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Abstract:     
 
It has long been believed that to avoid unphysical observable string singularities, Dirac monopoles 
must be quantized in whole integers according to the Dirac Quantization Condition 2eg=n, where 
e and g are the electric and magnetic charge strengths respectively, and n is an integer.  This is in 
fact true if the electron wavefunction is not rotated while it traverses a single complete 2π circuit 
about the monopole.  But it is also well-known that when a spinor undergoes a rotation through 
2π, the sign of that spinor is reversed yielding an opposite “version” of that spinor, and that the 
original sign and version are only restored after a 4π double rotation.  Consequently, it is shown 
here that when an electron wavefunction is rotated in a tidal lock with the monopole during a 
single 2π circuit, and specifically due to the version change that occurs because of this tidally-
locked rotation, to avoid unphysical singularities the Dirac condition must change from the usual 
whole integer condition to a half-integer condition 2eg=n-½.  It is also shown how these half-
integer charges would only be detectable by electrically-charged fermions, not bosons. 
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1. Introduction 
 
 In 1931 Paul Dirac [1] discovered that if magnetic charges with strength g were to 
hypothetically exist, this would imply that the electric charge strength e must be quantized.  The 
relationship he found, often written as 2eg n=  where n is a positive or negative integer or zero, 
has since come to be known as the Dirac Quantization Condition (DQC).  The electric charge 
strength e in this relationship is the same one which is related to the “running” fine structure 
coupling via 2 / 4e cα π= ℏ  which at low probe energy asymptotically approaches the numerical 
value 2 / 4 1 /137.036e cα π= ≅ℏ , see, e.g., equation [1] in Dirac’s [1] (which uses Gaussian units) 
and Witten’s [2], pages 27 and 28. 
 

In the mid-1970s, to remediate the fiction of Dirac’s “nodal lines” which subsequently 
became known as Dirac strings, Wu and Yang [3], [4] developed an approach which achieves 
completely equivalent results “without strings.”  The only difference is that this approach is cast 
in the more-modern language of fiber bundles.  In the Wu Yang approach, one uses U(1)em gauge 
theory to obtain the differential equation 2i ie de i egdϕ− Λ Λ =  (to be derived at (4.2) infra) where Λ  
is the gauge (really, phase) angle and ϕ  is the geometric azimuth about the z-axis in the three 
dimensional physical space of the rotation group SO(3).  This equation is easily seen to be solved 
for constant electric and magnetic charge strengths 0de dg= =  by ( ) ( )exp exp 2i i egϕΛ =  (as 

seen at (4.3) infra). 
 
It has long been believed that the only Wu-Yang solution which is free of unphysical 

observable singularities is 2eg n=  of the standard DQC (to be derived at (4.7) infra).  This is in 
fact true if the electron wavefunction ψ  is not rotated while – to use Dirac’s language – it “goes 
round a closed curve” of 2π  on the SO(3) space about the monopole.  However, if the 
wavefunction is also rotated in a “tidal lock” with the monopole while traversing this 2π  circuit 
and so itself undergoes a 2π  rotation during this circuit, then its “version” will reverse sign 
following the completion of this circuit, as taught in section 41.5 of Misner, Thorne and Wheeler’s 
(MTW) definitive work [5].  Consequently, as will be shown in section 5 here, in order to avert 
observable singularities, these tidally-locked circuits must have the half-integer charges 

1
22eg n= −  derived in (5.14) infra to compensate for this version sign reversal, rather than the 

usual integer charges 2eg n=  of the standard DQC. 
 
The only known circumstance in nature under which half-integer charges are observed, is 

at ultra-low temperatures near 0K in connection with the Fractional Quantum Hall Effect (FQHE).  
In this environment, fractional fill factors / 2nν =  are in fact experimentally observed, see e.g., 
[6], [7] for 1/ 2v = , [8] for 3/ 2v = , [9] for 5 / 2v =  and [10] for 7 / 2v = .  Consequently, the 
question is raised whether the half-integer fractions found here for wavefunctions tidally-locked 
to Dirac monopoles might have some connection to these observed half-integer FQHE fractions. 
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2. Local U(1)em Gauge Transformations, in General 
 

We begin by considering a first electron wavefunction ( )xµψ +  which is related to a second 

electron wavefunction ( )xµψ −  by the local U(1)em gauge transformation (throughout, except in 

certain particular circumstances, we shall employ natural units 1c= =ℏ ): 
 

( )exp iψ ψ ψ ψ+ + + −′→ = Λ ≡ , (2.1) 

 
where phase angle ( )xµΛ  varies locally as a function of the spacetime coordinates xµ  as do the 

wavefunctions ( )xµψ .  The transformation (2.1) is often written simply as ( )exp iψ ψ ψ′→ = Λ , 

but by placing the label ψ +  on ψ  and then ψ −  on ψ ψ− +′≡ , we lay the foundation for easily 

introducing the “north” and “south” gauge patches used to study monopoles starting in section 3. 
 

Next, we define a gauge potential ( )A xµ
µ+  to be an electromagnetic vector potential 

corresponding with the wavefunction ψ + , and we then use this to define the gauge-covariant 

derivative D ieAµ µ µ+ +≡ ∂ +  where e is the (running) electric charge strength, and where the sign 

of ieA µ+  is positive in this derivative because we are using a Minkowski metric tensor 

( ) ( )diag 1, 1, 1, 1µνη = − − − , versus the oppositely-signed convention.  Applying this derivative to 

each side of ( )exp i ψ +Λ  in (2.1), we obtain: 

 

( )( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

exp exp

exp exp exp

exp

D i ieA i

i i i ieA i

i ieA i

µ µ µ

µ µ µ

µ µ µ

ψ ψ

ψ ψ ψ

ψ ψ

+ + + +

+ + + +

+ + +

Λ = ∂ + Λ

= ∂ Λ Λ + Λ ∂ + Λ

 = Λ ∂ + + ∂ Λ 

. (2.2) 

 
Based on the inner square-bracketed expression in the bottom line above, we define a second, 
transformed gauge potential A Aµ µ− +′≡  corresponding with the wavefunction ψ ψ− +′≡  by: 

 
eA eAµ µ µ− += + ∂ Λ . (2.3) 

 
Then, defining a second gauge-covariant derivative D ieAµ µ µ− −≡ ∂ + , (2.2) simplifies to: 

 

( )( ) ( ) ( )exp exp expD i i ieA i Dµ µ µ µψ ψ ψ+ + − + − + Λ = Λ ∂ + = Λ  . (2.4) 

 
The foregoing represent a fundamental proposition of local gauge theory: the local gauge 

transformation (2.1) acting on a fermion ψ  must be compensated by the introduction of a gauge 

fields Aµ  transforming according to (2.3) in order to maintain the local gauge invariance of the 
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electrodynamic Lagrangian and its related field equations.  The logical consequence of this 
proposition is Maxwell’s electrodynamics. 

