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Bell's Theorem cannot close the loophole of spatial locality 

 

Abstract 

Bell's Theorem prescribes that no theory of nature that obeys locality and realism can reproduce 

all the predictions of quantum theory. However, Bell's proof presupposes that particles which 

are distanced from each other in space become spatially disconnected. However, the theoretical 

possibility for the existence of spatial locality between separated particles had never been 

refuted empirically.  

Here I show that Doppler-like local-realistic relativity theories, which predict that the 

relativistic length of a body distancing from an observer's rest-frame will stretch rather than 

contract, could maintain spatial locality between particles, even when the particles are 

distanced enough to ensure that information about the outcomes of one particle is passed to the 

other particle faster than light. This implies that local and realistic theories which belong to the 

aforementioned Doppler-like theories could not be disqualified a priori by Bell's Theorem.  
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In a recently published Nature article, Hensen et al.
1
 reported a "loophole-free" test of Bell's 

Theorem, 
2,3

 in which two electrons' spins were entangled at distance. The authors reported that 

they have successfully closed the "detection" and the "locality" loopholes; two significant 

loopholes which have not been hermitically closed in previous experiments. The reported 

experiment employed an event-ready scheme
4
, which enabled the generation of high-fidelity 

entanglement between the distant electrons spins. An efficient spin readout closed the 

"detection loophole" by avoiding the fair sampling assumption
5
, whereas a fast random basis 

selection and readout, combined with a spatial separation of the two electrons by 1.3 km, 

ensured that the obtained entanglement could not have possibly been the result of local 

variables even if such variables were capable of transmitting the entangled systems outcomes 

by velocity equaling the velocity of light. Based on their results, Hensen et al. expressed 

optimism that further improvements in the implemented event-ready scheme, with higher 

entangling rates, could settle the 80 year debate between the stance of quantum theory, which 

posits that quantum entanglement is nonlocal and thus could not be accounted for by any local-
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realist theory, and the stance of Albert Einstein, regarding the incompleteness of quantum 

theory
6
 and his strong objection to  nonlocality being "spooky action at a distance"

7
. 

It is argued here that although Hensen et al. may have closed the "time-like" or temporal 

locality, a significant loophole concerning spatial locality has remained wide-open. Bell's 

Theorem, like all current theories, presupposes that two particles that are distanced in space 

are spatially disconnected. This presupposition, although in agreement with our intuitions on 

how nature behaves, has never been empirically tested, although such testing is unavoidable 

given the fact that intuitions gained and reinforced through accumulated observation and 

experience with large and slow objects, cannot not be extrapolated  automatically to the 

behavior of small particles moving and spinning with high velocities. 

A logical deduction from the above is that the spatial-locality loophole could not be closed by 

any theory unless it is proven that no local-realistic theory can predict that spatial-locality may 

exist between spatially separated bodies.  

Here I prove that the opposite holds. Specifically, it is shown that spatial non-locality between 

distanced bodies could be violated by a large class of local-realistic Doppler-like relativity 

theories which prescribe that the observed length of a departing body is stretched along its 

travel path, and not contracted as prescribed by Special Relativity
8
. For this purpose, consider 

for example a local-realistic relativity theory of inertial linear motion in which the 

transformations of time and distance observations from one reference-frame 𝐹′ to another 

frame F are given by: 

  

Δ𝑡 = 
1

1−
𝑣

𝑐

 Δ𝑡′,                              ….. (1) 

And, 

Δ𝑥 = 
1+

𝑣

𝑐

1−
𝑣

𝑐

  Δ𝑥′                      ….. (2) 

Where (Δ𝑡′, Δ𝑥′), and (Δ𝑡, Δ𝑥) are time interval and distance, as measured in 𝐹′ and F, 

respectively, v is the relative velocity between the two frames, and c is the velocity of light as 

measured in F. 
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According to Eq. 1, a time dilation will be observed in F only when the two reference-frames 

are distancing from each other, while a time contraction will be observed in F when the two 

reference-frames are approaching each other. More importantly here is the prediction of Eq. 2, 

which prescribes that the observer in F will measure a distance contraction only when the two 

reference-frames approach each other, but he or she will measure distance expansion when the 

reference-frames distance. This means that a particle that is distanced from another particle, as 

in the EPR experiment, is expected to suffer a relativistic "stretch" along its travel axis. Given a 

sufficiently high velocity, the two particles, although distanced from each other, could remain 

spatially connected. 

