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Abstract 
 

  New equations for the motion of the bodies are derived  using concepts of Newton and Maxwell, a 
preferred frame (CMB), and the light  and force fields with velocity c in relation to CMB. And we have 
a theory that explain the relativistics experiments like mass variation, time dilation, transverse Doppler 
effect, etc. An experiment is proposed to test this theory. 
 
1. Introduction 
 
  In table 1 we have a comparative between the equations of special relativity (SR) and extended 
Newtonian theory (ENT). 
  Equations (1) to (4), (61) and (64) are the same as special relativity. Coulomb, magnetic and 
gravitational (14) forces are different from the SR. 
  All equations are derived and explaineds in next next sections. Equations (1) to (4) was derived by 
Lewis (who received 35 nominations for the Nobel prize in chemistry) [1] using concepts of Newton 
and Maxwell. Equations (14), (61) and (64) are derived in this paper. 
   
Experiment Special Relat. Ext. Newton. Th. Equ. Sect. 
Mass variation γ0mm =  same        (1) 4 
Kinetic energy ( )12

0 −= γcmk  same (2) 4 

Relation mass-energy 2
0cmE =  same (3) 4 

Inertial force  
2

).(
cdt

dm vFvvF +=
same (4) 5 

Time dilation γ0tt Δ=Δ  same (61) 14.1 
Transv. Doppler eff. γ/0ff =  same (64) 14.2 
Transformations:  
position, veloc., time 

Lorentz Galilean xx 3, 6 

Force transformation γyy FF ='  different (14) 6.1 

Force propagation non-instantaneous non-instantaneous xx  3, 6 
Michelson-Morley 0=δ  open question xx 15 
 
Table 1 - Comparison between equations of special relativity and extended Newtonian theory. 
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2. ENT experimental test 
 
  To test extended Newtonian theory we can make a mass spectrograph with electric and magnetic 
sector with a special geometry. 
  From the movement of the earth we measure the mass variation of ppm1≈  and compare with 
theoretical ENT value and the position of the spectrograph in relation of the CMB, see Section 7.2 and 
13.     
 
3. Postulates and work assumptions 
 
a) The velocity of light is a constant  with respect to the preferred frame, independent of the direction 
of propagation, and of the velocity of the emitter. 

c

b) An observer in motion with respect to the preferred frame  will measure a different velocity of light, 
according to Galilean velocity addition. 
c) The preferred frame is the cosmic microwave background (CMB), and the velocity of the sun with 
respect to the CMB is approximately 370 km/s (0.00123c).  
d) According to Zeldovich, at every point in the Universe, there is an observer in relation to which 
microwave radiation appears to be isotropic. 
e) A Coulomb force, magnetic force and gravitational force are generated respectively by an electric, 
magnetic and gravitational wave. The electric magnetic and gravitational waves have constant 
velocities  with respect to the preferred frame, independent of the direction of propagation, and of the 
velocity of the emitter. 

c

 
4. Mass variation, kinetic energy and mass-energy relation 
 
  Using concepts of  Newton and Maxwell, Lewis (who received 35 nominations for the Nobel prize in 
chemistry) [1] derived the equations for mass variation, kinetic energy and mass-energy.  
  Equations (1), (2) and (3) are, respectively, equations  (15), (16) and (18) in [1].  
  The following is from [1]: “Recent publications of Einstein and Comstock on the relation of mass to 
energy has emboldened me to publish certain views which I have entertained on the subject and which 
a fews years ago appeared purely speculative, but which have been so far corroborated by recent 
advances in experimental and theoretical physics… In the following pages I shall attempt to show that 
we may construct a simples system of mechanics which is consistent with all known experimental 
facts, and which rests upon the assumption of the truth of the three great conservation laws, namely, the 
law of conservation of energy, the law of conservation of mass, and the law of conservation of 
momentum. To these we may add, the law of conservation of electricity”. 
 
