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Abstract

In this note, we present a proof of Smarandache’s cevian trian-

gle hyperbolic theorem in the Einstein relativistic velocity model

of hyperbolic geometry.
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1. Introduction

Hyperbolic geometry appeared in the first half of the 19th century

as an attempt to understand Euclid’s axiomatic basis for geometry. It is

also known as a type of non-Euclidean geometry, being in many respects

similar to Euclidean geometry. Hyperbolic geometry includes such con-

cepts as: distance, angle and both of them have many theorems in com-

mon.There are known many main models for hyperbolic geometry, such

as: Poincaré disc model, Poincaré half-plane, Klein model, Einstein rela-

tivistic velocity model, etc. The hyperbolic geometry is a non-Euclidian

geometry. Here, in this study, we present a proof of Smarandache’s cevian

triangle hyperbolic theorem in the Einstein relativistic velocity model of

hyperbolic geometry. Smarandache’s cevian triangle theorem states that

if A1B1C1 is the cevian triangle of point P with respect to the triangle

ABC, then PA
PA1

· PB
PB1

· PC
PC1

= AB·BC·CA
A1B·B1C·C1A

[1].

Let D denote the complex unit disc in complex z - plane, i.e.

D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z → eiθ
z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the Möbius trans-

formation of the disc to be viewed as a Möbius left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is

the complex conjugate of z0. Let Aut(D,⊕) be the automorphism group

2



of the grupoid (D,⊕). If we define

gyr : D ×D → Aut(D,⊕), gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then is true gyrocommutative law

a⊕ b = gyr[a, b](b⊕ a).

A gyrovector space (G,⊕,⊗) is a gyrocommutative gyrogroup (G,⊕)

that obeys the following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.

(2) G admits a scalar multiplication, ⊗, possessing the following prop-

erties. For all real numbers r, r1, r2 ∈ R and all points a ∈G:

(G1) 1⊗ a = a

(G2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a

(G3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a)

(G4) |r|⊗a

‖r⊗a‖
= a

‖a‖

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a

(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1

(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of oned-

imensional ”vectors”

‖G‖ = {±‖a‖ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all

r ∈ R and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖

(G8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖
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Theorem 1 (The Hyperbolic Theorem of Ceva in Einstein Gy-

rovector Space) Let a1, a2, and a3 be three non-gyrocollinear points

in an Einstein gyrovector space (Vs,⊕,⊗). Furthermore, let a123 be a

point in their gyroplane, which is off the gyrolines a1a2, a2a3, and a3a1.

If a1a123 meets a2a3 at a23, etc., then

γ⊖a1⊕a12
‖⊖a1 ⊕ a12‖

γ⊖a2⊕a12
‖⊖a2 ⊕ a12‖

γ⊖a2⊕a23
‖⊖a2 ⊕ a23‖

γ⊖a3⊕a23
‖⊖a3 ⊕ a23‖

γ⊖a3⊕a13
‖⊖a3 ⊕ a13‖

γ⊖a1⊕a13
‖⊖a1 ⊕ a13‖

= 1,

(here γ
v
= 1

√

1− ‖v‖2

s2

is the gamma factor).

(see [2, pp 461])

Theorem 2 (The Hyperbolic Theorem of Menelaus in Einstein

Gyrovector Space) Let a1, a2, and a3 be three non-gyrocollinear points

in an Einstein gyrovector space (Vs,⊕,⊗). If a gyroline meets the sides

of gyrotriangle a1a2a3 at points a12, a13, a23, then

γ⊖a1⊕a12
‖⊖a1 ⊕ a12‖

γ⊖a2⊕a12
‖⊖a2 ⊕ a12‖

γ⊖a2⊕a23
‖⊖a2 ⊕ a23‖

γ⊖a3⊕a23
‖⊖a3 ⊕ a23‖

γ⊖a3⊕a13
‖⊖a3 ⊕ a13‖

γ⊖a1⊕a13
‖⊖a1 ⊕ a13‖

= 1

(see [2, pp 463])

For further details we refer to the recent book of A.Ungar [2].

