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Abstract

The idea of left(right) palindromic permutations(LPPs,RPPs) and left(right) gen-
eralized Smarandache palindromic permutations(LGSPPs,RGSPPs) are introduced in
symmetric groups Sn of degree n. It is shown that in Sn, there exist a LPP and a RPP
and they are unique(this fact is demonstrated using S2 and S3). The dihedral group
Dn is shown to be generated by a RGSPP and a LGSPP(this is observed to be true in
S3) but the geometric interpretations of a RGSPP and a LGSPP are found not to be
rotation and reflection respectively. In S3, each permutation is at least a RGSPP or
a LGSPP. There are 4 RGSPPs and 4 LGSPPs in S3, while 2 permutations are both
RGSPPs and LGSPPs. A permutation in Sn is shown to be a LPP or RPP(LGSPP or
RGSPP) if and only if its inverse is a LPP or RPP(LGSPP or RGSPP) respectively.
Problems for future studies are raised.

1 Introduction

According to Ashbacher and Neirynck [1], an integer is said to be a palindrome if it reads
the same forwards and backwards. For example, 12321 is a palindromic number. They
also stated that it is easy to prove that the density of the palindromes is zero in the set of
positive integers and they went ahead to answer the question on the density of generalized
Smarandache palindromes (GSPs) by showing that the density of GSPs in the positive
integers is approximately 0.11. Gregory [2], Smarandache [8] and Ramsharan [7] defined a
generalized Smarandache palindrome (GSP) as any integer or number of the form

a1a2a3 · · ·anan · · ·a3a2a1 or a1a2a3 · · ·an−1anan−1 · · ·a3a2a1
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where all a1, a2, a3, · · ·an ∈ N having one or more digits. On the other hand, Hu [3] calls any
integer or number of this form a Smarandache generalized palindrome(SGP). His naming
will not be used here the first naming will be adopted.

Numbers of this form have also been considered by Khoshnevisan [4], [5] and [6]. For the
sake of clarification, it must be mentioned that the possibility of the trivial case of enclosing
the entire number is excluded. For example, 12345 can be written as (12345). In this case,
the number is simply said to be a palindrome or a palindromic number as it was mentioned
earlier on. So, every number is a GSP. But this possibility is eliminated by requiring that each
number be split into at least two segments if it is not a regular palindrome. Trivially, since
each regular palindrome is also a GSP and there are GSPs that are not regular palindromes,
there are more GSPs than there are regular palindromes. As mentioned by Gregory [2], very
interesting GSPs are formed from smarandacheian sequences. For an illustration he cited
the smarandacheian sequence

11, 1221, 123321, · · · , 123456789987654321, 1234567891010987654321,

12345678910111110987654321, · · ·

and observed that all terms are all GSPs. He also mentioned that it has been proved that the
GSP 1234567891010987654321 is a prime and concluded his work by possing the question of
’How many primes are in the GSP sequence above?’.

Special mappings such as morphisms(homomorphisms, endomorphisms, automorphisms,
isomorphisms e.t.c) have been useful in the study of the properties of most algebraic struc-
tures(e.g groupoids, quasigroups, loops, semigroups, groups e.tc.). In this work, the notion
of palindromic permutations and generalized Smarandache palindromic permutations are
introduced and studied using the symmetric group on the set N and this can now be viewed
as the study of some palindromes and generalized Smarandache palindromes of numbers.

The idea of left(right) palindromic permutations(LPPs,RPPs) and left(right) general-
ized Smarandache palindromic permutations(LGSPPs,RGSPPs) are introduced in symmet-
ric groups Sn of degree n. It is shown that in Sn, there exist a LPP and a RPP and they are
unique. The dihedral group Dn is shown to be generated by a RGSPP and a LGSPP but
the geometric interpretations of a RGSPP and a LGSPP are found not to be rotation and
reflection respectively. In S3, each permutation is at least a RGSPP or a LGSPP. There are
4 RGSPPs and 4 LGSPPs in S3, while 2 permutations are both RGSPPs and LGSPPs. A
permutation in Sn is shown to be a LPP or RPP(LGSPP or RGSPP) if and only if its inverse
is a LPP or RPP(LGSPP or RGSPP) respectively. Some of these results are demonstrated
with S2 and S3. Problems for future studies are raised.

But before then, some definitions and basic results on symmetric groups in classical group
theory which shall be employed and used are highlighted first.