 
The gauge transformation (2.3) may readily be divided through by e and rewritten using 

the mathematical identity i ii e eµ µ
− Λ Λ∂ Λ = ∂  as: 

 
/i iA A e e ieµ µ µ

− Λ Λ
− += + ∂ . (2.5) 

 
Further, one may generally pack a vector potential into the differential one-form A A dxµ

µ= .  

Therefore (2.5) compacts and rearranges into: 
 

/i iA A e de ie− Λ Λ
− +− = . (2.6) 

 
This tells us that these two gauge fields A−  and A+  differ from one another by no more than a 

generalized U(1)em gauge transformation, which is apparent because these are just relabeled names 
for the one-forms A and A′  transforming according to /i iA A e de ie− Λ Λ′ = + .  Therefore, these two 
gauge fields are not observably-distinct. 
 
3. A Coulomb Magnetic Field which is the Curl of a Vector Potential, i.e., 
a U(1)em Magnetic Monopole 
 

The electromagnetic field strength two-form 1
2F F dx dxµ ν

µν=  where Fµν  is the field 

strength tensor / bivector is generally related to the vector potential one-form A by F dA=  and so 
is a locally-exact two-form.  The space components ij i j j iF A A= ∂ − ∂  are related to the magnetic 

field vector ( ), ,k
x y zB B B B= =B  as represented in Cartesian coordinates, by k

ij ijkF Bε= − , where 

ijkε  is the antisymmetric Levi-Civita tensor with 123 1ε = + .  Likewise, using 

( ) ( )diag 1, 1, 1, 1µνη = − − −  to lower indexes in ( ) ( ), , , ,x y zA A A Aµ φ φ= =A , and with 

( ), ,i x y z∂ = ∂ ∂ ∂∇ = , this means that k
ij ijk i j j iF B A Aε= − = ∂ − ∂  , or = ×B A∇ .  So whenever we 

have a field strength F dA=  for a given potential A, the magnetic field B will be the curl of the 
vector potential, ×A∇ . 

 
Now, to begin a review of magnetic monopole physics, let us define the two four-vector 

potentials in A−  and A+  of the last section such that these are the potentials for a Coulomb magnetic 

field B which is the curl of the space components these vector potentials, = ×B A∇ .  That is, let 
us now define the gauge potentials for a magnetic monopole.  We do this by simply postulating 
the differential forms for these monopole potentials, then showing that these forms do in fact 
reproduce a Coulomb magnetic field with = ×B A∇ . 
 

We start by positing a (running) magnetic charge strength g for such a monopole, and we 
then postulate each of the potential one-forms A−  and A+  in a spherical coordinate basis to be: 
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( )
( )
cos 1

cos 1

A g d

A g d

θ ϕ
θ ϕ

+

−

≡ −

≡ +
. (3.1) 

 
Confining our domain to 0 θ π≤ ≤ , A+  is “northerly” because it is defined everywhere except for 

θ π= , i.e., except due south of the origin, while A−  is a “southerly” potential defined everywhere 

except for 0θ = , i.e., except due north of the origin.  These undefined regions are the Dirac string 
singularities.  But the union of the regions in which A±  are well-defined covers the entirety of the 

SO(3) space of 3
ℝ  about the monopole.  Often these vector potentials are referred to as the north 

and south gauge patches, NA A+≡  and SA A−≡ .  Making this identification, we see via (2.6) that 

these differ from one another simply by a gauge transformation and so are not observably-distinct.  
We now show that these will indeed produce a Coulomb magnetic field for which the curl 

= ×B A∇  for both of the vector potentials +A , −A . 

 
 First, although we must generally regard g as a running magnetic charge strength, for the 
present analysis let us hold g constant, 0dg = .  That is, we shall not let g run over the region of 
spacetime under consideration, or more precisely, we shall consider a region of spacetime within 
which any running of g may be neglected.  Because differential forms geometry teaches that the 
exterior derivative of an exterior derivative is zero, 0dd =  in general, and thus 0ddϕ =  in this 
specific setting, this all means when we operate on (3.1) with d that: 
 

cosF dA dA gd dθ ϕ− += = = . (3.2) 

 
Therefore, based on what was discussed in the first paragraph of this section, for either potential 
in (3.1) the magnetic field + −= × = ×B A A∇ ∇  is the curl of the gauge potential, as desired. 

    
 Of course, 0dF ddA ddA− += = =  via the same identity 0dd = , which means that F is 

closed and locally exact.  But it is not globally exact.  Specifically, if we integrate (3.2) over a 
closed two-dimensional nonlocal surface with g still held constant, and if we also apply Gauss’ / 
Stokes’ theorem, then: 
 

2 2

0 00 0
cos cos cos 4dF F gd d g d d g g

π π π πθ ϕ θ ϕ θ ϕ π= = = = = −∫∫∫ ∫∫ ∫∫ ∫ ∫� � . (3.3) 

 
The fact that the region of spacetime is posited to be one in which any running of g may be 
neglected thus g is constant and 0dg =  is reflected by our having moved g outside the integral 
after the third equal sign above.  Now let us specifically pinpoint the magnetic field. 
 
 To do so, we consider the circumstance under which the electric fields vanish, that is, under 

which the electric field vector 0 0 0k kF F= − = =E .  Here, 1 1
2 2

i j
ijF F dx dx F dx dxµ ν

µν= =∫∫ ∫∫ ∫∫� � � .  