5. Inertial force 
 
 For the preferred frame and from equations (1), (2) and (3), we derive the equation of inertial force: S
 

2

)()(
cdt

dm
dt
md vFvvvF ⋅

+== ,                                                             (4) 

 

2

2

c
Fv

dt
dvmF xxx

x += ,                                                                             (5) 
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2

2

c
Fv

dt
dv

mF yyy
y += , 

 
  Substituting (1), we have: 
 

dt
dvmF x

xox 2γγ=                                                                                   (6) 

dt
dv

mF y
yoy 2γγ= ,     

   
Where , are respectively the mass and velocity of the particle in relation to the preferred frame, m v

cv=β , 211 βγ −= , 211 xx βγ −= and 211 yy βγ −= and  is the particle rest mass in 

relation to preferred frame. 
0m

 
6.  Inertial frames and non-instantaneous Coulomb force 
 
  Suppose two inertial frames (  and ), one particle without acceleration (charge Q , mass S 'S M )  and 
one particle with acceleration (charge , mass ). q m
   is the preferred frame (CMB) and  has constant velocity V  in relation to  and parallel to the S 'S S
x  axis, . The velocity of  is  in relation to . xVV = q Vvv += ' S
  Charge  is at rest in  (it is an approach for Q 'S mM >>  and/or ); the frames and particles 
are illustrated in Figure 1. 

qQ >>

  At time , charge  emits an electric wave front that reaches charge q  at time .  At time , 

charge  emits an electric wave front that reaches charge q  at time , and so forth. The electric 
wave has velocity  in relation to . 

0t Q 1t 1t
Q 2t

c S r  is the distance travelled by the electric field from Q  to q  in 
frame . S 'r  is the distance between Q  and q in frame . 'S
  For constant 0>V , from Galilean transformations, we have: 

t 1

q

V

S
S’

Q x, x’

q

V

S

Q x, x’

qS S’

t2

S’

t0

V

v1

2v
r2

r’1

r1

r’2

 
Figure 1 – Inertial frames S ,  and particles . 'S Qq,
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'xVtx +=                                                                                             

'yy =                                                                                                    (7) 
 'tt =     (see discussion of time dilation in Section 14.1, Equation (61)), 
 

'xtVrx +Δ= ,                                                                                    (8)                                                                           
 
where tΔ  is the time interval in which the electric wave travels distance r  and , tcr Δ=
 

'yyry ==                                                                                        (9) 

'' xBrx
c
rVrx +=+= , 

 
and 
 

2

222

1
)1('''

B
ByxBx

r
−

−+±
= ,                                                           (10)                                    

 
  where . cVB /=
 
  The non-instantaneous Coulomb force in  is: q
 

34 r
rqQF x

o
x πε
=                                                                                      (11) 

34 r
rqQF y

o
y πε
= .                                                                                      

 
Equating (6) and (11) yields the following differential equations: 
 

3
2

0 4 r
rqQ

dt
dv

m x

o

x
x πε

γγ =                                                                        (12)       

3
2

0 4 r
rqQ

dt
dv

m y

o

y
y πε

γγ =                                                                   

 
  Multiplying and dividing the first term of (12) for we have: 'dx
 

'
3

'2
0 4

dx
r
rqQvdvm x

o
xxx πε

γγ =                                                                      (13) 

 ( ) '
3

2
0 4

dx
r
rqQVvdvm x

o
xxx πε

γγ =−                                                         
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'
3

2
0 4

dy
r
rqQvdvm y

o
yyx πε

γγ =  

 
  Where cv=β , cVB = , cv '' =β , ,Vvv += ' 211 βγ −= , 211 xx βγ −= , 211 yy βγ −=  

and  is the particle rest mass in relation to 0m S . 
 
