
 1 

The origin of wave-particle duality of matter 

revealed 

Swapnil Patil 
 

Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India. 

Email: spatil.phy@itbhu.ac.in 
 

Abstract 

 The wave-particle duality is one of the most remarkable concepts in physics ever 

discovered. It is a central pillar upon which the entire theory of quantum 

mechanics is based. However the origin of the wave-particle duality is 

unrevealed yet and is generally taken as a postulate representing a fundamental 

fact of nature. Here we disclose the origin of this remarkable fact of nature. We 

show that the introduction of (fermionic or bosonic) exchange symmetry for the 

state describing a group of particles of matter would naturally lead those particles 

to demonstrate wave-like character from particle-like character. Thus the 

existence of (fermionic or bosonic) exchange symmetry among the particles of 

matter is absolutely necessary for their wave character to manifest thus shedding 

light on the microscopic origin of the peculiar quantum behavior of matter.  

Keywords: wave character of matter, exchange symmetry, quantum 

superposition, double slit experiment 

 

1 Introduction 

The fundamental nature of light had been an important question in the time of 

Sir Isaac Newton. Newton proposed, in the year 1704, the corpuscular theory of 

light in which he argued the light to be composed of tiny particles called 
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corpuscles [1].  According to his theory light consists of a stream of particles 

whose path is modified when it hits objects. Using this picture he explained 

various phenomena associated with light e.g. reflection, refraction etc. A 

contemporary proposal by Christian Huygens however claimed that light was 

actually made up of moving disturbances in its medium of propagation giving 

rise to the wave theory of light [2]. For around a century after Newton, the 

corpuscular theory of light was generally accepted as the nature of light however 

with the experiments of Thomas Young in the year 1801, Huygen’s wave theory 

of light was vindicated [3]. At the start of the 20th century the quantum theory of 

light was initiated by Max Planck when he explained the radiation spectrum of a 

black body by assuming the quantized nature of the light emission from the black 

body [4]. This quantum theory of light was furthered strengthened by Albert 

Einstein in 1905 when he explained the photoelectric effect by assuming the 

quantized absorption of light by a metal [5]. Thus the light was argued to consist 

of both the wave and particle characteristics at the same time depending upon the 

experiments performed on them. In some experiments like diffraction, 

interference etc. light demonstrated a wave like behavior while in other 

experiments like the photoelectric effect it needed a particle like description. 

Such a dichotomy led to the birth of wave-particle duality of light. 

Striking an analogy with the wave-particle duality of light, Louis de Broglie 

in 1924 postulated that just as the light contains dual character (wave and particle 

like) similarly even the matter contains a dual character of being simultaneous 

wave like and particle like [6]. He proposed a wave to be associated with a 

moving particle of matter of momentum ‘p’ with a wavelength λ=h/p where h is 

the Planck constant, in analogy with the case of light. The light particles, i.e. 
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photons, are known to propagate with the speed ‘c’ (=299792458 m/s). However 

de Broglie hypothesis was applicable to matter particles moving at non-

relativistic speeds too. The hypothesis was later verified by a number of 

experiments which then became a fundamental fact of nature giving birth to 

quantum mechanics [7-10]. However, the applicability of the de Broglie theory 

to non-relativistic massive particles is curious. 

The origin of this wave-particle duality of matter has remained elusive and 

has, so far, been accepted only as a postulate representing a fundamental fact of 

nature. In this paper we go a step ahead and elucidate the origin of this wave-

particle duality of matter. We intend to disclose the microscopic mechanism for 

the formation of wave character from the particles of matter. We stress on the 

importance of the fermionic or bosonic exchange symmetry among the particles 

of matter as a necessary component for forming wave-like character from them. 

Quantitative estimations for the properties of quantum systems are well 

established via Schrödinger or Dirac formalisms. The unknown issues regarding 

quantum mechanics mainly arise from an interpretational point of view and 

would form the subject of this paper. 

 

2 Results and Discussion  

 

One of the most revealing experiments as far as the quantum properties of 

matter are concerned is the double slit experiment performed with electrons [11]. 

This experiment involves shining a beam of mono-energetic electrons upon two 

parallel, closely spaced (spacing d is of the order of the de Broglie wavelength of 

the electrons) narrow slits and measuring the electron pattern on a detector screen 
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beyond the double slit. Surprisingly the electron pattern reveals interference 

fringes characteristic of the wave character for the incident electrons. The same 

experiment when repeated with reduced incident electron fluxes to an extent that 

only a single electron could pass through the apparatus at a time, surprisingly, 

reproduces the interference fringes like before, clearly revealing the wave 

phenomena to be associated with ‘individual’ electrons. 

We, too, in our discussion will begin with the double slit experiment with 

electrons. In this case the incident electron beam is provided by an electron gun. 

Let us, for the sake of illustrating the origin of wave behavior from electrons,  

approximate the electron reservoir (infinitely many electrons) inside the electron 

gun to represent a gas of classical particles i.e. let us approximate every incident 

electron to be a classical particle. Since classical particles have well defined 

trajectories, we will associate every electron with a well defined trajectory for its 

travel through the double slit apparatus. Few electrons will have an overlap of the 

trajectory so there will be a statistical distribution of the number of electrons as a 

function of their trajectories. If we shine infinitely many electrons over the 

double slit, the predicted statistical distribution will be ultimately obtained. Now 

let us, for illustrative purpose, take an example of three distinct trajectories ‘A’, 

‘B’ and ‘C’ (see Fig.1). Let us put an electron into each of these trajectories. Let 

us assume that the electron in ‘A’ is moving through the double slit at an instant 

of time. Now we introduce fermionic exchange symmetry among the three 

electrons (and subsequently among all electrons of the reservoir) and evaluate its 

consequences for the trajectory of the moving electron (see supplementary 

information section A for a more elaborate discussion). The introduction of 

fermionic exchange symmetry between the electrons occupying ‘A’ and ‘B’ will 
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force the moving electron to pass through ‘B’ simultaneously with ‘A’ (and vice 

versa). Similarly, an exchange with the electron in ‘C’ will force the moving 

electron to simultaneously pass through ‘C’ along with ‘A’ and so on so forth. 

