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Abstract 
 
The (proper) transit time of a light signal emitted by an observer at rest at 𝑟! in a 
Schwarzschild gravitational field, reflected by body at some distance 𝑟 > 𝑟! and received 
by the observer is shown to decrease as the observer is moved closer to the event horizon.  
This suggests that observers at rest close to the event horizon will see an increasingly 
length contracted Universe.  We then seek to discover whether the free falling observer 
will also see the Universe similarly contracted as he/she falls toward the horizon.  Using 
the definition of the Kruskal-Szekeres coordinates (T, X) in terms of Schwarzschild 
coordinates (r, t) and expanding the expression for dT/dX, it is shown that the worldlines 
of both timelike and spacelike observers must have slopes approaching 1 on the Kruskal-
Szekeres coordinate chart implying that the free falling observer should indeed see an 
increasingly length contracted Universe as he/she falls toward the horizon. 
 
 
Length Contraction for an Observer at Rest 
 
Let us begin by considering an observer in a Schwarzschild gravitational field at 𝑟! 
sending a light signal to another observer at rest at 𝑟 > 𝑟! who then reflects the signal 
back to a radius 𝑟! ≤ 𝑟!.  We want to find the total time measured by the first observer’s 
clock between emission of the first signal and receipt of the reflected signal.  To do this 
we can use the definition of Kruskal-Szekeres (KS) coordinates [1] (throughout the 
paper, we are using units where the Schwarzschild radius is equal to 1): 
 

𝑋 = (𝑟 − 1)𝑒!cosh
𝑡
2  

 (1) 

𝑇 = (𝑟 − 1)𝑒!sinh
𝑡
2  

 
Furthermore, we know that light signals travel on 45 degree lines on KS charts such that, 
for a light signal, Δ𝑇 = Δ𝑋 .  For clarity, we define 𝑅 ≡ (𝑟 − 1)𝑒!.  For the first 
outgoing signal we have: 
 
  Δ𝑇 = 𝑅sinh !!

!
− 𝑅!sinh

!!
!
,      Δ𝑋 = 𝑅cosh !!

!
− 𝑅!cosh

!!
!

 (2) 
 
Setting Δ𝑇 = Δ𝑋 and using sinh !

!
− cosh !

!
= −𝑒!

!
!, we get 

 



  𝑡! = 𝑡! + 𝑟 − 𝑟! + ln !!!
!!!!

 (3) 
And for the reflected signal:  
 
  Δ𝑇 = 𝑅!sinh

!!
!
− 𝑅sinh !!

!
,      Δ𝑋 = 𝑅!cosh

!!
!
− 𝑅cosh !!

!
 (4) 

 
Setting Δ𝑇 = −Δ𝑋 and using sinh !

!
+ cosh !

!
= 𝑒

!
!, we get 

 
  𝑡! = 𝑡! + 𝑟 − 𝑟! + ln !!!

!!!!
 (5) 

Giving a total transit time of: 
 
  Δ𝑡 = 𝑡! − 𝑡! = 𝑟 − 𝑟! + ln !!!

!!!!
+ 𝑟 − 𝑟! + ln !!!

!!!!
 (6) 

 
An observer at rest in Schwarzschild coordinates experiences proper time via the 

relationship Δ𝜏 = !!!
!
Δ𝑡.  Thus, the time measured by the clock of an observer at rest 

(𝑟! = 𝑟!) between emission and receipt of the signal is given by: 
  

  Δ𝜏 = 2 𝑟 − 𝑟! + ln !!!
!!!!

!!!!
!!

 (7) 

 
A plot of (7) is given in Figure 1 below with 𝑟 = 100: 

 
Figure 1 – Δ𝜏 vs. 𝑟! for 𝑟 = 100 

 
At the far right side of Figure 1, the two observers are at the same location and so the 
transit time of the light is zero.  As we move left on the Figure, the reflecting observer 
remains at 𝑟 = 100 while the measuring observer is at a reduced radius.  At first, the 
transit time increases because the space between the observers increases until the transit 
time reaches a maximum, after which it begins to decrease again.  When r is less than 
that radius where the transit time is maximum, we find that the deeper that observer is in 
a gravitational field (the closer 𝑟! is to 1), the more length contracted the Universe 
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appears to him.  This is because the amount of time (measured by that observer’s clock) 
that it takes for light to travel to r (100 in this case) and back decreases as he moves 
deeper into the gravitational field.  What we would like to know is whether or not a free 
falling observer will also see a length contracted Universe as he or she falls toward the 
event horizon.  
 
