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In trial, we especially consider inequalities for confirming multipartite entanglement from experi-
mental data obtained in Bell-type experiments. We present new entanglement witness inequalities.
Some physical situation is that we measure σx, σy, and σz per side. Our analysis discovers a new
multipartite entangled state and it is experimentally feasible. If the reduction factor V of the in-
terferometric contrast observed in a N -particle correlation experiment is V > 0.4, then a measured
state is full N-partite entanglement in a significant specific case. It is not revealed by previous Bell-
type experimentally feasible methods presented in [17], which states if V > 0.5 then the significant
specific type state is full N -partite entanglement.

PACS numbers: 03.67.Mn (Quantum entanglement), 03.65.Ud (Quantum non locality), 03.65.Ca (Formalism)

I. INTRODUCTION

Since the Svetlichny inequality, it has been a prob-
lem how to confirm multipartite entanglement experi-
mentally [1]. And we have been given precious experi-
mental data by efforts of experimentalists [2—6]. Proper
analysis of these experimental data then becomes neces-
sary, and as a result of such analysis [7], the experimental
data obtained by Pan and co-workers [5] confirms the ex-
istence of genuinely three-particle entanglement in 2000.
More recently, experimental violation of multipartite Bell
inequalities with trapped ions is reported [8]. Device-
independent tomography of multipartite quantum states
is reported [9]. Demonstration of genuine multipartite
entanglement with device-independent witnesses is also
reported [10].

There have been many researches on the multipartite
entanglement problem, providing inequalities for func-
tions of experimental correlations [1, 7, 11—18]. Uffink in-
troduced a nonlinear inequality aimed at giving stronger
tests for full N -partite entanglement than previous for-
mulas. It was also discussed that when the two mea-
sured observables are assumed to precisely anticommute,
a stronger quadratic inequality can be used as a witness
of full N -partite entanglement [17].

After that there are many researches of multipartite
entanglement (cf. [19, 20]). We do not know the inequal-
ity presented in [17] is the optimal way in detection of
multipartite entanglement in Bell-type experiment. In
fact it is not so if we introduce measuring σz per side.
Here, we study more efficient way in this case.

In this paper, we investigate inequalities for confirm-
ing multipartite entanglement from experimental data
obtained in Bell-type experiments. We present new in-
equalities to do so. Some physical situation is that we
measure σx, σy, and σz per side. Our analysis discovers a
new multipartite entangled state and it is experimentally
feasible. If the reduction factor V of the interferometric

contrast observed in a N -particle correlation experiment
is V > 0.4, then a measured state is full N -partite entan-
glement in a significant specific case. It is not revealed by
previous Bell-type experimentally feasible methods pre-
sented in [17], which states if V > 0.5 then the significant
specific type state is full N -partite entanglement.

II. TESTS OF MULTIPARTITE

ENTANGLEMENT

We want to know if the following multipartite state is
full N -partite entanglement experimentally. The value of
V can be interpreted as the reduction factor of the inter-
ferometric contrast observed in a N -particle correlation
experiment.

ρ = V |GHZ��GHZ|+ (1− V )|1...1��1...1|, (1)

where |GHZ� = |1...1�+|0...0�√
2

is the N -partite

Greenberger-Horne-Zeilinger (GHZ) state [21].

A. Lemma

In what follows, we use the following lemma.
Lemma [17]: Let −1 ≤ A,B ≤ 1 be Hermitian opera-

tors satisfying {A,B} = 0. Then

�A�2 + �B�2 ≤ 1. (2)

Proof: Suppose that {A,B} = 0 and −1 ≤ A,B ≤
1. Let us take C = A cos θ + B sin θ, and derive the
maximum value of tr[ρC]. Since we are interested only
in the maximum, we may assume A2 = B2 = 1. Then
we get C2 = 1 + (1/2){A,B} sin 2θ = 1. The variance
inequality leads to |tr[ρC]|2 ≤ tr[ρC2] = 1. Now take

cos θ = �A�/
�
�A�2 + �B�2, sin θ = �B�/

�
�A�2 + �B�2,

then we get �A�2 + �B�2 ≤ 1. QED.
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B. Previous methods