It is noteworthy that the factor 1 (1 −
𝑣

𝑐
⁄ ) which determines the time transformation, mimics the 

widely investigated and utilized Doppler Formula,
9
 according to which waves emitted from an 

approaching body get redshifted (wavelength contraction), whereas waves emitted from a 

departing body get blue-shifted (wavelength expansion).      

It is easy to show that for a body with uniform matter density 𝜌′ along the travel path, the 

relativistic density in F is given by: 

𝜌 = 
1

Δ𝑥

Δ𝑥′

  𝜌′ =  
1−𝛽

1+𝛽
  𝜌′              …… (3) 

The relativistic stretch and density are depicted in Figure 1. As shown in the figure, as the 

velocity v increases, the relative stretch increases with increasing rates, approaching infinity 

when v approaches the speed of light. Concurrently, the matter density across the travel path 

decreases, with rates equal to the rates of increase in stretch, reaching zero at the speed of light. 

Although the above example is sufficient to disprove the proposition that no local-realist theory 

can predict spatial-locality between spatially separated bodies, the number of possible local-

realist theories which can disprove the above proposition is infinitely large. In principle, any 

relativity theory which predicts a sufficiently large relativistic stretch for distancing bodies 

could falsify the above proposition. It follows that such theories could not be dismissed a priori 

using Bell's Theorem. 

It is worth noting that the transformations discussed above are not farfetched. In fact, they 

could be easily derived from a modification of Special Relativity (SR) in which its axiom 
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concerning the non-relativism of the speed of light is violated (see SI). Similar violations have 

been discussed in the literature as possible variants of SR
10-12

.           

  

 

Figure 1: Relativistic stretch and matter density as functions of  
𝑣

𝑐
 

 

Interestingly, a theoretical analysis of the rotating disk problem
12

 shows that both the speed of 

light invariance and the Lorentz contraction cannot be supported for rotating frames. In fact, 

violation of the speed of light invariance is the bases of the Sagnac Effect, which has crucial 

applications in navigation
13

 and in fiber-optic gyroscopes (FOGs),
14

 and which has been 

demonstrated experimentally for both radial and linear motion.
15

  

In conclusion, I have shown that the fence erected by Bell's Theorem in front of local-realist 

theories has a big hole, through which Doppler-like relativity theories of the type discussed 

here can pass through. Closing this loophole requires variants of Bell's original recipe, in which 

the possibility of spatial locality can be either tested or eliminated by proper design. Until this 

is achieved, it remains fair to say that the news of the death of local realism is greatly 

exaggerated.          
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Supplimentary Information  

 

A. Derivation of the time transformation 

 
We consider a simple preparation in which the time duration of an event, as measured by an 

observer A who is stationary with respect to the point of occurrence of the event in space, is 

transmitted by an information carrier which has a constant and known velocity 𝑣𝑐, to an 

observer B who is moving with constant velocity 𝑣 with respect to observer A. We make no 

assumptions about nature of the information carrier, which can be either a wave of some form 

or a small or big body of mass. Aside of the preparation describes above and the measurements 

taken by each observer, throughout the entire analysis to follow, no further assumptions are 

made. This also means that we do not undertake any logical steps or mathematical calculations 

unless measurements of the variables involved in such steps or calculations are experimentally 

measurable. 

We ask: what is the event duration time to be concluded by each observer, based on his or her 

own measurements of time? And what could be said about the relationship between the two 

concluded durations? 

