also known as a type of non-Euclidean geometry, being in many respects similar to Euclidean geometry. Hyperbolic geometry includes such concepts as: distance, angle and both of them have many theorems in common. There are known many main models for hyperbolic geometry, such as: Poincaré disc model, Poincaré half-plane, Klein model, Einstein relativistic velocity model, etc. The hyperbolic geometry is a non-Euclidian geometry. Here, in this study, we present a proof of Smarandache's cevian triangle hyperbolic theorem in the Einstein relativistic velocity model of hyperbolic geometry. Smarandache's cevian triangle theorem states that if $A_{1} B_{1} C_{1}$ is the cevian triangle of point P with respect to the triangle $A B C$, then $\frac{P A}{P A_{1}} \cdot \frac{P B}{P B_{1}} \cdot \frac{P C}{P C_{1}}=\frac{A B \cdot B C \cdot C A}{A_{1} B \cdot B_{1} C \cdot C_{1} A}[1]$.

Let D denote the complex unit disc in complex z-plane, i.e.

$$
D=\{z \in \mathbb{C}:|z|<1\}
$$

The most general Möbius transformation of D is

$$
z \rightarrow e^{i \theta} \frac{z_{0}+z}{1+\overline{z_{0}} z}=e^{i \theta}\left(z_{0} \oplus z\right),
$$

which induces the Möbius addition \oplus in D, allowing the Möbius transformation of the disc to be viewed as a Möbius left gyrotranslation

$$
z \rightarrow z_{0} \oplus z=\frac{z_{0}+z}{1+\overline{z_{0}} z}
$$

followed by a rotation. Here $\theta \in \mathbb{R}$ is a real number, $z, z_{0} \in D$, and $\overline{z_{0}}$ is the complex conjugate of z_{0}. Let $\operatorname{Aut}(D, \oplus)$ be the automorphism group
of the grupoid (D, \oplus). If we define

$$
g y r: D \times D \rightarrow \operatorname{Aut}(D, \oplus), g y r[a, b]=\frac{a \oplus b}{b \oplus a}=\frac{1+a \bar{b}}{1+\bar{a} b},
$$

then is true gyrocommutative law

$$
a \oplus b=g y r[a, b](b \oplus a) .
$$

A gyrovector space (G, \oplus, \otimes) is a gyrocommutative gyrogroup (G, \oplus) that obeys the following axioms:
(1) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a} \cdot \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{b}=\mathbf{a} \cdot \mathbf{b}$ for all points $\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v} \in G$.
(2) G admits a scalar multiplication, \otimes, possessing the following properties. For all real numbers $r, r_{1}, r_{2} \in \mathbb{R}$ and all points $\mathbf{a} \in G$:
(G1) $1 \otimes \mathbf{a}=\mathbf{a}$
(G2) $\left(r_{1}+r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes \mathbf{a} \oplus r_{2} \otimes \mathbf{a}$
(G3) $\left(r_{1} r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes\left(r_{2} \otimes \mathbf{a}\right)$
(G4) $\frac{|r| \otimes \mathbf{a}}{\|r \otimes \mathbf{a}\|}=\frac{\mathbf{a}}{\|\mathbf{a}\|}$
(G5) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}](r \otimes \mathbf{a})=r \otimes \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a}$
(G6) $\operatorname{gyr}\left[r_{1} \otimes \mathbf{v}, r_{1} \otimes \mathbf{v}\right]=1$
(3) Real vector space structure $(\|G\|, \oplus, \otimes)$ for the set $\|G\|$ of onedimensional "vectors"

$$
\|G\|=\{ \pm\|\mathbf{a}\|: \mathbf{a} \in G\} \subset \mathbb{R}
$$

with vector addition \oplus and scalar multiplication \otimes, such that for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in G$,
(G7) $\|r \otimes \mathbf{a}\|=|r| \otimes\|\mathbf{a}\|$
(G8) $\|\mathbf{a} \oplus \mathbf{b}\| \leq\|\mathbf{a}\| \oplus\|\mathbf{b}\|$