2. Main result

In this section, we present a proof of Smarandache’s cevian triangle

hyperbolic theorem in the Einstein relativistic velocity model of hyper-

bolic geometry.
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Theorem 3 If A1B1C1 is the cevian gyrotriangle of gyropoint P with

respect to the gyrotriangle ABC, then

γ
|PA||PA|

γ
|PA1|

|PA1|

·
γ

|PB||PB|

γ
|PB1|

|PB1|

·
γ

|PC||PC|

γ
|PC1|

|PC1|

=
γ

|AB||AB| · γ|BC||BC| · γ|CA||CA|

γ
|AB1|

|AB1| · γ|BC1|
|BC1| · γ|CA1|

|CA1|

.

Proof. If we use a theorem 2 in the gyrotriangle ABC (see Figure), we

have

(1) γ
|AC1|

|AC1| · γ|BA1|
|BA1| · γ|CB1|

|CB1| = γ
|AB1|

|AB1| · γ|BC1|
|BC1| · γ|CA1|

|CA1|

If we use a theorem 1 in the gyrotriangle AA1B, cut by the gyroline CC1,

we get

(2) γ
|AC1|

|AC1| · γ|BC||BC| · γ|A1P ||A1P | = γ
|AP ||AP | · γ|A1C||A1C| · γ|BC1|

|BC1|.

If we use a theorem 1 in the gyrotriangle BB1C, cut by the gyroline AA1,

we get

(3) γ
|BA1|

|BA1| · γ|CA||CA| · γ|B1P ||B1P | = γ
|BP ||BP | · γ|B1A||B1A| · γ|CA1|

|CA1|.

If we use a theorem 1 in the gyrotriangle CC1A, cut by the gyroline BB1,

we get

(4) γ
|CB1|

|CB1| · γ|AB||AB| · γ|C1P ||C1P | = γ
|CP ||CP | · γ|C1B||C1B| · γ|AB1|

|AB1|.

We divide each relation (2), (3), and (4) by relation (1), and we obtain

(5)
γ

|PA||PA|

γ
|PA1|

|PA1|

=
γ

|BC||BC|

γ
|BA1|

|BA1|

·
γ

|B1A||B1A|

γ
|B1C||B1C|

,

(6)
γ

|PB||PB|

γ
|PB1|

|PB1|

=
γ

|CA||CA|

γ
|CB1|

|CB1|

·
γ

|C1B||C1B|

γ
|C1A||C1A|

,
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(7)
γ

|PC||PC|

γ
|PC1|

|PC1|

=
γ

|AB||AB|

γ
|AC1|

|AC1|

·
γ

|A1C||A1C|

γ
|A1B||A1B|

.

Multiplying (5) by (6) and by (7), we have

γ
|PA||PA|

γ
|PA1|

|PA1|

·
γ

|PB||PB|

γ
|PB1|

|PB1|

·
γ

|PC||PC|

γ
|PC1|

|PC1|

=

(8)
γ

|AB||AB| · γ |BC||BC| · γ|CA||CA|

γ
|A1B||A1B| · γ|B1C||B1C| · γ|C1A||C1A|

·
γ

|B1A||B1A| · γ|C1B||C1B| · γ|A1C||A1C|

γ
|A1B||A1B| · γ|B1C||B1C| · γ|C1A||C1A|

From the relation (1) we have

(9)
γ

|B1A||B1A| · γ|C1B||C1B| · γ|A1C||A1C|

γ
|A1B||A1B| · γ|B1C||B1C| · γ|C1A||C1A|

= 1,

so

γ
|PA||PA|

γ
|PA1|

|PA1|

·
γ

|PB||PB|

γ
|PB1|

|PB1|

·
γ

|PC||PC|

γ
|PC1|

|PC1|

=
γ

|AB||AB| · γ|BC||BC| · γ|CA||CA|

γ
|AB1|

|AB1| · γ|BC1|
|BC1| · γ|CA1|

|CA1|

.
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