6.1 Comparative of forces between ENT and SR 
 
  The Coulomb force for ENT and SR, from (12) is: 
 

3
2

0 4
)(

r
rqQ

dt
dv

mENTF x

o

x
xx πε

γγ ==                                     (14) 

 

3'

''
2''

0 4
)(

r
rqQ

dt
dvmSRF x

o

x
xx πε

γγ ==  

 
 The gravitational force for ENT and SR is: 
 

300
2

0)(
r
r

mGM
dt

dv
mENTF x

B
x

xx γγγγ ==                            (15) 

 

3'

'
'

00

'
2''

0)(
r
r

mGM
dt

dvmSRF xx
xx γγγ ==  

 

Where 211 BB −=γ , 2

222

1
)1('''

B
ByxBx

r
−

−+±
= , 'xBrrx +=  and . '

xx dvdv =

 
7. Mass and frames S ,  'S
 
  Let us suppose two inertial frames S and  with relative velocity V .  is the particle mass at rest 
in 

'S 0m
S  and from (1) we have: 

 

02

0

1
m

m
m γ

β
=

−
=                                                                      (16) 

 
  Where  is the particle mass in relation to m S  and velocity  in relation to , , 'v 'S Vvv += ' cv=β , 

cv '' =β  and cVB = .   
 
7.1 Earth mass 
 
  Let us suppose the earth at rest in . The mass of the earth in relation to 'S S , from (16) is 
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02

0

1
M

B

M
M Bγ=

−
=                                                                 (17) 

   
Where  is the earth mass at rest in 0M S , M  is the earth mass in relation to S and at rest in  and  'S

211 BB −=γ . The velocity of the earth in relation to CMB is 30370 ±≅V Km/s, 370 km/s is the 
velocity of the sun in relation to CMB and 30 Km/s is the orbital velocity of the earth. 
  
7.2 Experimental particle mass in earth 
 
  The experimental mass of a particle at rest in earth is 
 

02

0
exp0

1
m

B

m
m Bγ=

−
=                                                           (18) 

 
  Where  is the particle mass in relation to exp0m S  and at rest in earth ( ). 'S
  The experimental mass is dependent of the position of the experimental equipment in relation to CMB 
(see Section 13) and the measurements in the earth gives the limits of error between 0exp(min)0 mm =  and  

0
2

0exp(max)0 00000076.11 mBmm =−= , so ( ) ppm76.0100000076.1 =−  (parts per million) and we 
have: 
 

( ) ppmppmmm 38.038.00exp0 ±+=                                          (19) 
 
  The particle rest mass  measured in earth with mass spectrograph using magnetic and electric 
sector (Nier-Johnson 1953, Hintenberger-Konig 1959, Takeshita 1967, Matsuda 1974 and 1981) has 
high accuracy and limits of error of . This value is in agreement with the CMB, see Section 13.        

exp0m

ppm1≈
  For instruments with accuracy  there are used other methods and it is necessary an individual 
study for each one, but these instruments usually use oscillation methods that measure a constant  
medium value. For example, in measurement of the speed of the light it is used the two way method, 
that is, the light goes, return and and the medium velocity is exactly 

ppm1<<

( ) ([ ]VcVcc )−++= 5.0 , b) a 
particle and measurer at rest in earth, the frequency measured is and constant, 0f 00 fffff =Δ−Δ+= , 
see Fig. 2. 

 
particle

f1

S (CMB)

fo
V

=f  - Δfo=f of=f +Δf1

measurer

VS’ (earth) S’ (earth)
 
 
 
 

 
Figure 2 – Particle and measurer at rest in earth. The frequency measured is and constant. 0f
 
8. Electric field of a point charge 
 
  Substituting the charge  of Fig. 1 for a point q 'P at rest in , the electric field at 'S 'P is: 
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8.1 Electric field of a point charge for 0=V . 
 