Thus the fermionic exchange symmetry among all the infinite electrons of the 

reservoir will force the electron in ‘A’ (and all other electrons too) to 

simultaneously pass through the trajectories of all other electrons of the reservoir 

giving rise to its (their) presence in an extended region of the space (a typical 

behavior expected from a wave). Since there are infinitely many electrons in the 

reservoir their trajectories will form a continuum inside the cross-section of the 

incident electron beam. Thus we see that the effect of the fermionic exchange 

symmetry is to smear the electron’s probability distribution from a Dirac delta 

function (corresponding to a ‘point’ particle) to a ‘wavefront’ extending over the 

surface of the beam cross-section of the electron gun.  For any overlap of 

trajectories the number of electrons possessing the fermionic exchange symmetry 

increases proportionately, leading to an increase of the amplitude of the 

‘wavefront’ at that point consistent with the classical statistical distribution. Thus 

we appreciate the importance of the fermionic exchange symmetry in 

compressing the entire information of the classical statistical distribution for the 

electron beam inside one incident electron such that the single electron 

probability distribution in space resembles the classical statistical distribution. 

Thus we observe that the fermionic exchange symmetry leads to (i) the formation 

of a ‘wavefront’ of the probability distribution for the electron in space and (ii) 

the simultaneous propagation of all the electrons of the reservoir through the 

double slit. All of the electrons move through the double slit at once but partially 
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such that their integrated probability flux equals the incident electron flux (see 

supplementary information section A).  

Thus a well defined trajectory, a hallmark of classical behavior of the 

particles, is incompatible with the existence of the fermionic (or bosonic) 

exchange symmetry between those particles. Instead, as described above, the 

electron trajectory spreads over the region of the classical statistical distribution 

forming a ‘wavefront’ in space laying the groundwork for the formation of wave 

nature of electrons. However a wave has many other attributes like e.g. 

wavelength, phase etc. too. It remains a task to justify these attributes as arising 

because of the fermionic (or bosonic) exchange symmetry. The wavelength of a 

matter wave is given by the de Broglie formula. For justifying the applicability of 

the de Broglie formula to matter waves and to elucidate its origin from the 

fermionic (or bosonic) exchange symmetry among particles, we refer the reader 

to the supplementary information section B. The interesting issue is related to the 

phase of the matter wave.  From elementary wave theory it is well known that a 

wave has both +ve and -ve phases corresponding to +ve and -ve displacements of 

a physical quantity about a reference value. The phase differences among 

superposing waves are responsible for generating the interference pattern which 

is the characteristic of their wave nature. In the case of the electron waves in the 

double slit experiment, we argue that the origin of different phases arise from the 

passage of the two (‘partial’) electrons either through same slit or through 

different slits. It is argued that these two different passages would contribute 

differently towards the interference pattern. The passage of the two electrons 

through the same slit would not contribute to the interference pattern while their 

passage through different slits would contribute to the interference pattern. This 
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information is encoded (and distinguished) in the phase of the electron wave. 

Without loss of generality we can assume that the passage through different slits 

generates a +ve phase while the passage through the same slit generates a -ve 

phase. Since there are infinitely many electrons in the reservoir, for any arbitrary 

electron nominally passing through the upper slit, equal number of electrons 

passes through the upper slit and through the lower slit all of which have 

fermionic exchange symmetry with it. As a result the passage of the electron 

(nominally through the upper slit) would generate a wave of equal amplitude for 

both the phases at any arbitrary point ‘P’ on the other side of the double slit (in 

general, there will be a phase difference between both the phases reflecting the 

path length difference for the point ‘P’ from both the slits.). Thus we rationalize 

the emergence of two different phases in a matter wave from such an argument. 

Following the origin of two different phases of a matter wave in a double slit 

experiment, a natural question arises as to how one explains the existence of two 

such phases in a matter wave propagating in free space where there is no such 

physical double slit arrangement present. In order to explain this we need to take 

recourse to the single slit diffraction experiment wherein a mono-energetic 

electron beam falls on a single slit and then gets diffracted (see Fig.2). This 

diffracted electron beam is collected on a screen kept after the single slit and the 

diffraction pattern is observed akin to the one observed when we shine photons, 

instead of electrons, on the single slit. The theoretical analysis of this diffraction 

experiment involves dividing the slit width (d) into two equal halves and treating 

them as harboring the continuum of double ‘infinitesimally’ wide slits arranged 

side by side along the slit width. These are not physical slits rather they are 

‘virtual’ slits (Following Huygen’s principle every point on the wavefront acts 
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like a secondary source of light emitting spherical waves [2]. Thus every point 

along the slit width acts like a point source for the spherical wavefront. Using 

this concept we can hypothetically divide the slit width into a continuum of 

infinitesimally wide sections each of which can act like the ‘point’ source). Then 

the differences in the path lengths arising from these continuum ‘virtual’ double 

slits are calculated for any arbitrary point ‘P’ on the screen in order to calculate 

the diffraction pattern. Note that the point ‘P’ has a contribution from an equal 

length of the upper slit continuum and the lower slit continuum. Thus the wave at 

‘P’ will contain both the phases having equal amplitudes except with a phase 

difference (corresponding to the path length difference for point ‘P’ from the 

upper and lower slit continuum) between both of them (see supplementary 

information section C). The observed diffraction pattern is a result of this phase 

difference. The free space can then be simulated by taking the limit d→∞. In this 

limit we recover the uniform intensity as expected for a wave moving in an 

isotropic space since the diffraction pattern vanishes. Thus we have explained 

qualitatively how the different attributes of a wave character emerge within 

particles when we switch on the fermionic (or bosonic) exchange symmetry 

among them. 

