Generalized Sum of Fuzzy Subgroup and α-cut Subgroup

Daher Waly Freh Al-Rekabi
Mathematics Dept.
Science college
University of Wasit

Alia Shany Hassan
Mathematics Dept.
Science college
Al-Qadisiyah University

Abstract

: In this paper we study some results of the generalized sum of a fuzzy subgroup and α-cut subgroup, we define a α-cut subset and α-cut subgroup, and then .We study some of their properties.

في هذا البحث ندرس بعض النتائج في تععيم الجمع للزمر الجزئية الضبابية ومستوي القطع للزمر الجزئية الضبابية ، عرفنا مستوي القطع - α للمجمو عات الجزئية و مستوي القطع للزمر الجزئئة ،وبعد ذلك ندرس البعض من خصائصهم.

1-Introduction:

In 1965 Zadeh [5] mathematically formulated the fuzzy subset concept. He defined fuzzy subset of a non-empty set as a collection of objects with grade of membership in a continuum, with each object being assigned a value between 0 and 1 by a membership function. Fuzzy set theory was guided by the assumption that classical sets were not natural, appropriate or useful notions in describing the real life problems, because every object encountered in this real physical world carries some degree of fuzziness. Further the concept of grade of membership is not a probabilistic concept. We introduce the concept of fuzzy set ,fuzzy subgroup and T-norme.
In this work, we first generalize the results of the sum of two fuzzy subsets and fuzzy subgroup .We also α-cut subsets and α-cut subgroup, and then we study some of their properties.

2-Preliminaries :

We record here same basic concepts and clarify notions used in the sequel.

Definition (2-1): $[5,4,1]$

A fuzzy subset μ of a group ($G,+$) is said to be a fuzzy sub group of G if for all x, y in G
$1-\mu(x+y) \geq \min \{\mu(x), \mu(y)\}$
$2-\mu(-x)=\mu(x)$
Where the addition of x and y is denoted by $x+y$ and the inverse of x by - x

Definition(2-2): [4,3]

A triangular norm (briefly a t-norm) is a function
$T:[0,1] \times[0,1] \rightarrow[0,1]$ satisfying for each $(a, b, r, s) \epsilon[0,1]$
$1-T(a, 1)=a$
$2-T(a, b) \leq T(r, s)$ if $a \leq r$ and $b \leq s$
$3-T(a, b)=T(b, a)$
$4-T(a, T(a, r))=T(T(a, b), r)$
Definition (2-3): [1]
Let G be a groupoid and T a t-norm .
A function $B: \rightarrow[0.1]$ is a subgroupoid of G iff for every x, y in G, $B(x, y) \geq T(B(x), B(y))$.
If G is a group , a t - fuzzy subgroupoid B is at -fuzzy subgroup of G iff for each $x \in G, B(-x)=B(x)$
Definition (2-4): [5,1]
Let μ be fuzzy subset of a set S and let $\alpha \in[0,1]$.the set
$\mu_{\alpha}=\{x \in S: \mu(x) \geq \alpha\}$ is called α-cut subset of μ

Definition (2-5):[2]

For each $i=1,2, \ldots, n$, let μ_{i} be a fuzzy sets of set $X i, \lambda_{1}, \lambda_{2}, . . . \lambda_{n} \in F$
then
$1-\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}+\ldots \ldots \ldots+\lambda_{n} \mu_{n} \subset \mu$
2-for all $x_{1}, \ldots \ldots, x_{n} \quad X$, we have
$\mu\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots \ldots ., \lambda_{n} x_{n}\right) \geq\left\{\min \left\{\mu_{1}\left(x_{1}\right), \mu_{2}\left(x_{2}\right), \ldots ., \mu_{n}\left(x_{n}\right)\right\}\right.$

Definition (2-6): [5]