2'
0

1
4 r

QE
πε

=                                                        (20) 

 
  Where . 2'2'2' yxr +=
 
8.2 Electric field of a point charge for 0>V  and xVV = . 
 

  2
0

1
4 r

QE
πε

=                                                    (21) 

 

  Where from (10), 2

222

1
)1('''

B
ByxBx

r
−

−+±
=  

 
9. Electric field of a uniformly charged plane 
 
 Consider a plane which carries the uniform charge per unit area . The plane is at rest in and 
parallel to  plane . has velocity

'S
'' zy 'S V parallel to axis, see Fig. 3. 'x

 

V

x’

r’

y’

P’
R’

l’

dR’

z’

 
 
Fig. 3 – Electric field of a uniformly charged plane at point 'P at rest in  'S
 
9.1 Electric field of a charged plane for 0=V  
 
 For we have 0=V 'rr = . The electric field at point 'P at rest in  is: 'S
 

( ) ( )∫∫
−

+==
'

0

''2
32'2'

0

'

2
4

l

x dRRRxxdEE
ε
σ                       (22) 

 
  Substituting : '' yR =
 

( ) ( )∫
−

+=
'

0

''2
32'2'

0

'

2
4

l
dyyyxxE

ε
σ                                      (23) 
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  Integrating we have: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

2'2'

'

0

1
2 lx

xE
ε
σ                                                  (24) 

 
 This equation is valid only for . For we have: 0' >x '' xl >>
 

02ε
σ

=E                                                                             (25) 

 
9.2 Electric field of a charged plane for  and 0>V xVV =  
  
  For  , , , and from (10) we have: xVV = 'yy = 'll = 'dydy =
 

2

222

1
)1('''

B
ByxBx

r
−

−+±
=                                          (26) 

 
The electric field at point 'P at rest in  is:   'S
 

( ) ( )∫
−

+=
l

dyyyxxE
0

2
322

0

2
4ε
σ                                (27) 

 
  Where  and we have: 222 yxr +=
 

∫
−

=
'

0

''
3

2'2

02
l

dyy
r

yr
E

ε
σ

                                       (28) 

 
9.3 Electric field of a charged plane for  and 0>V yVV =  
 
For   and   we have: yVV = 'xx =
 

02ε
σ

=E                                                                   (29) 

 
10. Capacitor  
 
  Let us suppose a capacitor with charge, parallel planes (left and right) and at rest in . The capacitor 
plane is parallel to y’z’ plane. has velocity

'S
'S V parallel to axis. The distance between the capacitor 

planes is  where  and is respectively the distance between the point and the left and 
right capacitor plane, see Fig. 4. . 

'x
''' rl xxd += 'lx 'rx 'P

xVV =
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V

x’

r’

y’

x’l P’z’

 
 
Fig. 4 – Capacitor left plane at rest in  and with velocity V in relation to 'S S  
 
10.1 Capacitor for  0=V
 
  From (25) we have: 
 

0ε
σ

=E                                                               (30) 

 
10.2 Capacitor for and  0>V xVV =
 
For the left plane from (10) we have: 
 

2

222''

1
)1('

B
ByxBx

r ll
l −

−+±
=                               (31) 

 
and for the right plane we have: 
 

2

222''

1
)1('

B
ByxBx

r rr
r −

−+±−
=                             (32) 

 
 The total electric field from the left and right capacitor planes at point 'P at rest in is: 'S
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
+

−
= ∫∫ ''

0 3

2'2
''

0 3

2'2

0

''

'2
dyy

r
yr

dyy
r

yr
E

l

r

rl

l

l

ε
σ

            (33) 

 
10.3 Capacitor for and  0>V yVV =
 
  For with velocity V parallel to axis ('S 'y yVV = ), the electric field at point 'P at rest in is: 'S
 

0ε
σ

=E .                                                                  (34) 
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10.4 Eletric field and kinetic energy 
 
  For the capacitor with  we have yVV = 0EE = . For an electron between the charged planes with  
velocity  we have the force: v
 

dt
dv

mqEF x
xox
2

0 γγ==                                              (35) 

 
0=yF  

 
  And the kinetic energy is: 
 

( 12
0 −= γcmk )                                                      (36) 

 
 For the capacitor with  we have xVV = E  not constant and it is necessary to calculate the kinetic 
energy of the electron by numeric calculation.  
 