In a more formal presentation, we consider two observers in two reference frames 𝐹 and 𝐹′. For 

the sake of simplicity, but without loss of generality, assume that the observers in 𝐹 and  𝐹′ 

synchronizes their clocks, just when they start departing from each other with constant velocity 

𝑣, such that 𝑡1 = 𝑡1
′ =0, and that at time zero in the two frames, origin points of were 𝐹 and  𝐹′ 

were coincided (i.e., 𝑥1=𝑥1
′ = 0).  

Suppose that at time zero in the two frames, an event started occurring in 𝐹′at the point of 

origin, lasting for exactly Δt′ seconds according to the clock stationed in 𝐹′, and that promptly 

with the termination of the event, a signal is sent by the observer in 𝐹′ to the observer in 𝐹.  

After Δt′ seconds, the point at which the event took place stays stationary with respect 𝐹′ (i.e., 

𝑥2
′ =𝑥1

′= 0), while relative to frame 𝐹 this point would have departed by 𝑥2 equaling:  

 

𝑥2= 𝑣 Δ𝑡′              ……. (1a) 

 

The validity of Eq. 1a could be checked and verified by more than one operational, i.e., 

experimentally feasible methods: For example, if the two observers meet any time after the 

event has terminated, then the observer in 𝐹 will be able to read the time of the event as 
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registered by the clock stationed in 𝐹′ and learned what the duration of the event in 𝐹′, for 

which the event was stationary. Another operational way by which the observer in 𝐹 can infer 

about the actual time of travel until the event terminated and the signal was sent is by 

mimicking the even in 𝐹 by having an identical event with the same duration (in its inertial 

frame), start promptly with the even in  𝐹′. It is important to note that the above two 

operational suggestions presume the rule stating that the laws of nature are the same in the two 

frames. In the first example, the above restriction leaves no possibility for the observer in 𝐹 to 

suspect that the reading of the clock stationed 𝐹′ in e time duration of the event in reading of 

the clock at 𝐹′ (in the first example), or to suspect that a time registered by a clock at his/her 

own frame 𝐹 will differ by the time that will be registered for an identical event, by an identical 

clock placed in 𝐹′.        

If the information carrier sent from the observer in 𝐹′ to the observer in 𝐹 travel with constant 

velocity 𝑉𝐹 relative to 𝐹, then it will be received by the observer in 𝐹 after a delay of: 

 

𝑡𝑑 = 
𝑥2

𝑉𝐹
=  

𝑣 Δt′  

𝑉𝐹
  =  

𝑣 

𝑉𝐹
  𝛥𝑡′                 ……. (2a) 

 

Since 𝐹′ is departing from 𝐹 with velocity v, we can write: 

 

𝑉𝐹 = 𝑉0 – 𝑣                                          …… (3a) 

 

Where 𝑉0 denotes the information carrier's velocity with respect to the event's inertial frame 𝐹′. 

Substituting the value of 𝑉𝐹 from Eq. 3a in Eq. 2a, we obtain: 

 

𝑡𝑑  = 
𝑣 Δt′  

𝑉0 – 𝑣   
  =  

 1

 
𝑉0
𝑣

– 1   
 𝛥𝑡′             …… (4a) 

Due to the information time delay, the event's time duration Δt that will be registered by the 

observer in 𝐹 is given by: 

Δt = Δ𝑡′ + 𝑡𝑑=Δ𝑡′ + 
 1

 
𝑉0
𝑣

– 1   
 Δt′=(1 + 

 1

 
𝑉0
𝑣

– 1    
) Δt′=(

 
𝑉0
𝑣

 
𝑉0
𝑣 – 1  

) = ( 
1

 1– 
𝑣

𝑉0
   

) Δt′  …(5a) 

 

Or: 
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Δ𝑡 

  Δ𝑡′  
 =  

1

 1– 
𝑣

𝑉0
   
                                 … (6a) 

 

For 𝑣 << 𝑉0 Eq. 6 reduces to the classical Newtonian equation Δ𝑡 = Δ𝑡′,  while for 𝑣 → 𝑉0, Δ𝑡 

→ ∞ for all positive Δ𝑡′,. 