Let $f: X \rightarrow Y$ be a function for a fuzzy set μ in Y, we define
$\left(f^{-1}(\mu)\right)(x)=\mu(f(x))$ for every $x \in X$
For a fuzzy set λ in $X, f(\lambda)$ is defined by
$(f(\lambda))(y)=\left\{\begin{array}{cc}\sup \lambda(x) & \text { if } f(z)=y, z \in X\} \\ 0 & \text { otherwise }\end{array}\right\}$
where $y \epsilon Y$
Definition (2-7): [2]
Let $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be a fuzzy sets of set X, define $f($
$\mu)=\mu_{1}+\mu_{2}+\cdots+\mu_{n}$, where $\mu=\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}$, and
$f: X^{n} \rightarrow X$, where $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n}$
, $X^{n}=X_{1} \times X_{2} \times \ldots \times X_{n}$

Definition (2-8):[2]

Let $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be a fuzzy sets of set $X_{1}, X_{2}, \ldots, X_{n}$ respectively.
Define $\mu=\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}$, by $\mu\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\min \left\{\mu_{1}\left(x_{1}\right), \mu_{2}\left(x_{2}\right)\right.$,, $\mu_{n}\left(x_{n}\right)$ \}

3- Generalized Sum of Fuzzy Subgroup

Theorem(3-2):-[2]

Let $\mu_{1}, \mu_{2}, \ldots \ldots, \mu_{n}$ be a fuzzy subsets of the sets $G 1, G 2, \ldots ., G_{n}$
respectively. Then
$\left(\mu 1+\mu 2+\cdots+\mu_{n}\right)(Z)=$
$\operatorname{Sup}_{x_{1}+x_{2}+\cdots+x_{n}=z}\left\{\min \left\{\mu_{1}\left(x_{1}\right), \mu_{2}\left(x_{2}\right), \ldots, \mu_{n}\left(x_{n}\right)\right\}\right.$

Proof:-

$$
\text { Since } f(\mu)=\mu_{1}+\mu_{2}+\ldots \ldots \ldots .+\mu_{n}, \text { using Definition(2-7)and }
$$

Definition(2-6)
$\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)(Z)=\sup _{f(x)=z} \mu(x), x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in G^{\mathrm{n}}$
$f(x)=Z$
Since $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+x_{2}+\ldots+x_{n}$,using Definition(2-8)
$\mu(x)=\mu\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\min \left\{\mu_{1}\left(x_{1}\right), \mu_{2}\left(x_{2}\right), \ldots, \mu_{n}\left(x_{n}\right)\right\}$

Then $\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)(Z)=$
$\operatorname{Sup}_{x_{1}+x_{2}+\cdots+x_{n}=z}\left\{\min \left\{\mu_{1}\left(x_{1}\right), \mu z\left(x_{2}\right), \ldots, \mu_{n}\left(x_{n}\right)\right\}\right.$

Theorem(3-2):-

Let $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be a fuzzy subgroups of the groups $G_{1}, G_{2}, \ldots, G_{n}$ respectively then $\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)$ is fuzzy subgroup of $G_{1}, G_{2}, \ldots, G_{n}$

Proof:-

We must show that $\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)$ is fuzzy subgroup of
$G_{1}, G_{2}, \ldots, G_{n}$ for all elements $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in G_{1}, G_{2}, \ldots, G_{n}$
We get
$\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)$
$\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)$
Let $\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)=Z$
$=\underset{\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)=z}{\operatorname{Sup}} \min \left\{\mu_{1}\left(x_{1}+y_{1}\right), \mu_{2}\left(x_{2}+y_{2}\right), \ldots, \mu_{n}\left(x_{n}+y_{n}\right)\right\}$
$\geq \operatorname{Sup}_{\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)=z} \min \left\{\min \left(\mu_{1}\left(x_{1}\right), \mu_{2}\left(x_{2}\right), \ldots, \mu_{n}\left(x_{n}\right)\right), \min (\right.$
$\left.\left.\mu_{1}\left(y_{1}\right), \mu_{2}\left(y_{2}\right), \ldots, \mu_{n}\left(y_{n}\right)\right)\right\}$
$=\min \left\{\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\}$
Also
$\left.\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)(Z)=\underset{x_{1}+x_{2}+\cdots+x_{n}=z}{\operatorname{Sup}} \min \left\{\mu_{1}\left(x_{1}\right), \mu_{2}\left(x_{2}\right), \ldots, \mu_{n}\left(x_{n}\right)\right\}\right\}$
Since $\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)$ is fuzzy subgroups of G_{i}
$\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)(Z)=\operatorname{Sup}_{x_{1}+x_{2}+\cdots+x_{n}=z} \min \left\{\mu_{1}\left(-x_{1}\right), \mu_{2}\left(-x_{2}\right), \ldots, \mu_{n}\left(-x_{n}\right)\right\}$
$=\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)\left(-x_{1},-x_{2}, \ldots,-x_{n}\right)$
$=\left(\mu_{1}+\mu_{2}+\ldots .+\mu_{n}\right)\left(-\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$
Thus $\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)$ is fuzzy subgroups of G_{i}