Going back to the double slit experiment, an electron passing through the 

upper slit would then generate a secondary electron wave from the ‘point’ source 

of the upper slit and an electron passing through the lower slit would do the same 

from the lower slit. These secondary electron waves then interfere to generate an 

interference pattern marked by a complete destructive interference from waves of 

equal amplitudes with phase difference of ‘’ among them. 
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Following the origin of the wave nature of matter as arising due to the 

existence of the fermionic (or bosonic) exchange symmetry, a question arises 

whether wave theory could be applied to classical objects in everyday life like 

bat, bus, football etc. To date, it is generally believed that since all physical 

objects are made up of ‘quantum’ particles (like e.g. proton, neutrons, electrons 

etc.) the wave theory which is applicable to these quantum particles is naturally 

applicable even to such macroscopic objects but since their energy scales are 

much higher than those for the quantum particles, the quantum effects are not 

visible among them. Philosophical debates about the validity of quantum 

mechanics have occurred in the past, the famous one being the Schrödinger’s cat 

paradox [12], which were often used to discredit quantum mechanics (or certain 

interpretations of quantum mechanics). Our position over this is that a paradox 

like the Schrödinger’s cat paradox is non-existent since one cannot apply 

quantum mechanics to the two body system of a cat and a radioactive atom 

trigger since there is no such exchange symmetry between both of them. Thus the 

extrapolation that quantum mechanics would be naturally applicable to 

macroscopic objects is against our view. In our opinion quantum mechanics only 

applies to particles having fermionic (or bosonic) exchange symmetry among 

themselves (see supplementary information section D and section E). In fact all 

the experimental evidences obtained so far concerning the observation of 

quantum behavior has always been obtained from such particles which is 

consistent with our viewpoint. And even for these cases it applies only under 

certain conditions where such exchange symmetry is maintained. There are 

situations where the fermionic (or bosonic) exchange symmetry can be 

suppressed among the so-called identical particles via localization process [13] or 
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via specific experimental techniques used [14]. In such cases the electron under 

study would fail to exhibit quantum behavior. 

 

3 Conclusion  

In summary, we highlight the origin of the wave theory of particles within the 

realm of quantum mechanics. We argue that the presence of fermionic (or 

bosonic) exchange symmetry among the particles of matter is indispensable for 

the manifestation of quantum behavior among them. The origin of their wave 

character is rationalized through the presence of such exchange symmetry among 

them. We justify different attributes of their wave character through such 

exchange symmetry. Finally, we argue that quantum mechanics is not applicable 

for everyday macroscopic objects due to the absence of fermionic (or bosonic) 

exchange symmetry among them but instead claim its applicability only for 

identical particles which possess such exchange symmetry among themselves. 
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Fig.1. Schematic diagram for the double slit experiment with electrons: An 

electron gun shoots mono-energetic electrons at the double slit (width d) 

arrangement. Three electron trajectories ‘A,’ ‘B’ and ‘C’ are shown for 

illustration. Trajectory ‘A’ passes through upper slit, trajectory ‘B’ passes 

through lower slit and trajectory ‘C’ hits the barrier in between the double slit. 

The screen S records the interference pattern from electrons passing through the 

double slits. 
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Fig.2. Schematic diagram for the single slit diffraction experiment with 

electrons: An electron gun shoots mono-energetic electrons at the single slit 

(width d) arrangement. Three electron trajectories A, B and C are shown for 

illustration. The screen S records the diffraction pattern from electrons passing 

through the single slit. The slit is hypothetically divided into two equal parts (for 

the diffraction analysis) into the upper slit continuum and lower slit continuum 

each containing a continuum of ‘virtual’ slits which act like sources for 

secondary electron wavefronts. Corresponding ‘virtual’ slits from the two 

continuums act like a pair of double slits that cause interference effects at ‘P’ 

(see the panel at top left. Such continuum pairs of double slits are depicted by 

different colors). The collective interference of all such pairs of ‘virtual’ double  

slits give rise to the diffraction pattern on S. 
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Supplementary Information 

Section (A) Quantum superposition and the physical meaning of the 

fermionic (or bosonic) exchange symmetry 
Consider two electrons ‘1’ and ‘2’ forming a singlet state. Then their wave function can be written as 

1 2 1 2   ½ ñ½ ñ ½ ñ½ ñ . This state contains a linear combination of a two particle term and its particle 
exchanged counterpart. Note that in this state each of the electrons is in  and  spin states 
simultaneously. Thus we clearly see that the fermionic exchange symmetry among electrons ‘forces’ an 
electron to be in multiple states simultaneously giving rise to a superposition of states. 
 
We will try to evaluate the consequences of this superposition (arising from the fermionic exchange 
symmetry) among the electrons inside the electron gun of the double slit experiment as described in the 
main text of the manuscript.  
 
Discussion [1]  
 
The classical state for the infinite number of ‘classical’ electrons (electrons ‘1’, ‘2’, ‘3’, ‘4’…...etc. 
passing through the trajectories A, B, C, D……etc. respectively) of the electron gun can be represented 
by 1 2 3 4................A B C D upto  no. of electrons(½ ñ½ ñ ½ ñ ½ ñ ) . When we switch on the fermionic exchange symmetry 
between electrons 1 and 2, the wave function for the infinite number of electrons would become: 
 

1 2 3 4................ 1 2 3 4................A B C D upto  no. of electrons B A C D upto  no. of electrons  {(½ ñ½ ñ ½ ñ ½ ñ ) (½ ñ½ ñ ½ ñ ½ ñ )}  
 
In this state electron ‘1’ is passing through the trajectories A and B at the same time thus extending the 
distribution of its probability in space (along both the trajectories A and B). If now further we switch 
on the fermionic exchange symmetry among three electrons ‘1’, ‘2’ and ‘3’ then the resultant state 
would be: 
 

1 2 3 4................ 1 2 3 4................

1 2 3 4................ 1 2 3 4........

A B C D upto  no. of electrons A C B D upto  no. of electrons
C B A D upto  no. of electrons C A B D

 
 
{(½ ñ½ ñ ½ ñ ½ ñ )-(½ ñ½ ñ ½ ñ ½ ñ )

(½ ñ½ ñ ½ ñ ½ ñ )+(½ ñ½ ñ ½ ñ ½ ñ ........

1 2 3 4................ 1 2 3 4................

1 2 3

1 2 3 4.......