11. Magnetic field 
 
  Suppose two inertial frames ( , ) and a wire carrying electric current . The wire is at rest in . 

 is with velocity 
S 'S i 'S

'S V in relation to S  in xdirection. 'yy = and xVV =  . 

  The magnetic field has velocity c in relation to and for a pointS 'P (out the wire) at rest in we have: 'S
 
11.1 Magnetic field - wire parallel to y’ axis and 0=V  
 

  
3'

''
0

4 r
di

d ryH ×
=

π
μ

                                                 (37) 

 
'

3'

'
0

4
dy

r
xi

dH
π
μ

=                                                  (38) 

 

( )∫
∞+

∞− +
= '

2
32'2'

'
0

4
dy

yx

xi
H

π
μ

                                 (39)    

 

'
0

2 x
i

H
π
μ

=                                                                  (40 

 
11.2 Magnetic field - wire parallel to y’ axis and , 0>V xVV =  
 

3
0

4 r
di

d ryH ×
=

π
μ

                                                          (41) 

 

  Where , , and from (10) 'yy = 'dydy = 222 yxr += 2

222

1
)1('''

B
ByxBx

r
−

−+±
= . 
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dy
r
xi

dH 3
0

4π
μ

=                                                        (42) 

 

∫
∞+

∞−

−
= '

3

2'2
0

4
dy

r
yri

H
π
μ

                                       (43) 

 
11.3 Magnetic field - wire parallel to x’ axis and ,0>V xVV =  
 

'
0

2 y
i

H
π
μ

=                                                                 (44)   

 
12. Magnetic field – spire 
 
  Let us suppose a spire at rest in , with radius 'S 'r , electric current i  and the spire plane is parallel to 
x’y’ plane. is with velocity 'S V in relation to S in xdirection. 'yy = and xVV =  . 
  
12.1 Magnetic field – spire with  0=V
 
The magnetic field at the center of the plane of the spire at point 'P  is:  
 

'
0

2r
i

H
μ

=                                                                 (45) 

 
12.2 Magnetic field – spire with  and 0>V xVV =  
 
For the left size of the spire the medium radius (approximately) from (31) for ( ) and 
( ) is: 

0, ''' == yrx
'''' ,0 ryx ==

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

−
=

2

''

112
1

B
r

B
rrl                                       (46) 

 
For the right size of the spire the medium radius (approximately) from (32) for ( ) and 
( ) is: 

0, ''' == yrx
'''' ,0 ryx ==

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

+
=

2

''

112
1

B
r

B
rrr                                            (47) 

 
The magnetic field (approximately) at the center of the plane of the spire at point 'P  is: 
 

r
i

H
2

0μ=                                                                         (48) 
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  Where 
2

rl rr
r

+
=                                                        

 
  For a more exact calculation of the medium radius ( r ) we can make a numeric program using 
equations (31), (32) and more points of the spire. 
 
12.3 Magnetic field – spire with  and 0>V yVV =  
 
The magnetic field at the center of the plane of the spire at point 'P  is:  
 

'
0

2r
i

H
μ

=                                                                           (49) 

 
12.4 Magnetic field – solenoid 
 
  For a solenoid with spires the magnetic field at the center of the solenoid  is the magnetic field of 
the spire multiplied by . 

N
N

 
12.5 Magnetic field - permanent magnetic 
 
  Let us suppose a permanent magnetic, parallel planes (left and right) and at rest in . The permanent 
magnetic plane is parallel to y’z’ plane. has velocity

'S
'S V parallel to axis. The distance between the 

permanent magnetic planes is  where  and is respectively the distance between the 
point and the left and right permanent magnetic plane, see Fig. 5. 

'x
''' rl xxd += 'lx 'rx

'P xVV = . 
 