Then, using this in (3.3) also in view of the earlier-noted k
ij ijkF Bε= − , we find that: 
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1 2 2 3 3 11

12 23 312 4F F dx dx F dx dx F dx dx F dx dx gµ ν
µν π= = + + = − ⋅ = −∫∫ ∫∫ ∫∫ ∫∫ ∫∫ ∫∫ B dS� � � � � � . (3.4) 

 
So from the final equality above, this means that: 
 

4 gπ µ⋅ = =∫∫ B dS� , (3.5) 

 
where 4 gµ π≡  is defined as the total magnetic field flux across the closed surface.  Conversely, 
the magnetic charge strength / 4g µ π=  represents the steradial density of magnetic flux across 
the closed surface.  This, of course, is Gauss’ law for magnetism in integral form, but with a non-
zero magnetic flux µ  across the closed surface.  Consequently, this is the integral formulation of 
Gauss’ law for a non-vanishing magnetic monopole.  Because this was arrived at using E=0 in 
(3.4), (3.5), there are no electric fields induced by this monopole, and as a result, (3.5) describes 
this magnetic monopole at rest. 
 
 Now, in general, Coulomb’s law cannot be derived from Gauss’ law alone.  However, if 
the magnetic monopole is stationary – which it is because 0=E  in (3.4) and (3.5) – then the 
magnetic field B in (3.5) will be exactly spherically symmetric.  As a result of this spherical 
symmetry, we can center the coordinates at the monopole so only the radial component rB  of B 

will be non-zero, that is, in spherical coordinates, so that ( ) ( ), , ,0,0r rB B B Bϕ θ= =B .  Also 

because of this spherical symmetry, we may remove B from the integrand in (3.5).  Thus, using a 

spherical surface 24 rπ=∫∫ dS�  centered about the monopole, we may now write the above as: 

 
24 4rB r gπ π µ⋅ = = ⋅ = =∫∫ ∫∫B dS B dS� � . (3.6) 

  
Finally, (3.6) is easily rearranged to yield:  
 

2 24r

g
B

r r

µ
π

= = . (3.7) 

 
This is indeed a Coulomb magnetic field which has a (constant) magnetic charge strength g, and 
for which the total magnetic flux across any closed surface is 4 gµ π= .  Furthermore, this 

Coulomb magnetic field is the curl of the vector potentials, + −= × = ×B A A∇ ∇  as demonstrated 

at the start of this section.  Consequently, we have completed our review of how the potentials 
postulated in (3.1) do in fact specify a non-vanishing Coulomb magnetic field with = ×B A∇ . 
 

Now, we begin to examine what is required to ensure that this Coulomb magnetic 
monopole with = ×B A∇  does not give rise to any observable singularities. 
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4. Conditions under which the U(1)em Magnetic Monopole has No 
Observable Singularities: The Standard Dirac Quantization Condition 
 
 Returning to (3.1), we first find that the difference between the north and south gauge 
patches: 
 

2A A gdϕ− +− = . (4.1) 

 
Combining the above with the gauge transformation (2.6) then yields the Wu-Yang [3], [4] 
differential equation: 
 

/ 2i ie de ie gdϕ− Λ Λ = . (4.2) 
 
This differential equation is solved for constant e and constant g, i.e., for 0de=  and 0dg =  by: 
 

( ) ( )exp exp 2i i egϕΛ = , (4.3) 

 
as is easily seen by plugging (4.3) back into the left hand side of (4.2) then reducing. 
 
 We next employ this solution to operate on ψ +  from the left, and combine this with (2.1), 

which yields: 
 

( ) ( )exp exp 2i i egψ ψ ψ ψ ϕ ψ+ + − + +′→ = = Λ = . (4.4) 

 
Clearly, for 0ϕ = , this yields (0)ψ ψ− += , using the notation ( )ψ ϕ  to denote the wavefunctions 

at a particular azimuthal disposition.  Now, following the course first charted by Dirac, let us move 
this wavefunction through the Coulomb magnetic field of (3.7) around a closed curve in the 
azimuthal direction, going from 0ϕ =  to 2ϕ π= .  When this single circuit about the monopole is 
complete, from (4.4) with 2ϕ π=  we obtain: 
 

( ) ( ) ( )exp exp 2 2 exp 4i i eg i egψ ψ ψ ψ π ψ π ψ+ − + + + +′→ = = Λ = ⋅ = . (4.5) 

 
This says that ( )(2 ) exp 4i egψ π π ψ− += .  Now let’s turn to the question of observable singularities. 

 
 To avoid observable singularities, it is required that the electron wavefunction at 2ϕ π=  
be the same identical wavefunction as it is at the geometrically identical azimuth 0ϕ =  on SO(3).  
In other words, it is a requirement that the wavefunction be defined so as to have the single value  

( ) ( ) ( )0 2 0ψ ψ π ψ+ + +→ ≡  and not have multiple values at the same azimuthal orientation on 

SO(3), see, for example, [11].  This requirement will be satisfied if and only if: 
 

( ) ( ) ( )exp exp 4 1 exp 2i i eg i nψ ψ ψ ψ π ψ ψ π ψ+ − + + + + +′→ = = Λ = ≡ ⋅ = , (4.6) 
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where we make use of the identity ( )1 exp 2i nπ=  for 0, 1, 2, 3, 4...n = ± ± ± ± , i.e., for all positive or 

negative integers or zero.  From ( ) ( )exp 4 exp 2i eg i nπ ψ π ψ+ += , we see that this will occur if and 

only if 4 2eg nπ π= , or more simply: 
 
2eg n= . (4.7) 
 
This is the Dirac Quantization Condition.  In the language of fiber bundles, this all shows how the 
electromagnetic field is described by a 2-form with integral periods, which is precisely the 
curvature of a connection on a principal U(1)-bundle, again, see, e.g., [11]. 