1 2 3

upto  no. of electrons
B A C D upto  no. of electrons B C A D upto  no. of electrons
A A A
B B B D
C C C


 



)

-(½ ñ½ ñ ½ ñ ½ ñ )+(½ ñ½ ñ ½ ñ ½ ñ )}

½ ñ ½ ñ ½ ñ
= ½ ñ ½ ñ ½ ñ (½ ñ

½ ñ ½ ñ ½ ñ

.........upto  no. of electrons )

 

 
The resultant state is the tensor product of the Slater determinant for the three electrons (‘1’, ‘2’ and 
‘3’) and a state for the remaining ‘classical’ electrons. One can see that in this state electron ‘1’ is 
passing through the trajectories A, B and C simultaneously.  
 
{Note: The above treatment, although demonstrated for electrons, applies, in principle, to any 
fermionic system and can easily be extended to bosons too. In fact double slit interference experiments 
have been performed for a number of fermions as well as bosons and interference phenomena has been 
observed for all of them. If we have a bosonic system then a particle exchange will not change the sign 
of the wavefunction. In that case the resultant state for the above case will become: 
 

1 2 3 4................ 1 2 3 4................

1 2 3 4................ 1 2 3 4.........

A B C D upto  no. of electrons A C B D upto  no. of electrons
C B A D upto  no. of electrons C A B D

 
 
(½ ñ½ ñ ½ ñ ½ ñ )+(½ ñ½ ñ ½ ñ ½ ñ )

(½ ñ½ ñ ½ ñ ½ ñ )+(½ ñ½ ñ ½ ñ ½ ñ .......

1 2 3 4................ 1 2 3 4................

upto  no. of electrons
B A C D upto  no. of electrons B C A D upto  no. of electrons


 

)

+(½ ñ½ ñ ½ ñ ½ ñ )+(½ ñ½ ñ ½ ñ ½ ñ )

 

} 
 
Thus we see that by introducing the fermionic exchange symmetry among all the electrons of the 
electron gun we make electron ‘1’ pass through the trajectories of all the electrons simultaneously. 
Since the choice of the electron is arbitrary therefore the conclusions drawn for electron ‘1’ holds, in 
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general, for every other electron also; that means every electron will pass through the trajectories of all 
the electrons simultaneously. Now if we assume electron ‘1’ to be moving through the double slit at a 
particular instant of time then it is ‘forced’ to move through the trajectories of all the electrons 
simultaneously thus creating a ‘wavefront’ in space. This wavefront extends over the crosssectional 
area of the incident electron beam. Since there are infinite number of electrons in the electron gun the 
crossectional distribution of their trajectories within the incident electron beam would form a 
continuum. Therefore this ‘wavefront’ is continuous across the crosssectional area of the incident 
electron beam. Thus we argue how a wavefront arises out of the gas of moving (infinite) classical 
particles upon introducing the fermionic exchange symmetry among them. At this stage the following 
picture emerges: We have the distribution of probability for every constituent electron (electron ‘1’ as 
well as other electrons) into each of the trajectories A, B, C, D etc. For moving electrons (e.g. electron 
‘1’ in above case) the resulting wavefront is easy to imagine and is moving in space denoting the 
motion of the electron. For remaining electrons at rest (for whom the probability is distributed, too, 
among all the trajectories due to the exchange symmetry alike electron ‘1’) the ‘wavefront’ 
(‘wavefront’ here implies distribution of the electron across different trajectories) is hard to imagine 
since they are at rest but nevertheless it exists. Thus we argue how every constituent electron (moving 
as well as at rest) will form a ‘wavefront’ in space.  
 
Discussion [2] 
 
Furthermore, there is yet another aspect for the consequences of this fermionic exchange symmetry 
which needs to be highlighted as well. 
 
Let us denote the different wavefronts by W1, W2, W3, W4,…. etc. These wavefronts can be thought of 
as different states available for the occupation of different electrons i.e. electron ‘1’, electron ‘2’, 
electron ‘3’, electron ‘4’,.….. etc. Let us assume W1, W2, W3, W4,…. etc. to be occupied by electron 
‘1’, electron ‘2’, electron ‘3’, electron ‘4’,.….. etc. respectively. Then the many electron state for such a 
system can be written as 1 2 3 4................1 2 3 4W W W W upto  no. of electrons(½ ñ½ ñ ½ ñ ½ ñ ) . Since we have assumed 
electron ‘1’ to be moving while the others are at rest therefore W1 will denote a moving wavefront 
while W2, W3, W4,…. etc. will denote wavefronts which are at rest. When there is a fermionic 
exchange symmetry between electron ‘1’ and ‘2’ then the many electron state can be written as  
 

1 2 3 4................ 1 2 3 4................1 2 3 4 2 1 3 4W W W W upto  no. of electrons W W W W upto  no. of electrons  {(½ ñ½ ñ ½ ñ ½ ñ ) (½ ñ½ ñ ½ ñ ½ ñ )}  
 
In this state electron ‘1’ occupies the wavefronts W1 (moving) and W2 (at rest) at the same time. Thus 
we see that a part of electron ‘1’ is at rest and the remaining part is in motion simultaneously. Also we 
observe that the moving wavefront W1 is simultaneously occupied by electrons ‘1’ and ‘2’ thus clearly 
showing that both the electrons are in a simultaneous state of motion. Thus the fermionic exchange 
symmetry between both the electrons gives rise to their simultaneous motion through the double slit. 
Similarly fermionic exchange symmetry between electrons ‘1’, ‘2’ and ‘3’ gives rise to the many 
electron state as 
 

1 2 3 4................ 1 2 3 4................1 2 3 4 1 3 2 4

1 2 3 4................ 1 23 2 1 4 3 1

W W W W upto  no. of electrons W W W W upto  no. of electrons
W W W W upto  no. of electrons W W W

 
 
{(½ ñ½ ñ ½ ñ ½ ñ )-(½ ñ½ ñ ½ ñ ½ ñ )

(½ ñ½ ñ ½ ñ ½ ñ )+(½ ñ½ ñ ½ 3 4................2 4

1 2 3 4................ 1 2 3 4................2 1 3 4 2 3 1 4

1 2 31 1 1

1 22 2

W upto  no. of electrons
W W W W upto  no. of electrons W W W W upto  no. of electrons
W W W
W W


 

ñ ½ ñ )

-(½ ñ½ ñ ½ ñ ½ ñ )+(½ ñ½ ñ ½ ñ ½ ñ )}

½ ñ ½ ñ ½ ñ
= ½ ñ ½ ñ 3 4................2 4

1 2 33 3 3

W W upto  no. of electrons
W W W

 ½ ñ (½ ñ )

½ ñ ½ ñ ½ ñ

 

The resultant state is the tensor product of the Slater determinant for the three electrons (‘1’, ‘2’ and 
‘3’) and a state for the remaining electrons. One can see that in this state electron ‘1’ occupies the 
wavefronts W1 (moving), W2 (at rest) and W3 (at rest) simultaneously. Here too the moving wavefront 
W1 is occupied by all the three electrons (‘1’, ‘2’ and ‘3’) denoting the simultaneous motion of all the 
three electrons. 
 