2 Preliminaries

Definition 2.1 Let X be a non-empty set. The group of all permutations of X under
composition of mappings is called the symmetric group on X and is denoted by SX. A
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subgroup of SX is called a permutation group on X.

It is easily seen that a bijection X ≃ Y induces in a natural way an isomorphism SX
∼= SY .

If |X| = n, SX is denoted by Sn and called the symmetric group of degree n.
A permutation σ ∈ Sn can be exhibited in the form

(

1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

,

consisting of two rows of integers; the top row has integers 1, 2, · · · , n usually(but not neces-
sarily) in their natural order, and the bottom row has σ(i) below i for each i = 1, 2, · · · , n.
This is called a two-row notation for a permutation. There is a simpler, one-row notation
for a special kind of permutation called cycle.

Definition 2.2 Let σ ∈ Sn. If there exists a list of distinct integers x1, · · · , xr ∈ N such that

σ(xi) = xi+1, i = 1, · · · , r − 1,
σ(xr) = x1,

σ(x) = x if x 6∈ {x1, · · · , xr},

then σ is called a cycle of length r and denoted by (x1 · · ·xr).

Remark 2.1 A cycle of length 2 is called a transposition. In other words , a cycle (x1 · · ·xr)
moves the integers x1, · · · , xr one step around a circle and leaves every other integer in N. If
σ(x) = x, we say σ does not move x. Trivially, any cycle of length 1 is the identity mapping
I or e. Note that the one-row notation for a cycle does not indicate the degree n, which has
to be understood from the context.

Definition 2.3 Let X be a set of points in space, so that the distance d(x, y) between points
x and y is given for all x, y ∈ X. A permutation σ of X is called a symmetry of X if

d(σ(x), σ(y)) = d(x, y) ∀ x, y ∈ X.

Let X be the set of points on the vertices of a regular polygon which are labelled {1, 2, · · · , n}
i.e

The group of symmetries of a regular polygon Pn of n sides is called the dihedral group

of degree n and denoted Dn.

Remark 2.2 It must be noted that Dn is a subgroup of Sn i.e Dn ≤ Sn.

Definition 2.4 Let Sn be a symmetric group of degree n. If σ ∈ Sn such that

σ =

(

1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

,

then
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1. the number Nλ(σ) = 12 · · ·nσ(n) · · ·σ(1) is called the left palindromic value(LPV) of
σ.

2. the number Nρ(σ) = 12 · · ·nσ(1) · · ·σ(n) is called the right palindromic value(RPV) of
σ.

Definition 2.5 Let σ ∈ SX such that

σ =

(

x1 x2 · · · xn

σ(x1) σ(x2) · · · σ(xn)

)

.

If X = N, then

1. σ is called a left palindromic permutation(LPP) if and only if the number Nλ(σ) is a
palindrome.

PPλ(SX) = {σ ∈ SX : σ is a LPP}

2. σ is called a right palindromic permutation(RPP) if and only if the number Nρ(σ) is a
palindrome.

PPρ(SX) = {σ ∈ SX : σ is a RPP}

3. σ is called a palindromic permutation(PP) if and only if it is both a LPP and a RPP.

PP (SX) = {σ ∈ SX : σ is a LPP and a RPP } = PPλ(SX)
⋂

PPρ(SX)

Definition 2.6 Let σ ∈ SX such that

σ =

(

x1 x2 · · · xn

σ(x1) σ(x2) · · · σ(xn)

)

.

If X = N, then

1. σ is called a left generalized Smarandache palindromic permutation(LGSPP) if and
only if the number Nλ(σ) is a GSP.

GSPPλ(SX) = {σ ∈ SX : σ is a LGSPP}

2. σ is called a right generalized Smarandache palindromic permutation(RGSPP) if and
only if the number Nρ(σ) is a GSP.

GSPPρ(SX) = {σ ∈ SX : σ is a RGSPP}

3. σ is called a generalized Smarandache palindromic permutation(GSPP) if and only if
it is both a LGSPP and a RGSPP.

GSPP (SX) = {σ ∈ SX : σ is a LGSPP and a RGSPP } = GSPPλ(SX)
⋂

GSPPρ(SX)
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Theorem 2.1 (Cayley Theorem)
Every group is isomorphic to a permutation group.

Theorem 2.2 The dihedral group Dn is a group of order 2n generated by two elements σ, τ

satisfying σn = e = τ 2 and τσ = σn−1τ , where

σ =
(

1 2 · · · n
)

and τ =

(

1 2 · · · n

1 n · · · 2

)

.