 
From (4.7), defining the 1n =  charge units as 0 1/ 2e g≡  and 0 1/ 2g e≡ , we see that the 

respective electric and magnetic charge strengths are reciprocally quantized by: 
 

0

0

/ 2

/ 2

e n g ne

g n e ng

= =
= =

, (4.8) 

 
 Now let’s examine the phase behavior.  With the Dirac condition 2eg n=  of (4.7) imposed, 
(4.4) now becomes: 
 

( ) ( )exp expi inψ ψ ψ ψ ϕ ψ+ − + + +′→ = = Λ = , (4.9) 

 
which contains the implied quantized relationship: 
 

nϕΛ =  (4.10) 
 
between the phase angle Λ  and the azimuth angle ϕ .  Of course, an absolute phase itself is not an 
observable; all that may be observed is a change in phase between two points which we shall 
denote with a ∆  subscript as ∆Λ .  So, we may ask, what change in phase occurs after the 

wavefunction traverses an azimuthal circuit from 0ϕ =  to 2ϕ π= ?  For this, we merely insert 
2ϕ π=  into (4.10) to find that what Dirac often refers to in [1] as the observable “change in phase 

round” a “closed curve” is: 
 

2 2 ,4 ,6 ,8 ...nπ π π π π∆Λ = = . (4.11) 

 
 Thus, if we start with a wavefunction at 0ϕ =  in physical space and assign some 
unobservable arbitrary angle to the phase Λ , then after traversing a single circuit to 2ϕ π=  which 
leads to the same azimuthal orientation in physical space, the observable phase difference will be 

2 nπ∆Λ = .  Thus the phase will likewise have returned to precisely the same angular orientation 

in the phase space ( )exp cos sini iΛ = Λ + ∆  that it had at the start.  Likewise, as imposed at (4.6), 
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there will be no observable singularities, because the wavefunction will maintain the single value 
( ) ( )2 0ψ π ψ+ +=  at both of the 0ϕ =  and 2ϕ π=  azimuthal orientations. 

 
 Using the Dirac quantization condition (4.7) we may finally return to (3.1) to write the 
monopole potentials as: 
 

( )
( )

1
2

1
2

cos 1

cos 1

eA n d

eA n d

θ ϕ
θ ϕ

+

−

= −

= +
. (4.12) 

 
 All of the foregoing summarizes the present-day understanding of U(1)em magnetic 
monopoles and the Dirac Quantization Condition 2eg n=  of (4.7) which is understood to be 
required if these monopoles are to exist without observable singularities.  A very good, parallel 
review of the above can be studied at [12], which serves the beneficial purpose of clarifying and 
detailing how the gauge field approach presented above relates to the modern mathematics of fiber 
bundles.  Note that the A±  utilized in [12] employ an opposite sign convention from that used here. 

 
 Although the Dirac charges 2eg n=  of (4.7) are presently thought to be the only monopole 
charges that can exist in the natural world without observable singularity, we shall now 
demonstrate that if the wavefunction in rotated in a tidal lock with the postulated magnetic 
monopole while it traverses the monopole from 0ϕ =  to 2ϕ π= , then in order to avoid observable 
singularities, the Dirac charges must now possess half-integer rather than whole-integer charge 
quanta. 
 
5. Tidally-Locked Electron Wavefunctions and Half-Integer Fractional 
Monopole Charges 
 
 In the derivation of the Dirac Quantization Condition just reviewed, there is an unstated 
assumption that the electron wavefunction, over the course of traversing its circuit about the 
monopole from 0ϕ =  to 2ϕ π= , it not itself undergoing any rotation.  But now let us examine 
what happens if the electron itself rotates in a “tidal lock” with the monopole as it traverses the 
monopole, so that in the course of traversing from 0ϕ =  to 2ϕ π=  about the monopole the 
electron also rotates through 2π  via SU(2) which is the universal cover of the rotation group of 
SO(3).  This is analogous, albeit in the quantum world, to what the moon does when it traverses 
the earth such that the far side of the moon is never visible from earth.  As we shall now see, with 
such a tidal lock, to avoid observable singularities, the Dirac charge condition must now become 
a half-integer rather than a whole-integer condition.  
 
 We begin with the three 2x2 Pauli matrices iσ  of SU(2), posit three associated angles iθ  

in the physical space of spacetime, and form the matrices ( )exp / 2i i iU iσ θ= which are unitary, 
† 1U U = , given that †

i iσ σ=  are Hermitian.  These iU  matrices are used to transform spinors, and 

when projected via the two-to-one, double-covered, homomorphic, universal covering map 
: (2) (3)SU SOπ → onto physical space, result in rotations through respective angles , ,i x y zθ θ θ θ=  
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about each of the x, y, z axes in the three-dimensional physical SO(3) space often denoted as 3
ℝ .  

It is well-known how to make use of the series ( ) 2 3 41 1 1
2! 3! 4!exp 1 ...ix ix x i x x= + − − +   together 

with the fact that 2n
i iIσ =  and 2 1n

i iσ σ+ =  to flesh out these unitary matrices, each of which has 

det 1iU = , into: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( )

1 11
1 1

1 1

2 22
2 2

2 2

3 33
3 3

3 3

3

3

cos / 2 sin / 2
exp

sin / 2 cos / 22

cos / 2 sin / 2
exp

sin / 2 cos / 22

cos / 2 sin / 2 0
exp

0 cos / 2 sin / 22

exp / 2 0

0 exp / 2

i
U i

i

U i

i
U i

i

i

i

θ θθσ
θ θ

θ θθσ
θ θ

θ θθσ
θ θ

θ
θ

  = =   
   

  = =    −   

 + = =    −   

 
=  − 

. (5.1) 

 
 Continuing with the natural units 1c= =ℏ  let us next consider an electron traveling with 

velocity vβ =  along the z axis and thus the Lorentz contraction factor 21/ 1 vγ = − .  As is often 
done, we may then define the boost parameters coshχ γ≡  and sinhχ γβ≡ , and write the Lorentz 
transformation between the time coordinate t and the z coordinate using the hyperbolic “rotation”: 
 

cosh sinh

sinh cosh

t t t

z z z

χ χ
χ χ

′      
→ =      ′      

 . (5.2) 

 
Several of the points to now be developed are found in Ryder’s [13], amidst pages 36 to 42. 
 
