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Abstract

In a previous paper I showed how a new parameter added to MOND, the entropic degree of

freedom N, exactly solved the MOND galaxy cluster mass discrepancy problem. In this paper

I show that the same entropic degree of freedom produces an exact interpretation of Milgrom’s

approximate 5a0 ≈ cH0. The new relation gives N2a0 = cH0. With present day values, N = 2.13,

the cosmic degree of freedom of the entropic force in relation to cosmic structure formation.
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I. THE ENTROPIC FORCE OF GRAVITY AS THE MOND FORCE

In a previous paper I derived the entropic force of gravity [1] and then in a subsequent

paper I introduced the entropic degree of freedom in that force [2]. This new parameter N

allowed a simple solution for the MOND galaxy cluster mass discrepancy problem.

In my elementary particle Dark Matter halo model, see [1] for further information and

references, I start with the gravitational source mass

mg = m0 +mdm = m0 +
r

rdm
m0 = m0

(
1 +

r

rdm

)
(1)

and I get gravitational potential at r as

φ = −GM0

r
− GM0

rdm
= φ0 + φdm. (2)

For the resulting force of gravity on a classical charge mass m we get the unchanged New-

tonian result

F = −m∇φ = −m∇φ0 +−m∇φdm = −m∇φ0 = −GM0m

r2
r̂. (3)

The gravitational energy is however affected by the Dark Matter potential as

Ug = mφ = mφ0 +mφdm = −GM0m

r
− GM0m

rdm
. (4)

I assume that the virial theorem is still valid. Using 2Uk = −Ug I get v2 = −φ for orbiting

satellites and

v2 = −φ =
GM0

r
+
GM0

rdm
. (5)

The total force of gravity in my model is derived from the energy by application of the

virial theorem

Fc =
m0v

2

r
=
GM0m0

r2
+
GM0m0

r rdm
= −FN − Fdm (6)

and so the entropic Dark Matter force must result in

Fdm = −GM0m0

r rdm
(7)

This force is derived from a potential φ connected to an entropy S and a number of mi-

crostates W using the first law of thermodynamics. I define the Dark Matter entropy on

the outer flat rotation curve parts of the galactic disks as

S = kB lnW = kB

(
Udm

kBT

)
ln

(
r

rm

)
(8)

2



From the entropy we can derive the entropic DM force using the first law of thermodynamics

Fdm = T

(
dS

dr

)
Udm

= T
d

dr
kB ln

(
r

rm

) Udm
kBT

= Udm

d

dr
ln

(
r

rm

)
=
Udm

r
= −GM0m0

r rdm
. (9)

For r � rdm, v = vf and Fc ≈ −Fdm so

Fc =
m0v

2
f

r
≈ GM0m0

r rdm
= −Fdm (10)

leading to

v2f =
GM0

rdm
(11)

We can define a special Dark Matter centripetal acceleration given by

adm ≡
v2f
rdm

(12)

so rdm can be given by

rdm ≡
v2f
adm

(13)

which, inserted into Eqn.(11) gives

v2f =
GadmM0

v2f
(14)

and this leads to

v4f = GadmM0, (15)

a relation that we recognize as Milgrom’s form of the Baryonic Tully-Fisher relation. In

2005 McGaugh determined the baryonic version of the LT relation as Md = 50v4f , see [3]. In

this form, Md is expressed in solar mass M� = 1, 99 · 1030 kg units and the final velocity of

the galactic rotation velocity curve vf is expressed in km/s. If we express the galactic mass

in kg and the velocity in m/s we get the total baryonic mass, final velocity relations in SI

unit values as Mb = 1, 0 · 1020v4f .

In 1983, Milgrom interpreted the BTF relation as an indication of a deviation from

Newtonian gravity, making a modification of Newtonian dynamics or MOND necessary [4].

Using McGaug’s 2005 values in SI units, Milgrom presented the BTF relation in the form

v4f = 1, 0 · 10−20Mb = Ga0Mb, (16)

resulting in an acceleration a0 = 1, 5·10−10 m/s2 in McGaug’s values. According to Milgrom,

this relation should hold exactly, thus interpreting it as an inductive law of nature instead
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of looking at it as just an empirical relation [5]. The resulting acceleration can be written

as 5 · a0 ≈ cH0, with the velocity of light c and the Hubble constant H0. According to

Milgrom, the deeper significance of this relation between the galactic critical acceleration

and the Hubble acceleration should be revealed by future cosmological insights [4]. I identify

adm with Milgrom’s a0. So in my model, adm = v2f/rdm is the galactic Dark Matter constant.

In MOND terminology, the entropic DM force is given by

Fdm = −Ga0M0m0

r v2f
, (17)

so with Fdm ∝ r−1. And with v4f = Ga0Mb this reduces to

Fdm = −m0

r

√
Ga0M0, (18)

so to Milgrom’s 1983 formulation [5].

II. FROM THE GALAXY CLUSTER PROBLEM TO THE COSMIC INTERPRE-

TATION OF MOND’S ACCELERATION CONSTANT

In my model, objects on a disk have one degree of freedom, objects moving freely on

a sphere have two degree’s of freedom and objects that behave as in a mono-atomic gas

have three degrees of freedom. For the entropic Dark Matter force this degree of freedom

parameter N with value between 1 and 3 can be inserted to give

Fdm = T

(
dS

dr

)
Udm

= Udm

d

dr
ln

(
r

rm

)N

=
NUdm

r
= −G(NM0)m0

r rdm
. (19)

Without this number of microstates degree of freedom related factor N , in certain situa-

tions the needed baryonic mass might be overestimated by a factor between 2 and 3. The

parameter N will never be exactly three because such systems behave as a free gas and do

not display gravitational attraction phenomena.

In the case of galaxy clusters, the degree of freedom cannot be 2 or smaller because then

the cluster should have been shaped like a disk or a recognizable sphere. Neither can it be

3 because then the cluster would disperse like a free gas. So its degree of freedom should be

somewhere in between 2 and 3, giving it an apparent baryonic mass 2Mb < Ma < 3Mb, see

[2].
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The same reasoning can be applied to the cosmos as a whole, so because cluster formation

takes place in the universe, its entropic degree of freedom should be somewhere in between

the values N = 2 and N = 3. If we add the degree of freedom to Milgrom’s MOND form of

the entropic force we get

Fdm = −G(NM0)m0

r rdm
= Fdm = −m0

r

√
GN2a0M0. (20)

If we adopt Milgrom’s interpretation but now include the entropic degree of freedom param-

eter N we get

N2a0 = cH0 (21)

so

N =

√
cH0

a0
= 2, 13. (22)

In our model, the cosmic entropic degree of freedom is given by this value N = 2, 13. In the

calculation of N we used the value of Ga0 = 1, 0 · 10−20 from McGaugh [3]. This parameter

should be important in understanding cosmic structure formation.
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