 
The Worldines of Falling Observers in Kruskal-Szekeres Coordinates 
 
Consider Figure 2 below: 
 

 
Figure 2 – Commonly Shown Inertial Worldline on KS Chart1 

 
In Figure 2, the solid black line represents the worldline (only a rough depiction of the 
major attributes of the worldline) commonly attributed to an inertial observer [2,3,4,5].   
But is it possible that the inertial observer follows a different path to the singularity?  
 
We can find an explicit description of the worldlines of different observers on the KS 
coordinate chart by taking the differentials in (1): 
 

𝑑𝑋 =
𝜕𝑋
𝜕𝑟 𝑑𝑟 +

𝜕𝑋
𝜕𝑡 𝑑𝑡 =

𝑟𝑒!𝑑𝑡

2 𝑟 − 1 𝑒!
𝑑𝑟
𝑑𝑡 cosh

𝑡
2 +

(𝑟 − 1)
𝑟 sinh

𝑡
2  

 (8) 

𝑑𝑇 =
𝜕𝑇
𝜕𝑟 𝑑𝑟 +

𝜕𝑇
𝜕𝑡 𝑑𝑡 =

𝑟𝑒!𝑑𝑡

2 𝑟 − 1 𝑒!
𝑑𝑟
𝑑𝑡 sinh

𝑡
2 +

(𝑟 − 1)
𝑟 cosh

𝑡
2  

 
The worldline we are considering here is one in which !"

!"
→ 0 as 𝑡 → ∞.  We see that this 

is true even in the case of Figure 2 because 𝑑𝑡 → ∞ as the worldline approaches the 
horizon but for clarity, consider the metric in Schwarzschild coordinates as one 
approaches the horizon: 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Diagram	  modified	  from:	  “Kruskal	  diagram	  of	  Schwarzschild	  chart"	  by	  Dr	  Greg.	  Licensed	  under	  CC	  BY-‐SA	  3.0	  via	  
Wikimedia	  Commons	  -‐	  
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_di
agram_of_Schwarzschild_chart.svg	  

	  



  𝑑𝜏! = !!!
!

1− !
!!!

!"
!"

!
𝑑𝑡! (9) 

 
In order for the worldline to remain timelike as the observer approaches the horizon, we 
see that !"

!"
 must approach !!!

!
, which goes to zero at the horizon (while these coordinates 

may not apply at the horizon, they can tell us what happens in the limit of approach).  We 
see from (9) that not only must !"

!"
 go to zero for the inertial observer, but also for an 

observer in any state of motion (this condition is merely the statement that the coordinate 
speed of an observer cannot exceed the local coordinate speed of light at a given r).  
Furthermore, we see that by combining the equations in (8): 
 

  !"
!"
=

!"
!"!"#$

!
! !(!!!)! !"#$ !

!
!"
!"!"#$

!
! !(!!!)! !"#$ !

!

 (10) 

 
For an observer following a timelike or lightlike worldline on approach of the horizon, 
according to (9) we can substitute !"

!"
= −𝑉(𝑟) !!!

!
, where V(r) ranges from 0 to 1.  For a 

timelike worldline (V(r) < 1), we can take the limit of (10) as 𝑡 → ∞: 
 

  lim
!→!

!"
!"

=
!!(!)!"#$ !

!   !!"#$ !
!

!!(!)!"#$ !
!   !!"#$ !

!
=

!"#$ !
! !!(!)

!!!(!)!"#$ !
!
   = 1 (11) 

 
So when V(r) is less than 1, the limit goes to 1 as can be seen in (11).  It is notable that 
for the case where V is 1, corresponding to an infalling lightlike worldline, !"