 The electron wavefunction ψ  is a four-component Dirac spinor which we can denote by 

( ),T T Tψ ξ η= , where ξ  and η  are each two-component spinors with all components interrelated 

via Dirac’s equation ( ) 0i mµ
µγ ψ∂ − = .  Under a transformation (5.2) defined by the Lorentz 

group SO(1,3), which includes a general boost χ  and spatial rotation through θ  on SO(1,3), these 
spinor components will transform on SL(2,C) according to: 
 

( )( )
( )( )

exp / 2 0

0 exp / 2

i i

i i

ξ ξ ξ
ψ ψ

η η η
 ⋅ −′     ′  = → = =      ′ ⋅ +      

σ θ χ

σ θ χ
, (5.3) 

 
where iσ=σ  are the 2x2 Pauli matrices.  So for a non-relativistic electron with 0→χ  undergoing 

simply a rotation without boost, this simplifies to: 
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( )
( ) (2)

exp / 2 0
exp

0 exp / 2 2

i
I i

i

ξ ξ ξ
ψ ψ ψ

η η η
′  ⋅       ′= → = = = ⊗ ⋅        ′ ⋅        

σ θ θ
σ

σ θ
. (5.4) 

 
Here, (2)I  is a 2x2 identity matrix and the outer product symbol ⊗  is used to compactly represent 

that  ( )(2) exp / 2I i⊗ ⋅σ θ  is a 4x4 matrix formed by placing the 2x2 ( )exp / 2i ⋅σ θ  based on (5.1), 

on the diagonal twice.  For an azimuthal rotation through 3θ ϕ=  about the z axis only, this 

becomes ( )(2) 3 (2) 3exp / 2I i I Uψ ψ σ ϕ ψ ψ′→ = ⊗ = ⊗ , for which the unitary matrix 3U   is 

explicitly given by the third relation in (5.1) with 3θ  replaced by ϕ .  Thus, for an azimuthal 

rotation only, for a non-relativistic electron, the ( )3exp / 2iσ ϕ  term in (5.4) will operate identically 

upon each of the two-spinors ,ξ η .  So for the upper spinor ( ),T A Bξ ξ ξ= , using 3U  from (5.1), the 

transformation in (5.4) will be: 
 

( ) ( )
( ) ( )3 3

cos / 2 sin / 2 0
exp

0 cos / 2 sin / 22
A

B

i
U i

i

ϕ ϕ ξϕξ ξ ξ σ ξ
ϕ ϕ ξ

 +   ′→ = = =     −    
. (5.5) 

  
For the lower spinor ( ),T A Bη η η=  the operation is a carbon copy of (5.5) but with the symbol ξ  

replaced throughout by the symbol η .  The requirement to maintain the two spinors ξ  and η  

together within the four-component Dirac wavefunction ( ),T T Tψ ξ η=  arises because these are 

interchanged ξ η↔  under parity.  But when the boost is removed the overall ψ  as well as each 
of ξ  and η  will transform in identical fashion and so may be separately considered.   
 

We finally consolidate the transformation (5.5) on both ,ξ η  into one expression by 

representing the third 2x2 matrix (5.1) compactly as ( ) ( ) ( )3 cos / 2 sin / 2 exp / 2U i iϕ ϕ ϕ⇒ ± = ±  

while also using the ψ +  labelling of (2.1) to recast ψ ψ +⇒ , and thus also recast ξ ξ+⇒  and 

η η+⇒ , yielding: 

 

( ) ( )
( ) ( )

( )
( )

(2) 3 (2) 3exp
2

cos / 2 sin / 2 0 exp / 2 0

0 cos / 2 sin / 2 0 exp / 2

I i I U

i i

i i

ξ ξ ϕψ ψ σ ψ ψ
η η

ϕ ϕ ϕξ ξ
ϕ ϕ ϕη η

+ +
+ + + +

+ +

+ +

+ +

′     ′= → = = ⊗ = ⊗     ′     

   ± ±   
= =      ± ±      

.(5.6) 

 
In this compact notation, the ±  signs denote the respective operations on each component of 

( ),T A Bξ ξ ξ+ + +=  and ( ),T A Bη η η+ + += .  This is a more explicit form of (5.4) for an azimuthal 

rotation with 3 3 3σ θ σ ϕ⋅ = =σ θ , also adopting the labelling of (2.1). 
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 Now, let us return to the gauge transformation ( )exp iψ ψ ψ+ + +′→ = Λ  of (2.1) and contrast 

this against (5.6).  As already noted, now quoting Dirac from page 63 of [1], “the value of [the 
phase] at a particular point has no physical meaning and only the difference between the values of 
[the phase] at two different points is of any importance.”  So, if we are comparing phases between 
two different azimuthal points (for the non-relativistic electron presently under examination), then 
we should also inquire whether the electron has been rotated at all when moving from one such 
point to the next.  If the electron has not rotated but the phase has changed, then the transformation 
will be ( )exp iψ ψ ψ+ + +′→ = Λ  from (2.1).  Conversely, if the electron has rotated but the phase 

has not changed, then the transformation will be ( )(2) 3exp / 2I iψ ψ σ ϕ ψ+ + +′→ = ⊗  from (5.6).  

But, if both the phase has changed and the electron has rotated, then the complete transformation 
will be a combination of both operations (2.1) and (5.6), namely: 
 

( ) ( )(2) 3 (2) 3 (2) 3exp exp exp exp
2 2

I U i I i i I i
ϕ ϕψ ψ ψ σ ψ σ ψ+ + + + +

   ′→ = ⊗ Λ = ⊗ Λ = ⊗ + Λ   
   

. (5.7) 

 
With (5.7) we are now equipped to ask what happens if the electron makes a complete circuit 
“round a closed curve” about the monopole through a 2π  azimuth and simultaneously does so in 
a tidal lock with the monopole thus also rotating through 2π , all on SO(3).   
 