Let us consider the following Bell operators [22, 23]

XN = 2(N−1)/2(|1...1��0...0|+ |0...0��1...1|),

YN = 2(N−1)/2(−i|1...1��0...0|+ i|0...0��1...1|). (3)

We can measure the following operators by Bell-type ex-
periments measuring σx and σy per side:

X = (2)(|1...1��0...0|+ |0...0��1...1|),

Y = (2)(−i|1...1��0...0|+ i|0...0��1...1|). (4)

We may assume −1 ≤ X,Y ≤ 1 when the system is
not in full N -partite entanglement. In fact, we have the
following entanglement witness inequalities [18]

|�X�| ≤ 1, |�Y �| ≤ 1. (5)

A violation of the rerations (5) means full N -partite en-
tanglement. Let us consider the quantum state (1). After
some algebra, we find that

|�X�| = 2V, |�Y �| = 0. (6)

Hence we cannot see if the multipartite state (1) is fully
entangled when we only use the formulas (5) and

V ≤ 1/2. (7)

From Lemma described above, we have the following en-
tanglement witness inequality because {X,Y } = 0 and
−1 ≤ X,Y ≤ 1 [17].

�X�2 + �Y �2 ≤ 1. (8)

A violation of the reration (8) means full N -partite en-
tanglement. Let us consider the quantum state (1). After
some algebra, we find that

�X�2 + �Y �2 = (2V )2. (9)

Hence we cannot see if the multipartite state (1) is fully
entangled when we only use the formula (8) and

V ≤ 1/2. (10)

C. New method

Let us consider the following operator.

ZN = 2(N−1)/2(|1...1��1...1| − |0...0��0...0|). (11)

We can measure the following operators by Bell-type ex-
periments measuring σz and I(= +1) per side:

Z = (|1...1��1...1| − |0...0��0...0|). (12)

Clearly, we see −1 ≤ Z ≤ 1. We have the following
entanglement witness inequalities [18]

|�X�| ≤ 1, |�Y �| ≤ 1. (13)

We have the following quantum inequality

|�Z�| ≤ 1. (14)

We see the following anti-commutation:

{X,Y } = 0,

{Y, Z} = 0,

{Z,X} = 0. (15)

Finally, from Lemma, we derive a set of quadratic entan-
glement witness inequalities

�X�2 + �Y �2 ≤ 1,

�Y �2 + �Z�2 ≤ 1,

�Z�2 + �X�2 ≤ 1. (16)

A violation of one of inequalities (16) implies full N -
partite entanglement. Here, we use new entanglement
witness inequality as follows:

�Z�2 + �X�2 ≤ 1. (17)

Let us consider the quantum state (1). After some alge-
bra, we find that

�X�2 + �Z�2

= (2V )2 + (1− V )2. (18)

Hence we can see that the multipartite state (1) is fully
entangled when

(2V )2 + (1− V )2 > 1. (19)

For example, if V = 1/2 then

(2V )2 + (1− V )2 = 1 + 1/4 > 1. (20)

Thus, the multipartite state (1) is fully entangled. It is
not revealed by previous Bell-type experimentally feasi-
ble methods presented in [17]. In fact, we see

(2V )2 + (1− V )2

= 5V 2 − 2V + 1. (21)

Thus, if 5V 2 − 2V > 0 ⇒ V > 2/5 = 0.4, then the
multipartite state (1) is fully entangled. Therefore we
presenred new method to detect full N -partite entangle-
ment. Is there more efficient way? This is open.

III. CONCLUSIONS

In conclusions, we have considered inequalities for
confirming multipartite entanglement from experimen-
tal data obtained in Bell-type experiments. We have
presented new entanglement witness inequalities. Some
physical situation has been that we measure σx, σy, and
σz per side. Our analysis has discovered a new multi-
partite entangled state and it has been experimentally
feasible. If the reduction factor V of the interferometric
contrast observed in a N -particle correlation experiment
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has been V > 0.4, then a measured state has been full
N -partite entanglement in a significant specific case. It
has not been revealed by previous Bell-type experimen-

tally feasible methods presented in [17], which states if
V > 0.5 then the significant specific type state is full
N -partite entanglement.
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