!"
 is -1 for 

any t.  Also, for a spacelike worldline (V(r) > 1), we see that the limit also goes to 1, 
except in this instance, both dX and dT are negative, meaning the worldline approaches 
the horizon in the same way as the timelike worldline, but it curves in the opposite 
direction.  Thus, as the worldlines of timelike and spacelike observers approach the 
horizon, their slopes must approach 45 degrees on the KS coordinate chart as per (11).  
The form of timelike, lightlike and spacelike trajectories on approach of the horizon are 
shown in Figure 3 below: 
 
 
 



 
 

Figure 3 – Proposed Timelike, Lightlike, and Spacelike Trajectories on KS Chart2 
 

The timelike worldline depicted in Figure 3 will reach the horizon (and singularity) at 
infinite coordinate time in both KS and Schwarzschild coordinates.  
 
The Schwarzchild solution in KS coordinates is given by the metric: 
 

  𝑑𝜏! = !
!!!

1− !"
!"

!
𝑑𝑇! (12) 

 
We can modify this metric by substituting (11) into (12), noting that tanh !

!
= !

!
 for the 

region outside the black hole: 

  𝑑𝜏! = !
!!!

1− !!!(!)!
!!!(!)!

!
𝑑𝑇! (13) 

 
Where, again, when 0 ≤ 𝑉(𝑟) < 1, we have an infalling timelike worldline.  When V(r) 
= 1, we have an infalling lightlike worldline, and when V(r) > 1, we have an infalling 
spacelike worldline.  The key thing to note here is that regardless of the value of V(r), 
when X and T are equal (corresponding to the event horizon), 𝑑𝜏 = 0, which agrees with 
the results in Schwarzschild coordinates (we can make the substitution !"

!"
= −𝑉(𝑟) !!!

!
 

into (9), giving 𝑑𝜏! = !!!
!

1− 𝑉(𝑟)! 𝑑𝑡!, which shows that 𝑑𝜏 = 0 at the horizon for 

all worldlines).  The speed of light in Schwarzschild coordinates is given by 𝐶 = !!!
!

 (we 

find this by setting the RHS of (9) to 0 and solving for !"
!"

).  We can similarly express the 
speed of light in KS coordinates from (1), which tells us that 𝑋! − 𝑇! = (𝑟 − 1)𝑒!.  
Therefore, the speed of light in KS coordinates is given by: 𝐶 = !!!!!

!!!
.  We must notice 

that if we solve for !"
!"

 in (12) for RHS=0, we get +/-1, so why do we choose the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Diagram	  modified	  from:	  “Kruskal	  diagram	  of	  Schwarzschild	  chart"	  by	  Dr	  Greg.	  Licensed	  under	  CC	  BY-‐SA	  3.0	  via	  
Wikimedia	  Commons	  -‐	  
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_di
agram_of_Schwarzschild_chart.svg	  
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Schwarzschild coordinates to say that the speed of light is zero at the horizon?  It is 
because !"

!"
 is +/-1 over the entire spacetime manifold for light.  But in [6], Einstein 

showed that for reasons of energy conservation the speed of light must vary with the 
gravitational potential in the way described by the Schwarzschild coordinates.  Therefore, 
!"
!"

 is useful in determining whether a worldine in KS coordinates is lightlike or not, but it 
tells us nothing about the relative propagation speed of a light signal over the spacetime 
manifold.  This is unsurprising given that the KS coordinates were chosen such that the 
speed of light in KS coordinates would be +/-1 over the entire manifold.  And this gives 
us another clue regarding why the horizon is a special place on the KS coordinate chart.  
As one gets closer to the horizon, the magnitude of the speed of light gets smaller and 
therefore the magnitude of the function(s) needed to make the transformed speed equal to 
1 must grow.  But at the horizon, the speed is zero and therefore in order to turn 0 into 1 
the function(s) must grow to infinity, which explains why the definitions of T and X in (1) 
become zero times infinity at the event horizon.  This also supports the claim that all 
points on the X = T line are the same spacetime point because light does not propagate 
over the manifold on that line.  So even though in Figures 2 and 3, the horizon looks like 
a typical lightlike worldline, since the speed of light along that line is zero, the light 
signal is not actually moving through spacetime as one moves along that line.  This also 
implies that in Figure 3, the lightlike worldline (V(r) = 1) stops propagating at the 
horizon, because its speed is zero there.  Thus, the event horizon can be viewed as a kind 
of relativistic stagnation point, a place that not even light can pass through (ingoing or 
outgoing).   
 