To avoid observable singularities, as in section 4, we must still have a single-valued 
wavefunction after the full 2π  circuit is complete, that is, we must still impose 

(2 ) (0)ψ ψ π ψ+ + +′ = ≡ .  But now, the condition required to avoid a singularity will be imposed by 

defining ψ ψ+ +′ ≡  when 2ϕ π=  using (5.7).  So to impose the condition that the tidally-locked 

wavefunction be single-valued after completing a 2π  circuit, we simultaneously set 2ϕ π=  in 

(5.7) and require ( )(4) exp 2I i nψ ψ π ψ+ + +′ ≡ = , which uses ( )1 exp 2i nπ=  as before.  By setting 

2ϕ π= , we are also now implicitly examining an observable phase difference as between 0ϕ =  
and 2ϕ π= , which we again denote by replacing the absolute phase Λ  with the phase difference 

∆Λ .  Consequently, from (5.7), with these conditions, we obtain:  

 

( ) ( ) ( ) ( )(2) 3 (2) 3 (4)exp exp exp exp 2I i i I i I i nψ ψ σ π ψ σ π ψ ψ π ψ+ + ∆ + ∆ + + +′→ = ⊗ Λ = ⊗ + Λ ≡ = .(5.8) 

  
Now turning the “≡ ” used to designate the imposing of a single-valued wavefunction into an equal 
sign, this will be recognized as, and may be restructured into, an eigenvalue equation: 
 

( ) ( )( )(2) 3 (4)exp exp 2 0I i I i nσ π π ψ∆ +⊗ + Λ − =  (5.9) 

 
for the phase difference ∆Λ  that is introduced when going from 0ϕ =  to 2ϕ π= .  Now, we merely 

need to solve this eigenvalue equation. 
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 To simplify solving (5.9), we may use (5.1) to deduce that when 3 2θ ϕ π= =  as it is in 

(5.9), the 2x2 matrix ( )3 3 (2)expU i Iσ π= = − , which produces a sign reversal.  So rather than solve 

(5.9) using explicit matrices, we may use this observation together with (2) (2) (4)I I I⊗ =  to directly 

simplify then reduce (5.8) to: 
 

( )exp iψ ψ ψ ψ+ + ∆ + +′→ = − Λ ≡ . (5.10) 

 
Except for the sign reversal and the fact that we are now using the notation ∆Λ  introduced at (4.11) 

to represent that this is an observable phase difference, this is the same as (4.6) from which we 
obtained the standard DQC of (4.7).  This sign reversal, which is a consequence of the rotation 
from the tidal lock, is, however, not a trivial matter, because it changes the Dirac condition needed 
to avert observable singularities.  Let us see how: 
 

Now, in lieu of ( )1 exp 2i nπ=  used in (4.6), we use the mathematical identity 

( )( )1 exp 2 1i nπ− = − , i.e., we use the fact that the Euler formula ( )exp 1iϑ = −  at angles 

( ),3 ,5 ... 2 1nϑ π π π π= = −  for which the coefficient of π  is an odd-integer ( )2 1 1,3,5...n− = .  So 

now, flipping the signs in (5.10) and using this identity for -1, we have: 
 

( ) ( )( )exp exp 2 1i i nψ ψ π ψ∆ + + +Λ = − = − . (5.11) 

 
As a result, for the tidally-locked electron, we may extract from (5.11) that after a single tidally-
locked 2π  circuit “round a closed curve,” the change in phase will be: 
 

( )2 1 ,3 ,5 ,7 ...n π π π π π∆Λ = − = , (5.12) 

 
which is likewise an odd-integer multiple of π , contrast (4.11) which is an even-integer multiple 
of π . 
 

Most importantly, if now combine (5.11) with the Wu-Yang equation (4.4) also obtained 
from a single 2π  circuit about the monopole, that is, if we combine (5.11) with (4.4) (with the 
notation ∆Λ  for the phase difference) for the same 2ϕ π=  azimuthal circuit, we now obtain: 

 

( ) ( )( ) ( ) ( )exp exp 2 1 exp 2 exp 4i i n i eg i egψ π ψ ϕ ψ π ψ∆ + + + +Λ = − = = . (5.13) 

  

From ( )( ) ( )exp 2 1 exp 4i n i egπ ψ π ψ+ +− =  above, we may finally extract ( )2 1 4n egπ π− =  which 

reduces to: 
 

( ) 3 5 71 1
2 2 2 2 22 2 1 / 2 , , , ...eg n n= − = − = , (5.14) 
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for the positive integers 1,2,3,4,5...n = .  This is the charge condition required to avoid observable 
singularities when the wavefunction traverses the monopole in a tidal lock.  Contrasting the usual 
DQC 2eg n=  of (4.7), we see that to avoid observable singularities for a tidally-locked electron 
which rotates in synchronization with its circuit about the monopole, we must now have a Dirac 
quantization condition for which the charges are half-integer charge fractions that skip over the 
whole integer charges.   
 

Under this condition, using the same charge quanta 0 1/ 2e g≡  and 0 1/ 2g e≡  defined after 

(4.8), the electric and magnetic charge strengths are now reciprocally quantized according to: 
 

( ) ( )
( ) ( )

1 1
02 2

1 1
02 2

/ 2

/ 2

e n g n e

g n e n g

= − = −

= − = −
, (5.15) 

 
Likewise, using (5.14) in (3.1), in contrast to the earlier (4.12), the vector potential one-forms are 
now quantized according to:  
 

( )( )
( ) ( )

1 1
2 2

1 1
2 2

cos 1

cos 1

eA n d

eA n d

θ ϕ

θ ϕ
+

−

≡ − −

≡ − +
. (5.16) 

 
 Now, let’s step back to gain some perspective on what has happened here to reveal these 
half-integer Dirac charges. 
 
6. Why the Half-Integer Dirac Charges are Simply a Consequence of 
Wavefunctions Changing their Version when Undergoing Rotations 
 
 In their classic exposition at section 41.5 of [5], Misner, Thorne and Wheeler (MTW) teach 
that a spinor will reverse sign after any 2 360π = °  rotation, and will only regain its original sign 
after a 4 720π = °  rotation.  A four-component Dirac wavefunction ψ  houses two spinors ξ , η , 
and as reviewed in the last section, these two spinors and thus the overall wavefunction will 
transform identically under rotations absent boost.  Thus, the entire non-relativistic Dirac 
wavefunction will exhibit this sign reversal after a 2π  rotation.  On close inspection, it will be 
seen that the rotation reviewed in [41.48] through [41.50] of [5] when taken about the z-axis is the 
same as that used in (5.5) here.  We discuss this for an electron by saying that the electron changes 
to an oppositely-signed “version” after a 2π  rotation and only recovers its original version after a 
4π  rotation.  So if the electron is traversed through a 2π  azimuthal circuit about the hypothesized 
magnetic monopole reviewed in section 3, and if it is tidally-locked to the monopole and thus has 
a rotation synchronized to this traversal, then the electron will return to its original azimuth, but 
with its version sign reversed.  And this means that the wavefunction at this azimuth is not single-
valued but is double-valued with a leading ±  sign.  This would give rise to an unphysical 
observable Dirac string singularity if not compensated in some way. 
 