S

r’

N

x’l P’

permanent

V

x’magnetic

y’

z’ H
 

 
Fig. 5 – Permanent magnetic at rest in  'S
 
  For  the magnetic field between the planes is constant . 0=V 0H
 
12.6 Permanent magnetic for and 0>V xVV =  
 
  The equations are similar for capacitor parallel planes. For the left plane from (31) we have: 
 

2

222''

1
)1('

B
ByxBx

r ll
l −

−+±
=                                               (50) 
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and for the right plane from (32) we have: 
 

2

222''

1
)1('

B
ByxBx

r rr
r −

−+±−
=                                           (51) 

 
 The total magnetic field from the left and right permanent magnetic planes at point 'P at rest in is: 'S
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
+

−
= ∫∫ ''

0 3

2'2
''

0 3

2'2

0

''

'
dyy

r
yr

dyy
r

yr
HH

l

r

rl

l

l                  (52) 

 
12.7 Permanent magnetic for and 0>V yVV =  
  
 For with velocity V parallel to axis ('S 'y yVV = ), the magnetic field at point 'P at rest in is: 'S
 

0HH = .                                                                              (53) 
 
13.  Calculations for earth 
 
  Below we have calculations for earth ( ) using 'S cV 00123.0= .  
  For the capacitor, from (33), an internet on-line integrator found an exact soluction and for the 
capacitor center,  where  is the distance between the capacitor planes,  is the area of 
the planes and we have: 

'' ld << 'd '' ll ×

   

0
0

99999849.099999849.0 EE ==
ε
σ

                                    (54) 

 
  For the capacitor the limits of error between yVV = , ( )0E  and xVV = , ( )E  is 

. ppm5.199999849.01 =−
  For the spire we make a numeric program (see Section 12.2) and approximately for the spire center 
we have .                                                                   '00000114.1 rr =
 

0'
00 99999886.0

2
99999886.0

2
H

r
i

r
i

H ===
μμ

                           (55) 

  
  For the spire the limits of error between yVV = , ( )0H  and xVV = , ( )H  is ppm1.199999886.01 =− .  
  For the mass spectrograph using electric and magnetic sectors, the sectors are approximately semi 
circular, for example Nier-Johnson 1953,  electric sector,  magnetic sector, Matsuda 1974,  
electric sector,  magnetic sector.   

o90 o60 o85
o5.72

  To test extended Newtonian theory we can make a mass spectrograph with electric and magnetic 
sector with a special geometry and to measure the mass variation of ppm1≈  from a) fixed 
spectrograph and to measure the mass variation with the movement of the earth in relation to CMB or  
b) moving spectrograph (with similar movement to the Michelson Morley experiment).  
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14. Time dilation and Transverse Doppler effect 
 
  We make a initial study about time dilation and transverse Doppler effect. This subject needs more 
research for complete explanation.  
 
14.1 Time dilation 
 
 Let us suppose two equal particles (same mass and same charge  with repulsive forces. The 
particles have velocity equal in modulus but with inverse  directions, see Fig. 6. 

m q
v y

 

 q

tO

 r

t1

 q

 
 
 Figure 6 – Trajectories of  the two particles . In the time interval time  to , the trajectories are  
approximately parallel. 

q ot 1t

 
  For the time interval time  to , the trajectories are  approximately parallel and we have: ot 1t
 

vtx =                                                                                             
constanty =                                                                                      (56) 

   
  From Fig. 6, we have: 
 

tcr Δ= ,                                                                                            (57) 
 
  Where  is the time interval in which the wave force travels distance ottt −=Δ 1 r . 
 

tvrx Δ=                                                                                           (58) 
yry = , 

 

21 β−
=

yr                                                                                     (59) 

 
  Dividing both terms by , we have: c
 

21
1
β−

=
c
y

c
r                                                                              (60) 

 
and 
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2

0

1 β−

Δ
=Δ=

t
t

c
r .                                                                  (61) 

 
  Equation (61) expresses time dilation, where cyt =Δ 0  (for 0=v ).  
  Thus, time dilation in extended Newtonian theory is due to the variation of forces (inside the atom) in 
relation to the velocity of the atom.  
 