Thus we see that the fermionic exchange symmetry forces electron ‘1’ to be in motion and at rest at the 
same time. Since the choice of the electron is arbitrary the above conclusion holds in general for every 
other electron too. Thus we conclude that every electron is in the simultaneous state of motion and rest 
which runs into contradiction with our initial assumption about the motion of electron ‘1’ (and 
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correspondingly about the motion of the remaining electrons too). Thus we see that the assumption that 
only a particular electron moves through the double slit at any time is incompatible with the existence 
of the fermionic exchange symmetry among the electrons. In fact we have already shown above that 
the fermionic exchange symmetry leads to the simultaneous motion of the concerned electrons. When 
we switch on the fermionic exchange symmetry among all the electrons then this leads to the 
simultaneous motion of all the electrons. The electrons move in such a way that their integrated 
probability flux matches the value set for the flux of the incident electron beam. This can happen only 
when all those electrons are moving partially. Thus we see that the introduction of the fermionic 
exchange symmetry among electrons (of the experimental apparatus) has two major consequences; (i) 
generation of an extended spatial distribution of the electron - wavefront formation (concluded from 
Discussion [1]) and (ii) the simultaneous motion of every constituent electron through the experimental 
apparatus partially at any instant of time (concluded from Discussion [2]). 
 
The fermionic (or bosonic) exchange symmetry of the wave function is not just a mathematical 
constraint required by the theory (quantum field theory) but on a physical level it causes both the 
particles to swap their states throughout their journey through an experiment/measurement. This has 
not been mentioned explicitly in the previous literature hence it requires a clarification. This fact is 
very counterintuitive since we usually assume that any single electron would quietly pass through the 
experimental apparatus contributing to the measurement but on the contrary it is in constant state of a 
swap between the two states. A consequence of this exchange is that at any instant of time all the 
electrons are simultaneously but partially passing through the experimental apparatus such that the 
integrated electron flux matches the value set forth for the incident electron flux within the instrument. 
Thus the quantum behavior is completely manifested within such an experiment/measurement since all 
electrons remain ‘indistinguishable’ (‘indistinguishable’ because the measurement is not specifically 
contributed by few electrons more than others. No electron is preferred over others during the 
measurement. In fact, all the electrons contribute equally to the measurement at the same time. Note 
that indistinguishability among particles is a NECESSARY criterion for quantum mechanics to be 
applicable for them.) during the course of the experiment/measurement. Exceptions to this are obtained 
when the fermionic exchange symmetry of the electron under study is suppressed, either due to the 
electron state being localized owing to the electrostatic crystal lattice potential/electron correlations 
(ref. arXiv:1409.7156 or viXra:1511.0040) which does not allow its fermionic exchange symmetry 
with the mobile conduction electrons to fully develop or by specifically ‘looking’ at a single electron 
within an experiment via measuring its single particle property (which naturally ‘forces’ all other 
electrons to stay out from the experiment/measurement) (ref. J. Phys.: Cond. Matter 25, 382205 
(2013)). Under such situations the ‘distinguished’ electron under study would not display quantum 
behavior. 
 
 

Section (B) Justifying de Broglie’s hypothesis to matter waves 
Louis de Broglie’s hypothesis claimed the same equation to be valid for calculating the wavelength of 
matter waves as it is for the wave length of the photon i.e. λ=h/p where h is the Planck’s constant and 
p is the momentum of the photon. In de Broglie’s hypothesis p becomes the relativistic momentum of a 
massive particle. This hypothesis has now become an experimentally validated fact. But the basic issue 
remains as how to justify the de Broglie hypothesis to matter waves even if the particles are moving at 
non-relativistic speeds. We present our viewpoint over its explanation. 
 
We argue that the fermionic (or bosonic) exchange symmetry among massive particles giving rise to 
the wave nature of the particles, originates from the exchange of mediating particles among the massive 
particles. These mediating particles propagate at the speed of light c irrespective of the speed of the 
motion of the massive particles and carry a momentum p with them which is the same as the 
momentum of the massive particles. The existence of these exchange mediating particles is crucial for 
forming the wave character out of these massive particles; as a result all the attributes corresponding to 
their wave character arise from these exchange mediating particles. Since the exchange mediating 
particles propagate at c (just like photons) the expression for the wavelength of photons is equally valid 
for them. Therefore the de Broglie’s formula for the wavelength of matter waves remains the same as 
for the wavelength of photons even in case of the non-relativistic motion of the massive particles. We 
propose a new interpretation for the de Broglie formula in case of massive particles: 
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λ=h/p , where h is the Planck’s constant and p is relativistic momentum of the exchange mediating 
particle. 
 
An immediate consequence of this idea is that the fermionic (or bosonic) exchange symmetry induced 
correlations are not instantaneously propagating in space but travel with the speed of light c. But for 
most practical purposes when the distances involved are very small (e.g. typical distances within a 
laboratory experimental setup ~ few meters) the fermionic (or bosonic) exchange symmetry induced 
correlations can be assumed to be practically instantaneous. 
 
 

Section (C) Rationalizing the amplitude/phase content of a matter wave 
The results of the single slit diffraction experiment with electrons that we present in our manuscript can 
be easily analyzed within the Fraunhofer’s diffraction theory assuming a simplified picture of a plane, 
monochromatic wavefront of electrons falling on a single slit of width d and the diffracted intensity 
falling on a screen S kept at a distance ‘D’ much larger than d. 
 