3 Main Results

Theorem 3.1 In any symmetric group Sn of degree n, there exists

1. a LPP and it is unique.

2. a RPP and it is unique.

But there does not exist a PP.

Proof

Let σ ∈ Sn, then

σ =

(

x1 x2 · · · xn

σ(x1) σ(x2) · · · σ(xn)

)

.

1. When
σ(n) = n, σ(n − 1) = n − 1, · · · , σ(2) = 2, σ(1) = 1

then the number

Nλ(σ) = 12 · · ·nσ(n) · · ·σ(2)σ(1) = 12 · · ·nn · · · 21

is a palindrome which implies σ ∈ PPλ(Sn). So, there exists a LPP. The uniqueness is
as follows. Observe that

σ =

(

1 2 · · · n

1 2 · · · n

)

= I.

Since Sn is a group for all n ∈ N and I is the identity element(mapping), then it must
be unique.

2. When
σ(1) = n, σ(2) = n − 1, · · · , σ(n − 1) = 2, σ(n) = 1

then the number

Nρ(σ) = 12 · · ·nσ(1) · · ·σ(n − 1)σ(n) = 12 · · ·nn · · · 21

is a palindrome which implies σ ∈ PPρ(Sn). So, there exists a RPP. The uniqueness
is as follows. If there exist two of such, say σ1 and σ2 in Sn, then

σ1 =

(

1 2 · · · n

σ1(1) σ1(2) · · · σ1(n)

)

and σ2 =

(

1 2 · · · n

σ2(1) σ2(2) · · · σ2(n)

)
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such that
Nρ(σ1) = 12 · · ·nσ1(1) · · ·σ1(n − 1)σ1(n)

and
Nρ(σ2) = 12 · · ·nσ2(1) · · ·σ2(n − 1)σ2(n)

are palindromes which implies

σ1(1) = n, σ1(2) = n − 1, · · · , σ1(n − 1) = 2, σ1(n) = 1

and
σ2(1) = n, σ2(2) = n − 1, · · · , σ2(n − 1) = 2, σ2(n) = 1.

So, σ1 = σ2, thus σ is unique.

The proof of the last part is as follows. Let us assume by contradiction that there exists a
PP σ ∈ Sn. Then if

σ =

(

1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

,

Nλ(σ) = 12 · · ·nσ(n) · · ·σ(2)σ(1)

and
Nρ(σ) = 12 · · ·nσ(1) · · ·σ(n − 1)σ(n)

are palindromes. So that σ ∈ Sn is a PP. Consequently,

n = σ(n) = 1, n − 1 = σ(n − 1) = 2, · · · , 1 = σ(1) = n,

so that σ is not a bijection which means σ 6∈ Sn. This is a contradiction. Hence, no PP
exist.

Example 3.1 Let us consider the symmetric group S2 of degree 2. There are two permuta-
tions of the set {1, 2} given by

I =

(

1 2
1 2

)

and δ =

(

1 2
2 1

)

.

Nρ(I) = 1212 = (12)(12), Nλ(I) = 1221 or Nλ(I) = 1(22)1,

Nρ(δ) = 1221 or Nρ(δ) = (12)(21) and Nλ(δ) = 1212 = (12)(12).

So, I and δ are both RGSPPs and LGSPPs which implies I and δ are GSPPs i.e I, δ ∈
GSPPρ(S2) and I, δ ∈ GSPPλ(S2) ⇒ I, δ ∈ GSPP (S2). Therefore, GSPP (S2) = S2.
Furthermore, it can be seen that the result in Theorem 3.1 is true for S2 because only I is
a LPP and only δ is a RPP. There is definitely no PP as the theorem says.
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Example 3.2 Let us consider the symmetric group S3 of degree 3. There are six permuta-
tions of the set {1, 2, 3} given by

e = I =

(

1 2 3
1 2 3

)

, σ1 =

(

1 2 3
2 3 1

)

, σ2 =

(

1 2 3
3 1 2

)

,

τ1 =

(

1 2 3
1 3 2

)

, τ2 =

(

1 2 3
3 2 1

)

and τ3 =

(

1 2 3
2 1 3

)

.

As claimed in Theorem 3.1, the unique LPP in S3 is I while the unique RPP in S3 is τ2.
There is no PP as the theorem says.

Lemma 3.1 In S3, the following are true.