4- α-cut subgroup

In this section, we introduce a definition of α-cut subgroup

Definition(4-1):-

Let μ be a fuzzy subset of a set G,T a t-norm and $\alpha \in[0,1]$, then we define α-cut subset of a fuzzy subset μ as
$\mu_{k}^{T}=\left\{x \in G: \sup _{x \in 6} T(\mu(x), \alpha) \geq \alpha\right\}$

Theorem(4-2):

Let G be a group and $\boldsymbol{\mu}$ a t-fuzzy subgroup of $(G,+)$ then $\boldsymbol{\alpha}$-cut subset μ_{a}^{T} is fuzzy subgroup of $(G,+)$ where e is the identity of G

Proof:

Let $x, y \in \mu_{a}^{T}$, then $\sup _{x \leqslant \beta} T(\mu(x), \alpha) \geq \alpha$ and $\sup _{y: 6} T(\mu(y), \alpha) \geq \alpha$,
since μt-fuzzy subgroup of G
then $\mu(x+y) \geq T(\mu(x), \mu(y))$ is satisfied .This means

$$
\begin{aligned}
& \sup _{x y: 6} T(\mu(x+y), \alpha) \geq \sup _{x y: 5} T(T(\mu(x), \mu(y), \alpha)) \\
& \quad=\sup _{x: 5} T(\mu(x), \alpha) \operatorname{or}^{\sup _{y: 5}} T(\mu(y), \alpha) \\
& \quad \geq \sup _{x: 5} T(\mu(x), \alpha) \geq \alpha \operatorname{or}^{\sup } \sup _{y \in 6} T(\mu(y), \alpha) \geq \alpha
\end{aligned}
$$

hence $x+y \in \mu_{a}{ }^{T}$
A gain $x \in \mu_{\alpha^{T}}^{T}$ implies $\sup _{x \in 6}(\mu(x), \alpha) \geq \alpha$
since μ is a t-fuzzy subgroup $\mu(-x)=\mu(x)$ and hence
$\sup _{x \in g} T(\mu(-x), \alpha)=\sup _{x \in g} T(\mu(x), \alpha) \geq \alpha$
this means that $-x \in \mu_{e^{T}}$
Theorem (4-3):
Let $(G,+)$ be a group and $\boldsymbol{\mu}$ a fuzzy subgroup then the α-cut subset $\mu_{\alpha^{T}}$
For $\alpha \epsilon[0,1]$ is a subgroup of G, where e is identity of G
Proof:
Let $x, y \in \mu_{c^{T}}$, then $\sup _{x \in \mathrm{~B}} T(\mu(x), \alpha) \geq \alpha$ and $\sup _{y: 5} T(\mu(y), \alpha) \geq \alpha$ since μ is subgroup of G
$\mu(x+y) \geq \min (\mu(x), \mu(y))$ is satisfied, this means
$\sup _{x y \in 6} T(\mu(x+y), \alpha) \geq \sup _{x_{y y \in} 6} T(\min (\mu(x), \mu(y)), \alpha)$, where there are two cases
$\min (\mu(x), \mu(y))=\mu(x)$ or $\min (\mu(x), \mu(y))=\mu(y)$ since $x, y \in \mu_{c^{T}}$
Also in to case $\sup _{x y \leq E} T(\min (\mu(x), \mu(y)), \alpha) \geq \alpha$
therefore $\sup _{x y: 0} T(\mu(x+y), \alpha) \geq \alpha$, thus we get $x+y \in \mu_{T^{T}}$
it is easily seen that, as above $-x \in \mu_{\alpha^{T}}$
Hence μ_{c}^{T} is a subgroup of G