Theorem 1 (The Hyperbolic Theorem of Ceva in Einstein Gyrovector Space) Let $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} be three non-gyrocollinear points in an Einstein gyrovector space $\left(V_{s}, \oplus, \otimes\right)$. Furthermore, let \mathbf{a}_{123} be a point in their gyroplane, which is off the gyrolines $\mathbf{a}_{1} \mathbf{a}_{2}, \mathbf{a}_{2} \mathbf{a}_{3}$, and $\mathbf{a}_{3} \mathbf{a}_{1}$. If $\mathbf{a}_{1} \mathbf{a}_{123}$ meets $\mathbf{a}_{2} \mathbf{a}_{3}$ at \mathbf{a}_{23}, etc., then

$$
\frac{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}\right\|}{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}\right\|} \frac{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}\right\|}{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}\right\|} \frac{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}\right\|}{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}\right\|}=1
$$

(here $\gamma_{\mathbf{v}}=\frac{1}{\sqrt{1-\frac{\|\mathbf{v}\|^{2}}{s^{2}}}}$ is the gamma factor).
(see [2, pp 461])

Theorem 2 (The Hyperbolic Theorem of Menelaus in Einstein Gyrovector Space) Let $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} be three non-gyrocollinear points in an Einstein gyrovector space $\left(V_{s}, \oplus, \otimes\right)$. If a gyroline meets the sides of gyrotriangle $\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}$ at points $\mathbf{a}_{12}, \mathbf{a}_{13}, \mathbf{a}_{23}$, then

$$
\frac{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}\right\|}{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}\right\|} \frac{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}\right\|}{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}\right\|} \frac{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}\right\|}{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}\right\|}=1
$$

(see [2, pp 463])
For further details we refer to the recent book of A.Ungar [2].

2. Main result

In this section, we present a proof of Smarandache's cevian triangle hyperbolic theorem in the Einstein relativistic velocity model of hyperbolic geometry.

Theorem 3 If $A_{1} B_{1} C_{1}$ is the cevian gyrotriangle of gyropoint P with respect to the gyrotriangle $A B C$, then

$$
\frac{\gamma_{|P A|}|P A|}{\gamma_{\left|P A_{1}\right|\left|P A_{1}\right|}} \cdot \frac{\gamma_{|P B|}|P B|}{\gamma_{\left|P B_{1}\right| P B_{1} \mid}} \cdot \frac{\gamma_{|P C|}|P C|}{\gamma_{\left|P C_{1}\right|}\left|P C_{1}\right|}=\frac{\gamma_{|A B|}|A B|}{} \cdot \gamma_{|B C|}|B C| \cdot \gamma_{|C A|}|C A|
$$

Proof. If we use a theorem 2 in the gyrotriangle $A B C$ (see Figure), we have
(1) $\gamma_{\left|A C_{1}\right| A C_{1} \mid} \cdot \gamma_{\left|B A_{1}\right| B A_{1} \mid} \cdot \gamma_{\left|C B_{1}\right| C B_{1} \mid}=\gamma_{\left|A B_{1}\right| A B_{1} \mid} \cdot \gamma_{\left|B C_{1}\right|\left|B C_{1}\right|} \cdot \gamma_{\left|C A_{1}\right|}\left|C A_{1}\right|$

If we use a theorem 1 in the gyrotriangle $A A_{1} B$, cut by the gyroline $C C_{1}$, we get

$$
\begin{equation*}
\gamma_{\left|A C_{1}\right| A C_{1} \mid} \cdot \gamma_{|B C|}|B C| \cdot \gamma_{\left|A_{1} P\right|}\left|A_{1} P\right|=\gamma_{|A P| A P \mid} \cdot \gamma_{\left|A_{1} C\right|}\left|A_{1} C\right| \cdot \gamma_{\left|B C_{1}\right| B C_{1} \mid} \tag{2}
\end{equation*}
$$

If we use a theorem 1 in the gyrotriangle $B B_{1} C$, cut by the gyroline $A A_{1}$, we get

$$
\begin{equation*}
\gamma_{\left|B A_{1}\right| B A_{1} \mid} \cdot \gamma_{|C A||C A|} \cdot \gamma_{\left|B_{1} P\right|\left|B_{1} P\right|}=\gamma_{|B P||B P|} \cdot \gamma_{\left|B_{1} A\right|\left|B_{1} A\right|} \cdot \gamma_{\left|C A_{1}\right|\left|C A_{1}\right|} \tag{3}
\end{equation*}
$$