14.2 Transverse Doppler effect 
 
  From section 14.1 we have: “ time dilation in extended Newtonian theory is due the variation of 
forces (inside the atom) in relation to the velocity of the atom”. 
  If the atom and observer are at rest in frame (CMB), the internal Coulomb potential energy is: S
 

oo
o r

qQU 1
4πε

=                                                                               (62) 

 
where  is the distance between the nucleus and the electron (for example the hydrogen) and the 
emitted frequency is . 

or

of
  If the atom is with velocity in relation to from (59) and (62) we have:   v S
 

211
4

β
πε

−== o
o

U
r

qQU                                                         (63) 

 
  And we have the frequency proportional to the Coulomb potential energy. Substituting U  by  in 
(63) we have: 

f

 
21 β−=⊥ off                                                                            (64) 

 
where is the transverse Doppler effect measured by the observer at rest in⊥f S and perpendicular to 

the atom velocity and is the observed frequency with the atom and observer at rest in of S . 
  The longitudinal Doppler effect in S is: 
 

β
β

±
−

=
±

= ⊥

1
1

1

2
of

B
f

f l                                                                            (65) 

 
  The sign is positive (negative) when 'S  (source) is moving away from (towards) S . 

 
 
14.3 Longitudinal Doppler effect in earth 
 
  Let us suppose a distant star source ( ) with velocity in relation to CMB ( ) and emitts from 
hydrogen atom. The observer is at rest in earth ( ), is with velocity 

''S v S
'S 'S V  in relation to  in direction 

of the star and 
S

V is parallel to , see Fig. 7. v
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fl (star
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fo’ (hydrogen
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Fig. 7 –  Longitudinal Doppler effect in earth. Star frequency measured by an observer at rest in earth.  
 
   From (64) we have: 
 

2' 1 Bff oo −=                                                                                  (66) 
 

2'' 1 β−= oo ff                                                                                  (67) 
 
   Where , and  are the hydrogen frequency measured with the atom and observer at rest 

respectively in 
of '

of ''
of

S (CMB), 'S  (earth) and ''S  (star). The frequencies and  are the transverse 
Doppler effect. 

'
of ''

of

  The longitudinal star frequency at CMB is: 
 

β+
=

1

''
off

l
                                                                                           (68) 

 
  The longitudinal star frequency measured in earth is: 
 

( Bff += 1'
ll

)                                                                                      (69) 

  Substituting (66), (67) and (68) in (69) we have: 

B
Bff o

−
+

+

−
=

1
1

1
1''

β
β

l                                                                     (70) 

   and are respectively the longitudinal star frequency measured in earth with observer at rest in 
earth and hydrogen frequency measured in earth with the atom and observer at rest in earth. 

'
l

f '
of

  For  we have the same equation of SR longitudinal Doppler effect.  0=B

  For B=β  we have . ''
off =l

 
 
 

 16



15.  Michelson-Morley experiment and extended Newtonian theory 
 
  The Michelson-Morley experiment [2] involves one semi-transparent mirror (half-silvered) in which 
the incident ray is refracted, reflected and divided into two rays ( and ), as shown in Fig. 8. ar br dr
 

ar br

dr

glass

M

v
ϕ

 
 
Figure 8 - Semitransparent mirror M with velocity V  as well as, incident ray ( ), the refracted-
reflected-refracted ray ( ) and refracted-refracted ray ( ). 

ar

dr br
 
   For complete calculations of the trajectory and displacement of the interference fringes, we must 
study the equations of refraction and reflection in vacuum and in glass. 
  The Michelson-Morley experiment requires one semi-transparent mirror, 16 mirrors, a lens and a 
telescope.  
 