1. At least σ ∈ GSPPρ(S3) or σ ∈ GSPPλ(S3) ∀ σ ∈ S3.

2. |GSPPρ(S3)| = 4, |GSPPλ(S3)| = 4 and |GSPP (S3)| = 2.

Proof

Observe the following :

Nλ(I) = 123321, Nρ(I) = 123123 = (123)(123).

Nλ(σ1) = 123132, Nρ(σ1) = 123231 = 1(23)(23)1.

Nλ(σ2) = 123213, Nρ(σ2) = 123312 = (12)(33)(12).

Nλ(τ1) = 123231 = 1(23)(23)1, Nρ(τ1) = 123132.

Nλ(τ2) = 123123 = (123)(123), Nρ(τ2) = 123321 = 123321.

Nλ(τ3) = 123312 = (12)(33)(12), Nρ(τ3) = 123213.

So, GSPPλ(S3) = {I, τ1, τ2, τ3} and GSPPρ(S3) = {I, σ1, σ2, τ2}. Thus, 1. is true. There-
fore, |GSPPρ(S3)| = 4, |GSPPλ(S3)| = 4 and |GSPP (S3)| = |GSPPρ(S3)

⋂

GSPPλ(S3)| =
2. So, 2. is true.

Lemma 3.2 S3 is generated by a RGSPP and a LGSPP.

Proof

Recall from Example 3.2 that

S3 = {I = e, σ1, σ2, τ1, τ2, τ3}.

If σ = σ1 and τ = τ1, then it is easy to verify that

σ2 = σ2, σ3 = e, τ 2 = e, στ = τ3, σ2τ = τ2 = τσ hence,

S3 = {e, σ, σ2, τ, στ, σ2τ3} ⇒ S3 = 〈σ, τ〉.

From the proof Lemma 3.1, σ is a RGSPP and τ is a LGSPP. This justifies the claim.
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Remark 3.1 In Lemma 3.2, S3 is generated by a RGSPP and a LGSPP. Could this state-
ment be true for all Sn of degree n? Or could it be true for some subgroups of Sn? Also, it
is interesting to know the geometric meaning of a RGSPP and a LGSPP. So two questions
are possed and the two are answered.

Question 3.1 1. Is the symmetric group Sn of degree n generated by a RGSPP and a
LGSPP? If not, what permutation group(s) is generated by a RGSPP and a LGSPP?

2. Are the geometric interpretations of a RGSPP and a LGSPP rotation and reflection
respectively?

Theorem 3.2 The dihedral group Dn is generated by a RGSPP and a LGSPP i.e Dn =
〈σ, τ〉 where σ ∈ GSPPρ(Sn) and τ ∈ GSPPλ(Sn).

Proof

Recall from Theorem2.2 that the dihedral group Dn = 〈σ, τ〉 where

σ =
(

1 2 · · · n
)

=

(

1 2 · · · n

2 3 · · · 1

)

and τ =

(

1 2 · · · n

1 n · · · 2

)

.

Observe that

Nρ(σ) = 123 · · ·n23 · · ·n1 = 1(23 · · ·n)(23 · · ·n)1, Nλ(σ) = 123 · · ·n1n · · · 32.

Nρ(τ) = 12 · · ·n1n · · ·2, Nλ(τ) = 12 · · ·n2 · · ·n1 = 1(2 · · ·n)(2 · · ·n)1.

So, σ ∈ GSPPρ(Sn) and τ ∈ GSPPλ(Sn). Therefore, the dihedral group Dn is generated by
a RGSPP and a LGSPP.

Remark 3.2 In Lemma 3.2, it was shown that S3 is generated by a RGSPP and a LGSPP.
Considering Theorem 3.2 when n = 3, it can be deduced that D3 will be generated by a
RGSPP and a LGSPP. Recall that |D3| = 2 × 3 = 6, so S3 = D3. Thus Theorem 3.2
generalizes Lemma 3.2.

Rotations and Reflections Geometrically, in Theorem 3.2, σ is a rotation of the regular
polygon Pn through an angle 2π

n
in its own plane, and τ is a reflection (or a turning over)

in the diameter through the vertex 1. It looks like a RGSPP and a LGSPP are formed by
rotation and reflection respectively. But there is a contradiction in S4 which can be traced
from a subgroup of S4 particularly the Klein four-group. The Klein four-group is the group
of symmetries of a four sided non-regular polygon(rectangle). The elements are:

e = I =

(

1 2 3 4
1 2 3 4

)

, δ1 =

(

1 2 3 4
3 4 1 2

)

, δ2 =

(

1 2 3 4
2 1 4 3

)

and δ3 =

(

1 2 3 4
4 3 2 1

)

.
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Observe the following:

Nρ(δ1) = 12343412 = (12)(34)(34)(12), Nλ(δ1) = 12342143.