 MTW analogize this version change to the macroscopic and entirely classical “orientation-
entanglement” phenomenon wherein an object connected to its environment by a set of threads 



Jay R. Yablon 

14 
 

will only regain its original state of entanglement after it is rotated twice over 4π , but will have 
an opposite entanglement following only a 2π  rotation.  But an electron is a quantum object not 
a classical one, and it is not necessary here to use this macroscopic analogy.  The angles iθ  in (5.1) 

are rotation angles in physical space which are mapped onto SO(3) through the homomorphic 
double-covering projection : (2) (3)SU SOπ → , and when the complete Dirac theory is taken into 
account, through the mapping : (2, ) (1,3)SL C SOπ → .  Numerically, this is encoded in the 
denominator of 2 first appearing in (5.3).  Thus, the spinor transformation (5.5) makes very clear 
that the sign of the electron wavefunction will invert following a 2π  rotation and only be restored 
after 4π .  Specifically, when the rotation azimuth 2ϕ π=  we have 3(2 )Uξ ξ π ξ ξ′→ = = −  which 

will carry through to the entire non-relativistic wavefunction ( ),T T Tψ ξ η= , but when 4ϕ π=  we 

have 3(4 )Uξ ξ π ξ ξ′→ = =  which restores the sign to its original value.  All of this is well-known 

and well-settled physics.  Indeed, this two-valued ±  version sign is directly related to the double 
covering of SO(3) by its simple universal cover SU(2).  But the question of what happens in Dirac 
monopole theory when electron wavefunctions are tidally-locked to a postulated magnetic 
monopole and so undergo this well-known version change after executing a 2ϕ π=  circuit does 
not appear to have been previously considered in the literature. 
 
 Because a version charge is simply a sign change, this may be encoded in the identity 

( )( )1 exp 2 1i nπ− = − , which represents the primitive square root of unity using Euler’s formula 

( )exp 1iϑ = −  at angles ( ),3 ,5 ... 2 1nϑ π π π π= = −  which are oriented at the Euler angle 

180ϑ π= = °  and at angles differing from this simply by integer multiples of 2π .  Indeed, the two 
signs of the wavefunction versions taught by MTW may be illustratively represented in the 
simplest and most transparent form by writing the square roots of unity using Euler angles as: 
 

( )
( )( )
( )( ) ( )

2
exp 2       for =2 n        

1 1 exp
exp 2 1  for = 2 1

i n
i

i n n

π ϑ π
ϑ

π ϑ π

= ± = = 
− −

. (6.1) 

 
So to maintain the single-valued wavefunction (2 ) (0)ψ ψ π ψ+ + +′ = =  required to avoid observable 

string singularities, we need to compensate for this sign change that occurs when there is a version 
change.  When calculated through, this compensation is reflected and absorbed into the phase 
difference ( )2 1n π∆Λ = −  of (5.13) for a tidally-locked electron.  This is in contrast to the phase 

difference 2 nπ∆Λ =  of (4.11) required when there is no tidal lock and thus no version change.  

And this, in turn, finally cascades through to the requirement that the Dirac condition for tidally-
locked wavefunctions must be the half-integer ( ) 1

22 2 1 / 2eg n n= − = −  found in (5.14), rather than 

the customary whole-integer 2eg n=  of (4.7). 
 
 There is a related way to look at all of this which focuses on the phase difference rather 
than the charge fraction.  The result in (5.12) teaches that the phase difference for a tidally-locked 

wavefunction after traversing a 2ϕ π=  azimuth must be ( )2 1 ,3 ,5 ...n π π π π∆Λ = − = , which 

means that the wavefunction orientation becomes 180°  out of phase after this single azimuthal 
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circuit in the complex phase space of ( )exp cos sini iΛ = Λ + Λ  used to perform the gauge 

transformation ( )exp iψ ψ ψ ψ+ + + −′→ = Λ ≡  of (2.1) on the electron wavefunction.  So, what sort 

of azimuthal traversal is required to restore the original phase orientation of the wavefunction?  If 
we traverse a first2π  azimuth and then a second 2π  azimuth for a total 4π  circuit using 1n  and 

2n  to denote the characteristic integers n from the first and second traversals, then the phase 

differences will add together in the form of ( ) ( ) ( )1 2 1 22 1 2 1 2 1 2n n n n nπ π π π∆ ′Λ = − + − = + − = , 

where in the final step we simply rename 1 2 1n n n′+ − =  to another integer.  So after a 4ϕ π=  

azimuthal traversal – but not after only a 2π  traversal – the phase difference becomes 2 nπ∆ ′Λ =  

like that in (4.11), and so the phase returns to its original orientation.  This means that in general, 
the phase for a tidally-locked electron will return to its original orientation only after circuits of 

4 nϕ π= , and not after only 2 nϕ π=  circuits – just like the wavefunction version itself.  
 