 

For a communication medium to be fit for transmitting information between frames in relative 

motion, a justifiable condition is to require that the velocity of the carrier be larger than the 

velocity of the relative motion, i. e., 𝑣 < 𝑉0.        

Quite interestingly, Eq. (6a), derived for the time travel of moving bodies with constant 

velocity is quite similar to the Doppler's Formula derived for the frequency modulation of 

waves emitted from traveling bodies. Importantly, in both cases the direction of motion 

matters. In the Doppler Effect a wave emitted from a departing body will be red-shifted 

(longer wavelength), whereas a wave emitted from an approaching body with be blues-shifted 

(shorter wavelength). In both cases the degree of red or blue shift will be positively correlated 

with the body's velocity. 

The same applies to the time duration of an event occurring at a stationary point of a moving 

frame. If the frame is departing from the observer, time will be dilated, whereas if the frame is 

approaching the observer will contract.  

It is especially important to note further that the above derived transformation applies to all 

carriers of information, including the commonly employed acoustic and optical communication 

media. For the case in which information is carried by light or by electromagnetic waves with 

equal velocity, equation (6a) becomes: 

 

Δ𝑡 

  Δ𝑡′  
 =  

1

 1– 
𝑣

𝑐
   

                    ….. (7a)  

 

Since an objection might be raised for the cases of information translation by means of light or 

other waves with equal velocity, such objection could be avoided by restricting the theoretical 

model derived above to wave propagation in mediums that are not a vacuum, which in fact the 

case in almost all physical situations of interest.  
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b. Derivation of the distance transformation  

To derive the distance transformation, consider the two frames of reference F and 𝐹′shown in 

Figure 1b. Assume the two frames are moving away from each other at a constant velocity v. 

Assume further that at time 𝑡1 in F (and 𝑡1 
′ in 𝐹′), a body starts moving in the +x direction from 

point 𝑥1 (𝑥1
′  in 𝐹′) to point x2 (𝑥2

′  in 𝐹′), and that its arrival is signaled by a light pulse that 

emits exactly when the body arrives at its destination.  Denote the internal framework of the 

emitted light by 𝐹0. Without loss of generality, assume 𝑡1 = 𝑡1
′  = 0, 𝑥1 = 𝑥1

′  = 0. Also denote 

𝑡2 = 𝑡,   𝑡2
′ = 𝑡′, 𝑥2 = 𝑥, and   𝑥2

′ = 𝑥′. 

 

 

 

Figure 1b: Two observers in two reference frames, moving with velocity v with respect to each 

other. 

 

From Eq. (7a), the time duration in F  that takes the light signal to reach an observer in 𝐹′ 

equals: 

 

𝛥𝑡𝑝 = (1 − (−
𝑣

𝑐 
)  ) 𝛥𝑡′                                        ..… (1b) 

Where 𝛥𝑡′ is the corresponding time duration in 𝐹′, and c is the velocity of light in frame F.  

Because 𝐹′ is moving away from F with velocity v, the time that takes the light signal to reach 

and observer in F is equal to: 

 

𝛥t = 𝛥𝑡𝑝 + 
𝑣𝛥𝑡

𝑐
 = 𝛥𝑡𝑝 + 

𝑣

𝑐
  𝛥𝑡                …… (2b) 
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Substituting 𝛥𝑡𝑝 from Eq. (1b) in Eq. (2b) yields: 

 

𝛥𝑡 = (1 +
𝑣

𝑐 
) 𝛥𝑡′ + 

𝑣

𝑐 
 𝛥𝑡,         ….. (3b) 

or: 

𝛥𝑡

𝛥𝑡′ = 
(1+ 

𝑣

𝑐 
) 

(1− 
𝑣

𝑐 
) 
 .                     …… (4b) 

But 𝛥 x = c.Δt and  𝛥𝑥′ = c.𝛥𝑡′. Thus, we can write: 

 

𝛥𝑥

𝛥𝑥′
 = 

(1+ 
𝑣

𝑐 
) 

(1− 
𝑣

𝑐 
) 
                        ……. (5b) 

 