If we consider the possible timelike trajectories in Figure 3, we see that when V(r) is zero, 
the worldline follows a hyperbola of constant r.  When V(r) is 1, the worldline is a 
straight line as depicted in the figure.  For trajectories with constant intermediate values 
of V, as V is increased from 0 toward 1 the worldline becomes more ‘L-shaped’ as the 
curve gets ‘pushed’ into the corner formed by the intersection of the horizon and the 
lightlike worldline. 
 
We might further explain the form of such a worldline for an inertial observer as follows.  
The inertial worldline is determined by following a path of maximum proper time.  With 
this in mind let us consider the points in Figure 2 lying on the line 𝑟 = 1.  What we need 
to acknowledge is that all the points on that line represent the same point in spacetime.  
The first thing supporting that argument is that each point on the line corresponds to the 
same r and t.  Also, if we look at the points in Figure 2 not lying on the horizon, we find 
that there is a unique T and X assigned to each combination of r and t via the definitions 
of T and X in (1) such that each spacetime point has a unique label in both coordinate 
systems.  But at the horizon, T and X are not unique, rather they are both defined as zero 
times infinity along that line (as can be seen in (1)), suggesting that the spacetime point in 
Schwarzschild coordinates is in fact a line in KS coordinates (because zero times infinity 
can be any finite number) on which all the points label the same spacetime event.  
Furthermore, if we once again consider the case of the reflected signal, we find that as the 
free falling observer approaches the horizon, the ends of the light path shown in Figure 2 
become more widely separated on the KS coordinate chart, while the proper time 



separating them in the frame of the free faller converges to zero, suggesting that there is 
no measurable spacetime separation between the points on that line.  For these reasons, 
we conclude that the entire line at 𝑟 = 1 is equivalent to a single point at some t and 
𝑟 > 1.  Therefore, a freefalling observer will follow a path that maximizes the proper 
time it takes to reach the line 𝑟 = 1 on the KS chart.  Such a path must therefore 
approach the line asymptotically, rather than head-on (as depicted in Figure 2). 
 
Given that the timelike worldline in Figure 3 remains at a radius greater than or equal to 
1, we see from this metric that the worldline in Figure 3 becomes lightlike at the 
singularity because !"

!"
 goes to 1 there and all radial coordinates ‘converge’ at infinite 

coordinate time.  This is desirable given our discussion above regarding the time it takes 
to receive the reflected signal, namely that as the observer falls, signals sent to a given 
radial coordinate is reflected and received by the free falling observer at shorter and 
shorter intervals as measured by the free falling observer’s clock.  Thus, the Figure 3 
worldline agrees with the appearance of a length contracted Universe as the observer 
falls. 
 
This alternate worldline also harmonizes the physics described by the KS and 
Schwarzschild coordinates, which is important since the choice of coordinates should not 
change the physics.  Consider the metric in Schwarzschild coordinates in (9).  In order for 
the worldline to be timelike or lightlike, we see that !"

!"
≤ !!!

!
.  Therefore, as the 

observer falls, !"
!"

 must get closer and closer to !!!
!

, which is the local speed of light.  
Thus, on approach of the horizon, any timelike worldline must converge to a lightlike 
worldline (in Schwarzschild coordinates, the light cone is commonly depicted as being 
‘squeezed’ as one approaches the horizon, which is equivalent to what we see here).  So 
with the new worldline, the worldline behavior is the same in both sets of coordinates.  
One can even see that !"