Nρ(δ2) = 12342143 = 12342143, Nλ(δ2) = 12343412 = (12)(34)(34)(12).

Nρ(δ3) = 12344321 = 123(44)321, Nλ(δ3) = 12341234 = (1234)(1234).

So, δ1 is a RGSPP while δ2 is a LGSPP and δ3 is a GSPP. Geometrically, δ1 is a rotation
through an angle of π while δ2 and δ3 are reflections in the axes of symmetry parallel to
the sides. Thus δ3 which is a GSPP is both a reflection and a rotation, which is impossible.
Therefore, the geometric meaning of a RGSPP and a LGSPP are not rotation and reflection
respectively. It is difficult to really ascertain the geometric meaning of a RGSPP and a
LGSPP if at all it exist.

How beautiful will it be if GSPPρ(Sn), PPρ(Sn), GSPPλ(Sn), PPλ(Sn), GSPP (Sn) and
PP (Sn) form algebraic structures under the operation of map composition.

Theorem 3.3 Let Sn be a symmetric group of degree n. If σ ∈ Sn, then

1. σ ∈ PPλ(Sn) ⇔ σ−1 ∈ PPλ(Sn).

2. σ ∈ PPρ(Sn) ⇔ σ−1 ∈ PPρ(Sn).

3. I ∈ PPλ(Sn).

Proof

1. σ ∈ PPλ(Sn) implies
Nλ(σ) = 12 · · ·nσ(n) · · ·σ(2)σ(1)

is a palindrome. Consequently,

σ(n) = n, σ(n − 1) = n − 1, · · · , σ(2) = 2, σ(1) = 1.

So,

Nλ(σ
−1) = σ(1)σ(2) · · ·σ(n)n · · · 21 = 12 · · ·nn · · · 21 ⇒ σ−1 ∈ PPλ(Sn).

The converse is similarly proved by carrying out the reverse of the procedure above.

2. σ ∈ PPρ(Sn) implies

Nρ(σ) = 12 · · ·nσ(1) · · ·σ(n − 1)σ(n)

is a palindrome. Consequently,

σ(1) = n, σ(2) = n − 1, · · · , σ(n − 1) = 2, σ(n) = 1.

So,

Nρ(σ
−1) = σ(1) · · ·σ(n − 1)σ(n)12 · · ·n = n · · ·2112 · · ·n ⇒ σ−1 ∈ PPρ(Sn).

The converse is similarly proved by carrying out the reverse of the procedure above.
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3.

I =

(

1 2 · · · n

1 2 · · · n

)

.

Nλ(I) = 12 · · ·nn · · · 21 ⇒ I ∈ PPλ(Sn).

Theorem 3.4 Let Sn be a symmetric group of degree n. If σ ∈ Sn, then

1. σ ∈ GSPPλ(Sn) ⇔ σ−1 ∈ GSPPλ(Sn).

2. σ ∈ GSPPρ(Sn) ⇔ σ−1 ∈ GSPPρ(Sn).

3. I ∈ GSPP (Sn).

Proof

If σ ∈ Sn, then

σ =

(

1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

.

So,
Nλ(σ) = 12 · · ·nσ(n) · · ·σ(2)σ(1)

and
Nρ(σ) = 12 · · ·nσ(1) · · ·σ(n − 1)σ(n)

are numbers with even number of digits whether n is an even or odd number. Thus, Nρ(σ)
and Nλ(σ) are GSPs defined by

a1a2a3 · · ·anan · · ·a3a2a1

and not
a1a2a3 · · ·an−1anan−1 · · ·a3a2a1

where all a1, a2, a3, · · ·an ∈ N having one or more digits because the first has even number
of digits(or grouped digits) while the second has odd number of digits(or grouped digits).
The following grouping notations will be used:

(ai)
n
i=1 = a1a2a3 · · ·an and [ai]

n
i=1 = anan−1an−2 · · ·a3a2a1.