We divide the wavefront passing through the slit into two equal halves. The upper half represents upper 
slit continuum and the lower half represents the lower slit continuum. These sections of the incident 
wavefront will independently superpose and produce a resultant wavefront at any arbitrary point ‘P’ on 
the screen. Our goal is to find out and compare the amplitude and phase of the two superposed 
wavefronts at ‘P’. 
 
Note that in the Fraunhofer’s theory of diffraction (ref. http://hyperphysics.phy-
astr.gsu.edu/hbase/phyopt/sinint.html#c2) the total phase angle  (phase difference between the 
secondary waves emanating from the top and bottom of the slit and arriving at ‘P’ at same time) is                                                                                                                                                                                                                                                          
related to the deviation angle  (angle subtended by point ‘P’ at the slit) from the optic axis and is 
given by  
 

2π sin θδ=
λ

d  ;  → de Broglie wavelength of the electron wave 

 
When treating upper and lower slit continuum separately (whose slit width is d/2) the total phase angle 
for upper and lower slit continuum will be 
 

2π sin θ π sin θδ=
2λ λ

d d
  

 
This angle is the same for both of them since  remains practically unchanged for both of them 
following our assumption of D>>d within the Fraunhofer’s diffraction theory. 
 
If A0 is the amplitude of the incident electron wavefront then the resultant amplitude from the upper 
(Aupper) and lower (Alower) slit continuum (formed by a vector summation of individual amplitude 
elements in them) at ‘P’ would be given by; 
 

0
upper lower

A δA =2 sin A =A
δ 2

 , which is same for upper and lower slit continuum. 

 
However there is a phase difference between both these amplitudes as a result of the vector summation. 
This phase difference is equal to . Following the law for summation of vectors, the amplitude of the 
summed vector Asum is related to the resultant amplitudes from the individual elements (i.e. Aupper and 
Alower) as; 
 
Asum

 2=Aupper
2+Alower

2-2Aupper.Alower.cos(-)=A2+A2-2A.A.cos(-)=2A2(1+cos) 
 
Now for destructive interference we have Asum=0. This can happen when A=0 or when (1+cos)=0. 
The latter happens when =p when p is odd integer. After plugging in the expression for A the former 
can written as; 
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0A δ δA=2 sin 0 sin 0 δ=2nπ
δ 2 2

    , where n is any integer (0).  

(Note that A00 since we have a finite incident wavefront). 
 
Combining both these results we get the following conditions for destructive interference; 
 
=m, where m is any integer (0). 
 
Therefore, π sin θδ=mπ= sin θ=mλ

λ
d d  which is well known criterion for the destructive interference 

in a diffraction experiment performed on a single slit of width d within Fraunhofer’s diffraction theory. 
 
When simulating the free space within Fraunhofer’s theory, it is possible to increase the slit width to a 
finite value much larger than  and also to keep the distance D much larger than d in order to still 
remain within the Fraunhofer limit. We can see that qualitatively we still maintain the theoretical 
results as we had derived for a case where d was comparable to  except that the diffraction pattern 
shrinks progressively with such an increase of d (implying a reduction of obstacles in the path of the 
electron waves). So to a certain accuracy we are able qualitatively verify the consequences of electron 
waves moving in free space within Fraunhofer’s theory. In the limit d→∞ we fully recover the uniform 
intensity in space expected for a wave moving in an isotropic space however the Fraunhofer’s theory 
cannot be applied in this limit. For a more general treatment Fresnel’s theory of diffraction may be 
applied.  
 
From an incident wavefront arising due to the motion of massive particles we have, therefore, 
rationalized the existence of two different phases of the matter waves having equal amplitudes (with a 
phase difference) at any arbitrary point ‘P’ in space (within Fraunhofer’s limit). The phase difference 
varies across the space and is responsible for the generation of interference effects within the matter 
waves giving rise to the diffraction pattern. We are thus successful in justifying the wave character 
arising out of a beam of classical particles upon introducing fermionic (or bosonic) exchange symmetry 
among them. Thus we elucidate, qualitatively, the origin of the wave character of matter. 
 
 

Section (D) Origin of the quantum behavior of a single electron 
Even for a single electron eigenvalue problem, say for example hydrogen atom problem solved using 
the Schrödinger’s equation, we do find that the single electron displays quantum behavior i.e. 
possessing a spatially extended wavefunction, energy quantization etc. even though we do not 
‘apparently’ have any so-called ‘electron reservoir’ with whom it would be subjected to particle 
exchanges analogous to that mentioned in the case of double slit interference experiments with 
electrons. This might raise a lot of doubt about how the wave behavior emerges for the single electron 
in the absence of any exchanges with other electrons. To answer this we argue that the vacuum 
surrounding the said electron is constantly under the influence of fluctuations in energy leading to the 
formation of short lived ‘virtual’ electron-positron pairs due to Heisenberg’s uncertainty principle. This 
fluctuation of the vacuum and its effect under the action of the electromagnetic field of the electron is a 
well established fact and is known to give rise to vacuum polarization (ref. 
https://en.wikipedia.org/wiki/Vacuum_polarization). This ‘sea’ of ‘virtual’ electron-positron pairs gives 
rise to the screening effect in the presence of an electromagnetic field thereby modifying the magnitude 
of the original electromagnetic field analogous to what happens to a dielectric when placed in an 
external electric field. The ‘virtual’ electrons thus generated due to these fluctuations form the ‘electron 
reservoir’ (note that this electron reservoir extends all throughout the space till infinity) and participate 
in exchanges with the said electron for the sake of producing the wave (or quantum) behavior of that 
electron. 
 