So, stepping back from the mathematical detail, we may summarize all of this by saying 
that to avoid singularities for an electron wavefunction traversing a magnetic monopole, the 
wavefunction phase orientation in phase space must be synchronized to the wavefunction version 
orientation in physical space.  If the wavefunction does not rotate in a tidal lock during a 2ϕ π=  
circuit, then both the version and the phase will be restored to their original orientations in their 
respective spaces after the 2π  azimuthal circuit is complete.  However, if the wavefunction does 
rotate in a tidal lock during this circuit, then once the circuit is complete, the version will have an 
opposite sign, hence opposite orientation from what it had at the outset, and synchronized to this, 
the phase will also have an opposite orientation in the phase space.  Here, both the phase and the 
version – synchronized to one another – will only revert to their original orientations in their 
respective spaces after traversing 4 nϕ π=  circuits, which is an extension of the teachings of 
Misner, Thorne and Wheeler in section 41.5 of [5] to the Wu-Yang analysis [3], [4] of Dirac 
monopoles.  Whether tidally-locked or not, the wavefunctions themselves remain single-valued 

(2 ) (0)ψ ψ π ψ+ + +′ = =  after each 2 nϕ π=  circuit which is required to avoid observable string 

singularities, and the resulting Dirac monopole charges are the half-integer 1
22eg n= −  when there 

is a tidal lock, and the standard whole-integer 2eg n=  when the is no tidal lock. 
 
7. Why Half-Integer Dirac Charges would only be Detectable by 
Fermions, not Bosons 
 
 While there are many important differences between fermions and bosons including the 
fact that fermions must adhere to the Dirac statistics of the Exclusion Principle whereas bosons do 
not, for purposes of the present discussion the most important difference is that fermion 
wavefunctions invert their version sign under a 2π  rotation and only regain their original signs 
under a 4π  rotation, whereas boson wavefunctions do not behave in this way.  So for example, if 
we postulate a negatively charged “scalar electron” φ  with spin zero which we denote at a 
particular azimuthal state of rotation by ( )φ ϕ , then in contrast to the non-relativistic electron ( )ψ ϕ  

reviewed in section 5 for which ( )(2 ) 0ψ π ψ= − , the scalar electron will have ( )(2 ) 0φ π φ=  

following a 2π  rotation, with no version sign reversal.  At the same time, the physics must still be 
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symmetric under the local U(1)em gauge transformations reviewed in section 2, which 
transformations will now be ( )exp iφ φ φ′→ = Λ  for our posited scalar, contrast (2.1).  This will 

lead after the same development reviewed in section 2 to the same gauge field A for which the 
one-form transforms as /i iA A e de ie− Λ Λ′ = + , contrast (2.6) and note the discussion right 
afterwards.  This means that once we make the definitional associations NA A A+≡ ≡  and 

SA A A− ′≡ ≡ , all the results of section 3 will carry through intact.   

 
So now to the question: what would be detectable by our posited scalar electron, were it to 

traverse the monopole in a tidal lock?  Would it be the whole-integer Dirac monopole condition 
2eg n=  of (4.7), or the half-integer condition 1

22eg n= −  of (5.14)?  We shall show in this section 

that such a scalar electron could only detect the whole-integer, not the half-integer, condition. 
 
 For a scalar electron traversing a 2π  azimuth about a magnetic monopole in a tidal lock 
and so at the same time rotating through 2π  in harmony with this circuit,  to ensure there are no 
observable string singularities we must require ( )(2 ) 0φ π φ= , similarly to what we did for the 

spin-half electron at (4.6) and (5.8).  But we can cut to the chase by recognizing that the minus 
sign in (5.10) resulted directly from the oppositely-signed version ( )(2 ) 0ψ π ψ= −  following a 

2π  rotation.  Thus, changing the fermion ψ +  in (5.10) into a spinless scalar φ  and removing the 

minus sign which is a direct consequence of how fermions but not bosons behave under 2π  
rotations, then to avoid observable singularities, the applicable equation in place of (5.10) will be:  
 

( )exp iφ φ φ φ∆′→ = Λ ≡ . (7.1) 

 
This, it will be seen, leads to a variant of (4.6), and not of (5.11).   
 

Specifically, if we now use (4.3) to operate from the left on φ , we may write: 
 

( ) ( )exp exp 2i i egφ ϕ φΛ = . (7.2) 

 
Then, taking the change in phase going from 0ϕ =  to 2ϕ π=  while combining (7.1) and (7.2) 

and again using the identity ( )1 exp 2i nπ= , we next obtain (contrast (4.6)): 

 

( ) ( ) ( ) ( )exp exp 2 exp 4 1 exp 2i i eg i eg i nφ φ φ ϕ φ π φ φ π φ′→ = Λ = = ≡ ⋅ = , (7.3) 

 
where the definition 1 φ≡ ⋅  is what imposes a single-valued wavefunction and so avoids observable 

singularities.  Once again, as in (4.6), we extract ( ) ( )exp 4 exp 2i eg i nπ φ π φ= , and this contains 

the ordinary, whole-integer Dirac condition  
 
2eg n= . (7.4) 
 



Jay R. Yablon 

17 
 

 Therefore, a hypothetical spin-zero electron would not detect the half-integer magnetic 
monopoles, even in a tidal lock.  Rather, because bosons do not flip their versions under 2π  
rotations, this spinless electron would only detect the whole-integer monopoles of the customary 
Dirac monopole analyses, whether or not it was tidally-locked to the monopole.  Consequently, 
the half-integer monopole charges 1

22eg n= −  – were they to physically exist – would be a 

phenomenon associated uniquely detectable by fermions and not bosons. 
 
8. Conclusion 
 
 Just as Dirac’s finding at page 68 of [1] of the quantization condition 2eg n=  of (4.7) 
raised the question whether this might provide the theoretical explanation for why electric charge 
is quantized, the finding at (5.14) here that a wavefunction tidally locked to a magnetic monopole 
obeys the half-integer condition 1

22eg n= −  of (5.14) raises the question whether this might be the 

theoretical reason why half-integer FQHE charge fractions are observed in conductive materials 
at ultra-low temperatures near absolute 0K when very strong perpendicular magnetic fields are 
applied to two-dimensional systems of electrons, which electrons are fermions not bosons. 
 
 It is left for future study to examine whether such a physical connection can in fact be 
established between the half-integer charge fractions found here and the half-integer charge 
fractions observed in the FQHE.  But it is important in and of itself to recognize, using the Wu-
Yang analysis for maintaining a single-valued wavefunction to avoid observable string 
singularities, that when a spin-half electron wavefunction is rotated in a tidal lock as it traverses 
a circuit about a hypothesized magnetic monopole, the Dirac condition not merely admits, but 
indeed requires, the existence of half-integer charge fractions. 
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