!"
 goes to zero in Figure 3 by noting that the r and t coordinates 

become parallel as T goes to infinity.  This is also preferable to the worldline in Figure 2 
because if we look at the worldline as it approaches the horizon, !"

!"
 goes to zero because 

the change in t becomes infinite.  Thus the Schwarzschild coordinates suggest the 
observer is approaching a lightlike worldline.  But in KS coordinates, we see that at the 
horizon, the worldline in Figure 2 appears to get ‘less’ lightlike as the observer 
approaches the horizon.  This is an important observation because going from a timelike 
to lightlike worldline is physical, so the fact that changing the coordinates adds or 
removes this transition suggests there is a flaw in the use of one or the other coordinate 
system. 
 
 
The Equivalence Principle 
 
According to the equivalence principle, the worldline of a uniformly accelerated observer 
is equivalent to the worldline of an observer at rest in a uniform gravitational field.  
Furthermore, for very small (infinitesimal) changes in position and time, the accelerated 
observer is equivalent to an observer at rest with constant relative velocity (because over 



small regions of spacetime, the accelerated observer has a constant velocity).  This leads 
to a quality of General Relativity that states that for very small regions of spacetime, the 
manifold is Minkowskian.  A feature of Minkowski spacetime is that there is no 
difference between an observer ‘at rest’ and an ‘inertial’ observer (these two concepts are 
indistinguishable in flat spacetime). 
 
If we consider the spacetime at the event horizon, the equivalence principle tells us that in 
the region of a single spacetime point on the horizon, the manifold must be Minkowskian.  
But an observer at rest at the horizon is moving on a lightlike worldline (note that the 
observer at rest here is not even accelerating).  However, a lightlike observer is not 
inertial and therefore an observer at the horizon cannot be both at rest and inertial at any 
point on it.  Thus the existence of the event horizon must be a violation of the 
equivalence principle since the spacetime at the horizon cannot be Minkowskian in the 
limit of infinitesimal regions of spacetime. 
 
 
Conclusion 
 
We therefore conclude that an observer can never cross the horizon in finite coordinate 
time (Schwarzschild or KS).  A free falling observer should therefore see the Universe 
increasingly length contracted as they asymptotically approach the event horizon.  This 
analysis may therefore also suggest that the formation of a black hole, even in the frame 
of the free falling observer, is in fact not possible, implying that black holes cannot be 
physical objects.  This question however will not be pursued in the current paper.  
However, it is notable that in Figure 3, the free falling observer’s worldline converges 
with the worldline of an observer at rest at the horizon.  An observer at rest at or near the 
horizon will see external radiation from the Universe be increasingly blueshifted the 
closer the observer is to the horizon.  Thus, we should expect that material free falling to 
form a black hole would likely be ‘vaporized’ by this blueshift before reaching the 
critical density, perhaps becoming a source of super high-energy particles. 
 
 
References 
 
[1]  Cheng T. P.: Relativity, Gravitation and Cosmology. A Basic Introduction. Oxford 

University Press, New York, (2010). 
 
[2] Misner, C. W., Thorne, K. S., Wheeler, J. A.:  Gravitation.  W. H. Freeman (1973) 
 
[3]	   Poplawski,	  N.:	  "Radial	  Motion	  Into	  an	  Einstein-‐Rosen	  Bridge",	  Physics	  Letters	  

B	  687:	  110-‐113	  	  (2010) 
 
[4]	   Raine,	   D.,	   Thomas,	   E.:	   Black	   Holes:	   An	   Introduction.	   Imperial	   College	   Press	  

(2010) 
 



[5]	   Augousti,	   A.,	   et	   al.:	   "Touching	   ghosts:	   observing	   free	   fall	   from	   an	   infalling	  
frame	   of	   reference	   into	   a	   Schwarzschild	   black	   hole",	   European	   Journal	   of	  
Physics	  33:	  1-‐12	  	  (2011)	  

 
[6]	   Einstein,	   A.:	   "On	   the	   Influence	   of	   Gravitation	   on	   the	   Propagation	   of	   Light",	  

Annalen	  der	  Physik	  35:	  898-‐908	  	  (1911) 
 