However the probability of the exchange with these ‘virtual’ electrons largely depends upon the 
bound/unbound nature of the said electron in space. This can be illustrated clearly while critically 
analyzing the time evolution of the narrow wave packet in space which is a well known result from 
quantum mechanics. When, supposedly, an electron is kept ‘intentionally’ localized at a particular point 
in space then its wave function must be described as that of a narrow wave packet centered at that point 
in space (ideally it should be Dirac delta function at that point in space). Let us assume that such a 
scenario exists till time t=0. At t=0 we ‘release’ (set free) the electron and allow its wavefunction to 
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evolve with time. Thus for times t > 0, the dynamics of the electron is dictated by the time dependent 
Schrödinger’s equation. A well known result is that the wave packet, which was localized at the site of 
the electron earlier, gradually spreads in space with time eventually occupying the whole of infinite 
space as t. More importantly, the wavepacket tends to flatten out with time eventually becoming 
completely flat at t when we tend to have identical amplitude for the wavefunction at every point in 
the space denoting uniform probability of the existence of the electron in space. Thus at t < 0, even 
though the whole of the infinite space was always filled with the sea of virtual electron-positron pairs, 
there was no exchange happening between the localized electron and the virtual electrons of the sea. 
For if, on the contrary, the exchange was to happen then the wavefunction for the localized electron 
would remain finite (i.e. non-zero) throughout the space (even at t < 0) as a result of this exchange. 
Hence, logically, we must conclude from here that the localized state of the electron in space must be 
devoid of its fermionic exchange symmetry with that of the other electrons. Such an idea was 
introduced earlier in arXiv:1409.7156. Our aforementioned discussion lends very strong support to the 
idea introduced in arXiv:1409.7156.  
 
At any instant of time the two electron state for the localized electron and a virtual electron can be 
represented as † †

loc vir loc virˆ ˆia e a    ½ ñ ½ ñ ½ ñ ½ ñ , where 
loc½ ñ and †

virâ ½ ñ denote localized and virtual electron 
state respectively (Note that the state 

loc½ ñ represents a classical state for the localized electron 
corresponding to its point particle like description prior to switching on the exchange mechanism 
between the two electrons while 

vir½ ñ  represents a constant ‘field’ occupying the whole of infinite 

space arising due to the ‘sea’ of virtual electrons and †â is the electron creation operator. Such a ‘field’ 
description for virtual electrons is a distinct facet of quantum field theory. We are indeed finding out 
the origin of the wave behavior of an electron. Hence the ‘ingredients’ that form such a wave behavior, 
e.g. the localized electron in this case, should be treated as a classical particle initially which later on 
conspire to create the wave behavior via the exchange mechanism. Moreover one can see that only 
when  = 0 we have the antisymmetry of the two electron wavefunction while at other values of  the 
antisymmetry is ‘partially’ realized. At the extreme value of  = /2 we have a ‘mixed’ exchange 
symmetry i.e. the wavefunction of the two electron systems becomes 

loc vir loc viri    ½ ñ ½ ñ ½ ñ ½ ñ  which has 
an exchange symmetry in between fermionic and bosonic exchange symmetry. Please see 
arXiv:1409.7156_supp. info. for details) and  is function of spatial coordinates and time i.e.  = 
(x,y,z,t) or  = (r,,,t) depending upon whether we describe the space in terms of Cartesian or 
spherical polar coordinates respectively. For the above case at t<0 we have the situation (if we assume 
the localized electron is situated exactly at the origin i.e. the Dirac delta wavefunction for the electron 
at the origin) that  = 0 for (x,y,z)=(0,0,0) and  = /2 otherwise. So there is a discontinuity in the 
value of  at the origin due to the existence of Dirac delta type of the wavefunction for describing the 
electron. When the electron has been set free at t=0 then for the later times (t>0) the wave packet starts 
‘spreading’ within the whole of space via the exchange mechanism. In that case  becomes a 
continuous function of its arguments all throughout the space. 

The ‘spreading’ of the wave packet can be understood as the evolution of the function  in space with 
time. Such an evolution is highly influenced by the dynamics of the aforementioned ‘screening effect’ 
(due to the ‘sea’ of virtual electron-positron pairs) for the electromagnetic field of the localized electron 
in space. Eventually at t, when the wave packet has been fully flattened out,  becomes 0 
everywhere in space. 
 
The above case was illustrated for an ‘intentionally’ localized electron at a point in space. The same 
holds true in case of the localization of the bound electrons in space due to strong electrostatic fields 
etc. from the nuclei of the atoms. For example, the electronic orbitals of the Hydrogen atom are 
examples of bound states which lead to a certain degree of ‘localization’ of the electron in space in that 
although the electronic orbitals individually extend to infinity in space however the amplitudes of their 
wavefunctions are not uniform across the space. Instead the amplitudes are seen to peak in certain 
regions of space while they diminish far away from it thus giving rise to the tendency of the electron to 
stay in those regions of space preferentially (orbital formation). This preference is a consequence of the 
localization of the bound electron in space. For such a case of a bound electron, its exchange with the 
sea of ‘virtual’ electrons is not fully realized (i.e. (x,y,z,t)  0 for every point in space at any time) 
since the bound electron is not able to extend all throughout the space with equal ‘ease’ to participate in 
the exchanges. The probability of the exchange is maximum (i.e. (x,y,z,t)  0) at distances close to 
the bound electron and vanishes far away (i.e. (x,y,z,t)  /2) from it. Hence the wavefunction for 
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the bound electron has large amplitude in regions close to itself and vanishes at infinity. E.g. all of the 
electronic wavefunctions for the Hydrogen atom vanish at infinity since the strong attractive interaction 
between the Hydrogen nucleus and the electron creates a bound state for the electron thus partly 
suppressing its exchange with the infinite sea of virtual electrons. On the contrary, an unbound electron 
can fully demonstrate its exchange mechanism throughout space due to the absence of any restrictions 
on its location as such the wavefunction for an unbound electron is not localized in space rather it 
extends uniformly across the space denoting a uniform exchange with the infinite sea of virtual 
electrons. The details regarding the variation of intensity and directional dependence (for states with 
angular momentum l  0) of the spatial profile of the wavefunction for the electron in Hydrogen atom 
can only be understood after taking into consideration the aforementioned screening effect (i.e. the 
estimation of (x,y,z,t) in space can only be done after studying the effect of the aforementioned 
screening on the electromagnetic field of the said electron). Thus in short we have attempted to 
rationalize our idea that particle exchanges occurring between the said electron with the ‘virtual’ 
electrons arisen from the vaccuum fluctuations give rise to the formation of the wave/quantum behavior 
exhibited by the said electron. 
 