Let σ ∈ Sn such that

σ =

(

x1 x2 · · · xn

σ(x1) σ(x2) · · · σ(xn)

)

where xi ∈ N ∀ i ∈ N.
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1. So, σ ∈ GSPPλ(Sn) implies

Nλ(σ) = (xi1)
n1

i1=1(xi2)
n2

i2=(n1+1)(xi3)
n3

i3=(n2+1) · · · (xin−1
)
nn−1

in−1=(nn−2+1)(xin)nn

in=(nn−1+1)

↔⇔ [σ(xin)]nn

in=(nn−1+1)[σ(xin−1
)]

nn−1

in−1=(nn−2+1) · · · [σ(xi3)]
n3

i3=(n2+1)[σ(xi2)]
n2

i2=(n1+1)[σ(xi1)]
n1

i1=1

is a GSP where xij ∈ N ∀ ij ∈ N, j ∈ N and nn = n. The interval of integers [1,n] is
partitioned into

[1, n] = [1, n1] ∪ [n1 + 1, n2] ∪ · · · ∪ [nn−2 + 1, nn−1] ∪ [nn−1, nn].

The length of each grouping (·)
nj

ij
or [·]

nj

ij
is determined by the corresponding interval

of integers [ni +1, ni+1] and it is a matter of choice in other to make the number Nλ(σ)
a GSP.

Now that Nλ(σ) is a GSP, the following are true:

(xin)nn

in=(nn−1+1) = [σ(xin)]nn

in=(nn−1+1) ⇔ [xin ]nn

in=(nn−1+1) = (σ(xin))nn

in=(nn−1+1)

(xin−1
)
nn−1

in−1=(nn−2+1) = [σ(xin−1
)]

nn−1

in−1=(nn−2+1) ⇔ [xin−1
]
nn−1

in−1=(nn−2+1) = (σ(xin−1
))

nn−1

in−1=(nn−2+1)

...
...

...

(xi2)
n2

i2=(n1+1) = [σ(xi2)]
n2

i2=(n1+1) ⇔ [xi2 ]
n2

i2=(n1+1) = (σ(xi2))
n2

i2=(n1+1)

(xi1)
n1

i1=1 = [σ(xi1)]
n1

i1=1 ⇔ [xi1 ]
n1

i1=1 = (σ(xi1))
n1

i1=1

Therefore, since

σ =

(

x1 · · · xi1 · · · xn1
· · · xnn−1+1 · · · xjk

· · · xnn

σ(x1) · · · σ(xi1) · · · σ(xn1
) · · · σ(xnn−1+1) · · · σ(xjk

) · · · σ(xnn
)

)

,

then

σ−1 =

(

σ(x1) · · · σ(xi1) · · · σ(xn1
) · · · σ(xnn−1+1) · · · σ(xjk

) · · · σ(xnn
)

x1 · · · xi1 · · · xn1
· · · xnn−1+1 · · · xjk

· · · xnn

)

,

so

Nλ(σ
−1) = (σ(xi1))

n1

i1=1(σ(xi2))
n2

i2=(n1+1)(σ(xi3))
n3

i3=(n2+1) · · · (σ(xin−1
))

nn−1

in−1=(nn−2+1)

(σ(xin))nn

in=(nn−1+1)[xin ]nn

in=(nn−1+1)[xin−1
]
nn−1

in−1=(nn−2+1) · · · [xi3 ]
n3

i3=(n2+1)[xi2 ]
n2

i2=(n1+1)[xi1 ]
n1

i1=1

is a GSP hence, σ−1 ∈ GSPPλ(Sn).

The converse can be proved in a similar way since (σ−1)−1 = σ.
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2. Also, σ ∈ GSPPρ(Sn) implies

Nρ(σ) = (xi1)
n1

i1=1(xi2)
n2

i2=(n1+1)(xi3)
n3

i3=(n2+1) · · · (xin−1
)
nn−1

in−1=(nn−2+1)(xin)nn

in=(nn−1+1)

(σ(xi1))
n1

i1=1(σ(xi2))
n2

i2=(n1+1)(σ(xi3))
n3

i3=(n2+1) · · · (σ(xin−1
))

nn−1

in−1=(nn−2+1)(σ(xin))nn

in=(nn−1+1)

is a GSP where xij ∈ N ∀ ij ∈ N, j ∈ N and nn = n. The interval of integers [1,n] is
partitioned into

[1, n] = [1, n1] ∪ [n1 + 1, n2] ∪ · · · ∪ [nn−2 + 1, nn−1] ∪ [nn−1, nn].