15.1  Reflection in vacuum 
 
 In the Supplement of the MM paper [2], the equations of ray reflections in a moving  
mirror are shown in relation to a preferred frame. Let us suppose a mirror at rest in and with velocity 

in relation to  (CMB). The equations in relation to are the same of MM paper. 
'S

V S S
  From [2]:  
“Let  (Fig. 9) be a plane wave falling on the mirror at an incidence of . If the mirror is at rest, the 
wave front after reflection will be ae . Now suppose the mirror to move in a direction which makes an 
angle 

ab m o45

ϕ  with its normal, with velocity V . Let  be the velocity of light in the ether supposed stationary, 
and let  be the increase in the distance the light has to travel to reach .” 

c
ed d

 

θ

a

b

de

m

vacuum

Vϕ

i

ρ

 
 
Fig. 9 – Reflection in vacuum. Incident and reflection plane waves 
 
  Michelson and Morley also demonstrated the following equation: 
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c
V

ad
ae ϕθ cos21

2
45tan −==⎟

⎠
⎞

⎜
⎝
⎛ −o  .                                      (71) 

 
  Below, we have an equivalent and more general equation for any angle of incident rays. From Equations 
(5) and (6) in the work of Kohl [3], we have: 
 

i
iBB

B tan
seccos2cos1

cos1tan 22

22

ϕϕ
ϕρ

±+
−

= ,                                 (72) 

 
where andi ρ are respectively, the angles of incidence and reflection in relation to the normal of the 
mirror,  and cVB /= ϕ  is the angle of V with respect to the normal of the mirror. 
    The sign is negative (positive) when the mirror is moving away from (towards) the incident ray. 

     
15.2  Reflection in glass 
 
  Let us suppose a glass at rest in  and with velocity V in relation to  (CMB). 'S 'S S
  For : 0=V
 

n
cu =0                                                                          (73) 

 
 where  is the velocity of light inside the glass in relation to  and with  and  is the index 
of refraction.  

0u S 'S 0=V n

  For : 0>V
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= 2

2
0

0 1
c
u

Vuu                                                                       (74) 

 
where u  is the velocity of light inside the glass in relation to  and the glass at rest in . S 'S
( )22

0u1 cV −  is the Fresnel drag.  
  The equations of reflection in glass must be further developed. 
 
15.3  Refraction in vacuum-glass 
 
   From Snell’s law of refraction we have: 
 

ξsinsin
u
ci =                                                          (75) 

 
    Where and i ξ  are the angles, respectively, of incidence and refraction. The angles are in relation to 
the normal of the glass (Fig. 8). 
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15.4  The Michelson-Morley experiment 
 
  The Michelson-Morley experiment requires one semi-transparent mirror, 16 mirrors, a lens and a 
telescope. In Fig. 11, we substitute 16 mirrors for 2 mirrors. 
 

M

M1

M2

S

l

T
 

 
Figure 11 – Michelson-Morley experiment with one semi-transparent mirror, 2 mirrors, a lens and a 
telescope. 
 
  In Fig. 11, S, l, M, M1, M2 and T are respectively, the light source, lens, semi-transparent mirror, 
mirror 1, mirror 2 and telescope. 
  For calculus simplification, we substitute for lens l the sun or star light, which has wave front that is 
practically planare when reaching the earth. The interchange between sun or star lights and laboratory 
sources in no way alters the results [4-6]. 
  For the telescope, we substitute screen B, as shown in Fig. 12. 
 

 
 
Figure 12 – Michelson-Morley experiment with sun light and secreen B. Panel (a) shows the x-z plane, 
while (b) shows the x-y plane. 
 
   M3 is a mirror to capture sun or star light. 
   The displacement of interference fringes must be calculated using the equations above and further  
development of the complete equations is needed. So, MM experiment is an open question for ENT. 
. 
Conclusion 
 

 19



  The basic equations of ENT (mass variation, time dilation, inertial force, kinetic energy, transverse 
Doppler effect and relation mass-energy) are the same as Relativity Theory and the difference between 
the theories are the gravitational, Coulomb and magnetic forces.  
  It is proposed an experimental to test  ENT using mass spectrograph with electric and magnetic 
sectors with modified geometry that measures mass differences of ppm1≅  when the earth moves in 
relation to CMB.  
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