 

Section (E) Exchange mechanism among identical particles as a 5th 

Fundamental Interaction in nature 

 
Given the experimental evidence that even charge neutral identical particles, like e.g. neutrons, display 
interference/diffraction effects analogous to the charged particles like electrons, protons etc., gives us a 
compelling indication that the exchange mechanism among the identical particles is unrelated to the 
existence of an electrical charge on them. Therefore the exchange mediating particles that we are 
referring to in the Section B of this document are also at work even when the identical particles do not 
possess an electrical charge. 
 
It is by now well established that there are four fundamental interactions among particles of nature each 
of which is mediated by the exchange of virtual particles of a specific kind depending upon the 
fundamental interaction under consideration. All the remaining interactions in the nature result from the 
combined game of one or few of these four fundamental interactions. These fundamental interactions 
are (i) Gravitational, (ii) Electromagnetic, (iii) Strong Nuclear and (iv) Weak Nuclear interactions. The 
discussion, in this manuscript, of the exchange mechanism among electrons giving rise to their 
quantum behavior certainly cannot be accounted for by the Strong Nuclear or Weak Nuclear 
interactions since they are not relevant for electrons. Moreover any short range interaction cannot 
explain the observed interference phenomena from the electrons since the distances between two 
electrons in the interferometer can far exceed the range of such short range interaction (~10-15m) and 
still produce the interference phenomena. The long range Gravitational interaction is, however, 
independent of whether the particles are identical or not while the exchange mechanism is only valid 
for identical particles; a contradiction which clearly rules out gravity as an origin of the exchange 
mechanism. The only candidate left out for the origin is the electromagnetic interaction which again 
gets rejected due to the experimental observation of interference/diffraction effects from electrically 
charge neutral species of particles (like e.g. neutrons etc.) for which the electromagnetic interaction is 
non-existent {Note that although the neutrons are known to have a quark based microstructure (ref: 
https://www.britannica.com/science/quark) wherein the individual electrically charged quarks together 
constitute an electrically neutral neutron, the size of the neutron (<10-15m) is much smaller than the 
typical distances (~ few m) between two neutrons creating an interference/diffraction pattern in an 
actual neutron diffractometer. Hence, practically, a neutron appears like a point particle (of net zero 
electrical charge) at such large distances and hence the electromagnetic interaction between two 
neutrons is practically non-existent}. Thus we are unable to explain the exchange mechanism among 
the identical particles from the existing established concepts/knowledge of physics.  
 
Hence at this stage we are compelled to propose the exchange mechanism as a new fundamental 
interaction in nature i.e. as a 5th fundamental interaction. The mediating particles for the new 
fundamental interaction are certainly different from the usual photons that mediate the electromagnetic 
interaction yet they are relativistic particles moving with the speed of light ‘c’ and carry a relativistic 
momentum p which is the same as that of the identical particle under consideration. These exchange 
mediating particles cause swapping of the states of the two identical particles upon occurrence of the 
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exchange. However this swapping should not be construed to be involving of some physical transfer of 
mass/momentum etc. between different points in space where the particles stood before the exchange 
took place but rather can be understood simply by the swapping/exchange of particle indices between 
them. E.g. under the action of exchange an identical particle, which was initially indexed as particle#1, 
becomes particle#2 after the exchange (and vice versa) and so on for other particles. Thus the particle 
indices for identical particles are not uniquely defined unlike the case of non-identical (classical) 
particles for whom the particle indices are uniquely defined. As a matter of fact the current picture of 
statistical mechanics, irrespective of whether we are dealing with identical particles or non-identical 
particles, assigns a unique/fixed particle index to every distinct particle all throughout its existence. 
However the new conceptual input that we are providing here is the suggestion that in the case of the 
statistical properties of identical particles one cannot assign a unique particle index to a particular 
identical particle but, on the contrary, due to the exchange mechanism the particle index for that 
particle changes every time its exchange takes place with other identical particles during the course 
of time. So if we track the evolution of a particular identical particle with time and if we happen to 
observe the particle to be ‘quietly’ moving in space without showing any signs of the so-called 
‘agitation’, then one should not be tempted to think that the ‘quietly’ moving state of the particle 
should correspond to its particle index being uniquely defined. Since the ‘quietly’ moving particle 
continues to remain subjected to the exchange mechanism its particle index undergoes random 
changes with time. So the main takeaway of this paragraph is that any identical particle cannot have 
a unique particle index → a fact in contrast with the current concepts in statistical mechanics.  
  
Now, for a particular identical particle under consideration, the exchange can potentially take place 
with every other identical particle of the system under consideration. If we assume the system to 
contain a million particles then that identical particle can have exchanges with all the remaining 
particles of the system thereby the particle index for that particle can exhaust all the possibilities i.e. 
from particle#1 to particle#106.  
 
The symmetry properties of the wavefunctions describing identical particles need not always 
correspond to the well known symmetries, i.e. antisymmetry for fermions and symmetry for bosons, 
but there could be intermediate cases too as suggested in arXiv:1409.7156. The wavefunction for the 
intermediate case has been suggested to be of the form i

f v f ve     ½ ñ ½ ñ ½ ñ ½ ñ , wherein although it involves a 
complete exchange of particle indices between the two electrons, the configuration after the particle 
exchange cannot interfere completely with the configuration prior to the particle exchange due to one 
of its components differing by ±(/2) phase with respect to the phase of the configuration prior to the 
exchange. 
 
Hence, effectively, it now seems that the exchange mediating particles are merely the agents which 
transfer particle index information in space, from the identical particle it originated, to another identical 
particle participating in an exchange with the former one (and vice versa). When an exchange 
mediating particle gets emitted by an identical particle and gets absorbed by another identical particle, 
simultaneously, there is emission of another exchange mediating particle from the latter identical 
particle and absorption of it by the former one thereby leading to an exchange of particle indices 
between the two particles. Thus the exchange process involves a simultaneous exchange of two distinct 
exchange mediating particles in opposite direction. 