Theorem(4-4):

Let μ and v be α-cut subsets of the sets G, H respectively, and $\alpha \in[0,1]$, then $\mu+v$ is also a α-cut subset of $G+H$

Proof:

Since any t-norm T is associative ,using definition(4-1) and definition(2-2) we can write , the following statements.

$$
\begin{aligned}
& \sup _{x, y \in \mathrm{E}, \mathrm{~A}} T((\mu+v)(x+y), \alpha)=\sup _{x, y=G, \lambda} T(\sup \min (\mu(x), v(y)), \alpha) \\
& =\sup _{x: 6} T\left(\mu(x), \sup _{y: 6} \min (v(y), \alpha)\right) \\
& \geq \sup _{x ; Q} T(\mu(x), \alpha) \\
& \geq \alpha
\end{aligned}
$$

Definition(4-5) :- [1]

Let $(G,+)$ be a group and μ a t-fuzzy subgroup of G.The subgroups $\mu_{a}{ }^{T}$, $\alpha \in[0,1]$ and $\sup T(\mu(e), \alpha) \geq a$ are called α-cut subgroup of

Theorem(4-6):

Let (G,+),(H,+)be two groups μ, v a t-fuzzy subgroup of G and H, respectively, then the α-cut subset $(\mu+v){ }_{s}{ }^{T}$ for $\alpha \in[0,1]$, is subgroup of $G+H$ where e and e are identities of $G+H$, respectively.
Proof:

$$
\begin{aligned}
& (\mu+v) \alpha^{T}=\left\{(x, y) \in G+H: \sup _{x \in \in \in \mathcal{A}} T((\mu+v)(x+y), \alpha) \geq \alpha\right\} \\
& \text { let }\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \in(\mu+v){ }_{\mathrm{a}}{ }^{T} \text {, then } \\
& \sup T\left((\mu+v)\left(x_{l}+y_{l}\right), \alpha\right) \geq \alpha \\
& \text { sup } T\left((\mu+v)\left(x_{1}+y_{l}\right), \alpha\right) \geq \alpha \text {.since }(\mu+v) \text { is a } t \text {-fuzzy group of } G+H \text {, } \\
& \text { We get } \\
& \sup T\left((\mu+v)\left(\left(x_{1}+x_{2}\right)+\left(y_{l}+y_{2}\right), \alpha\right) \geq \sup T\left(\sup T\left(\mu\left(x_{1}+x_{2}\right), v\left(y_{l}+y_{2}\right)\right), \alpha\right)\right. \\
& =\sup T\left(\mu\left(x_{1}+x_{2}\right), \sup T\left(v\left(y_{l}+y_{2}\right)\right)\right) \\
& \geq \sup T\left(\mu\left(x_{1}+x_{2}\right), \alpha\right) \geq \alpha
\end{aligned}
$$

Hence $\left(x_{1}+x_{2}\right),\left(y_{l+} y_{2}\right) \in(\mu+v) \pi^{T}$
A gain $(x, y) \in(\mu+v){ }^{7}{ }^{7}$ implies
$\sup T((\mu+v)-(x+y), \alpha)=\sup T((\mu+v)((-x)+(-y)), \alpha)$
$=\sup T(\sup T(\mu(-x),(v(-y)), \alpha)$
$=\sup T(\mu(-x), \sup T(v(-y)), \alpha))$
$\geq \sup T(\mu(-x)), \alpha) \geq \alpha$
This means that $(-x-y) \in(\mu+v) \varepsilon^{T}$ therefore $(\mu+v) e^{T}$ is a subgroup of $G+H$

Theorem(4-7):