The length of each grouping (·)
nj

ij
is determined by the corresponding interval of integers

[ni + 1, ni+1] and it is a matter of choice in other to make the number Nρ(σ) a GSP.

Now that Nρ(σ) is a GSP, the following are true:

(xin)nn

in=(nn−1+1) = (σ(xi1))
n1

i1=1

(xin−1
)
nn−1

in−1=(nn−2+1) = (σ(xi2))
n2

i2=(n1+1)

...
...

...

(xi2)
n2

i2=(n1+1) = (σ(xin−1
))

nn−1

in−1=(nn−2+1)

(xi1)
n1

i1=1 = (σ(xin))nn

in=(nn−1+1)

Therefore, since

σ =

(

x1 · · · xi1 · · · xn1
· · · xnn−1+1 · · · xjk

· · · xnn

σ(x1) · · · σ(xi1) · · · σ(xn1
) · · · σ(xnn−1+1) · · · σ(xjk

) · · · σ(xnn
)

)

,

then

σ−1 =

(

σ(x1) · · · σ(xi1) · · · σ(xn1
) · · · σ(xnn−1+1) · · · σ(xjk

) · · · σ(xnn
)

x1 · · · xi1 · · · xn1
· · · xnn−1+1 · · · xjk

· · · xnn

)

,

so

Nρ(σ
−1) = (σ(xi1))

n1

i1=1(σ(xi2))
n2

i2=(n1+1)(σ(xi3))
n3

i3=(n2+1) · · · (σ(xin−1
))

nn−1

in−1=(nn−2+1)

(σ(xin))nn

in=(nn−1+1)(xi1)
n1

i1=1(xi2)
n2

i2=(n1+1)(xi3)
n3

i3=(n2+1) · · · (xin−1
)
nn−1

in−1=(nn−2+1)(xin)nn

in=(nn−1+1)

is a GSP hence, σ−1 ∈ GSPPρ(Sn).

The converse can be proved in a similar way since (σ−1)−1 = σ.

3.

I =

(

1 2 · · · n

1 2 · · · n

)

.

Nλ(I) = 12 · · ·nn · · · 21 = 12 · · · (nn) · · ·21 ⇒ I ∈ GSPPλ(Sn) and

Nρ(I) = (12 · · ·n)(12 · · ·n) ⇒ I ∈ GSPPρ(Sn)

thus, I ∈ GSPP (Sn).
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4 Conclusion and Future studies

By Theorem 3.1, it is certainly true in every symmetric group Sn of degree n there exist
at least a RGSPP and a LGSPP(although they are actually RPP and LPP). Following
Example 3.1, there are 2 RGSPPs, 2 LGSPPs and 2 GSPPs in S2 while from Lemma 3.1,
there are 4 RGSPPs, 4 LGSPPs and 2 GSPPs in S3. Also, it can be observed that

|GSPPρ(S2)| + |GSPPλ(S2)| − |GSPP (S2)| = 2! = |S2| and

|GSPPρ(S3)| + |GSPPλ(S3)| − |GSPP (S3)| = 3! = |S3|.

The following problems are open for further studies.

Problem 4.1 1. How many RGSPPs, LGSPPs and GSPPs are in Sn?

2. Does there exist functions f1, f2, f3 : N → N such that |GSPPρ(Sn)| = f1(n),
|GSPPλ(Sn)| = f2(n) and |GSPP (Sn)| = f3(n)?

3. In general, does the formula

|GSPPρ(Sn)| + |GSPPλ(Sn)| − |GSPP (Sn)| = n! = |Sn|?

hold. If not, for what other n > 3 is it true?

The GAP package or any other appropriate mathematical package could be helpful in inves-
tigating the solutions to them.

If the first question is answered, then the number of palindromes that can be formed
from the set {1, 2, · · ·n} can be known since in the elements of Sn, the bottom row gives all
possible permutation of the integers 1, 2, · · ·n.

The Cayley Theorem(Theorem2.1) can also be used to make a further study on gener-
alized Smarandache palindromic permutations. In this work, N was the focus and it does
not contain the integer zero. This weakness can be strengthened by considering the set
Zn = {0, 1, 2, · · ·n − 1} ∀ n ∈ N. Recall that (Zn, +) is a group and so by Theorem 2.1
(Zn, +) is isomorphic to a permutation group particularly, one can consider a subgroup of
the symmetric group SZn

.
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