If we use a theorem 1 in the gyrotriangle $C C_{1} A$, cut by the gyroline $B B_{1}$, we get

$$
\begin{equation*}
\gamma_{\left|C B_{1}\right|\left|C B_{1}\right|} \cdot \gamma_{|A B||A B|} \cdot \gamma_{\left|C_{1} P\right|\left|C_{1} P\right|}=\gamma_{|C P||C P|} \cdot \gamma_{\left|C_{1} B\right|\left|C_{1} B\right|} \cdot \gamma_{\left|A B_{1}\right| A B_{1} \mid} \tag{4}
\end{equation*}
$$

We divide each relation (2), (3), and (4) by relation (1), and we obtain

$$
\begin{align*}
& \frac{\gamma_{|P A|}|P A|}{\gamma_{\left|P A_{1}\right|}\left|P A_{1}\right|}=\frac{\gamma_{|B C|}|B C|}{\gamma_{\left|B A_{1}\right| B A_{1} \mid}} \cdot \frac{\gamma_{\left|B_{1} A\right|}\left|B_{1} A\right|}{\gamma_{\left|B_{1} C\right|}\left|B_{1} C\right|} \tag{5}\\
& \frac{\gamma_{|P B|}|P B|}{\gamma_{\left|P B_{1}\right| P B_{1} \mid}}=\frac{\gamma_{|C A|}|C A|}{} \cdot \frac{\gamma_{\left|C_{1} B\right|}\left|C_{1} B\right|}{\gamma_{\left|C B_{1}\right| C B_{1} \mid}}, \tag{6}
\end{align*}
$$

$$
\begin{equation*}
\frac{\gamma_{|P C|}|P C|}{\gamma_{\left|P C_{1}\right|}\left|P C_{1}\right|}=\frac{\gamma_{|A B|}|A B|}{\gamma_{\left|A C_{1}\right| A C_{1} \mid}} \cdot \frac{\gamma_{\left|A_{1} C\right|}\left|A_{1} C\right|}{\gamma_{\left|A_{1} B\right|}\left|A_{1} B\right|} \tag{7}
\end{equation*}
$$

Multiplying (5) by (6) and by (7), we have

$$
\begin{aligned}
& \frac{\gamma_{|P A|}|P A|}{\gamma_{\left|P A_{1}\right| P A_{1} \mid}} \cdot \frac{\gamma_{|P B||P B|}}{\gamma_{\left|P B_{1}\right|\left|P B_{1}\right|}} \cdot \frac{\gamma_{|P C|}|P C|}{\gamma_{\left|P C_{1}\right|\left|P C_{1}\right|}}=
\end{aligned}
$$

From the relation (1) we have

$$
\begin{equation*}
\frac{\gamma_{\left|B_{1} A\right|}\left|B_{1} A\right|}{} \cdot \gamma_{\left|C_{1} B\right|}\left|C_{1} B\right| \cdot \gamma_{\left|A_{1} C\right|}\left|A_{1} C\right|, \tag{9}
\end{equation*}
$$

so

$$
\left.\frac{\gamma_{|P A|}|P A|}{\gamma_{\left|P A_{1}\right|}\left|P A_{1}\right|} \cdot \frac{\gamma_{|P B|}|P B|}{\gamma_{\left|P B_{1}\right|}\left|P B_{1}\right|}\left|\frac{\gamma_{|P C|}|P C|}{\gamma_{\left|P C_{1}\right|}\left|P C_{1}\right|}=\frac{\gamma_{|A B|}|A B| \cdot \gamma_{|B C|}|B C|}{} \cdot \gamma_{|C A|}\right| C A \right\rvert\,
$$

References

[1] Smarandache, F, Eight Solved and Eight Open Problems in Elementary Geometry, in arXiv.org.
[2] Ungar, A.A., Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, Hackensack, NJ:World Scientific Publishing Co.Pte. Ltd., 2008.