Let $\mu_{1}, \mu_{2}, \ldots \ldots ., \mu_{n}$ be a fuzzy subgroup of the groups G_{1}, G_{2},
....., Gn respectively, and let $\alpha \in[0,1]$,then
$\left(\mu_{1}+\mu_{2}+\ldots \ldots . .+\mu_{n}\right)_{\varepsilon^{T}}^{T}=\mu_{1} \varepsilon^{T}+\mu_{2} \varepsilon^{T}+\ldots \ldots . .+\mu_{n}{ }^{T}$

Proof:

Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an element of $\left(\mu_{1}+\mu_{2}+\ldots \ldots .+\mu_{n}\right){ }_{3}^{T}$
Then using definition (4-1) and definition (2-4) we can write $\sup T\left(\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right), \alpha\right)=$
$\operatorname{SupT}\left(\min \left(\mu_{1}\left(x_{1}\right), \mu_{2}\left(x_{2}\right), \ldots, \mu_{2}\left(x_{n}\right)\right), \alpha\right)$
by theorem(3-1)
For all $i=1, \ldots, n \min \left(\mu_{1}\left(x_{1}\right), \mu_{2}\left(x_{2}\right), \ldots, \mu_{n}\left(x_{n}\right)\right)=\mu_{i}\left(x_{i}\right)$
This given us
$\operatorname{SupT}\left(\min \left(\mu_{1}\left(x_{1}\right), \mu_{2}\left(x_{2}\right), \ldots, \mu_{2}\left(x_{1}\right)\right), \alpha\right)=\operatorname{Sup} T\left(\mu_{i}\left(x_{i}\right), \alpha\right) \geq \alpha$ Thus we have $x_{i} \in \mu_{s}{ }^{T}$. That is $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mu_{1 a^{T}}+\mu_{2 \alpha}{ }^{T}+\cdots+\mu_{n}{ }^{T}$
Similarly, let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an element of $\mu_{1} \pi^{T}+\mu_{2 \pi}^{T}+\cdots+\mu_{n}{ }^{T}$

Then for all $i=1,2, \ldots, n, x_{i} \in \mu_{i}{ }^{T}$.that is $\operatorname{Sup} T\left(\mu_{i}\left(x_{i}\right), \alpha\right) \geq \alpha$.
Since $\min \left(\mu_{1}\left(x_{1}\right), \mu_{2}\left(x_{2}\right), \ldots, \mu_{n}\left(x_{n}\right)\right)=\mu_{i}\left(x_{i}\right)$ and $\operatorname{Sup} T\left(\mu_{i}\left(x_{i}\right), \alpha\right) \geq \alpha$,we get
$\sup T\left(\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right), \alpha\right)=$
$\operatorname{Sup} T\left(\min \left(\mu_{1}\left(x_{1}\right), \mu_{2}\left(x_{2}\right), \ldots, \mu_{2}\left(x_{n}\right)\right), \alpha\right)=\operatorname{Sup} T\left(\mu_{i}\left(x_{i}\right), \alpha\right) \geq \alpha$
Thus $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mu_{1}+\mu_{2}+\ldots \ldots+\mu_{n}\right)_{\varepsilon^{T}}^{T}$.

References

1- H.Aktas ,N.Cagman "Generalized product of fuzzy subgroup and t level subgroup",Math. Comm.11(2006),121-128.
2- D.Dubois, H .prade "Fuzzy sets and systems theory and applications" ,Academic Press, New York, 1980.
3- F.Formato,G.Gerla,L. Scarpati "Fuzzy subgroup and similarities", soft computing3(1999)1-6.
4- James J.Buckley, Esfandiar . Eslami "An Introduction to fuzzy logic and fuzzy set" physical verlag. 2002
5-W.B.Vasantha "Smarandache Fuzzy algebra",Chennai-600 036, India 2003

في هذا البحث ندرس بعض النتائج في تععيم الجمع للزمر الجزئية الضبابية ومسنوي القطع للزمر الجزئية الضبابية ، عرفنا مستوي القطع - α للمجموعات الجزئية و مستوي القطع للزمر الجزئية ،وبعد ذلك ندرس البعض من خصائصهم.

