
Notation

PPPPp   a prime number.

p|x: p dividesx.

Li(x): express the logarithmic integral function or integral logarithmLi(x) is a
special function such asLi(x) =

∫ x

2
dt
ln t

.

 :

:

: denotes not more than prime numbers.of

: the number of primes .

: the number of twin prime pairs (p, p + 2)
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f g(x) (x)∼ ,

  when tends to infinity.x

Lim
f (x)

g (x)
= 1,namely:∼ : denotes equialence relation.

O: mean big O notation describes the limiting behavior of a function when the
argument tends towards a particular value or infinity, usually in terms of simpler
functions.

the Goldbach theorem; the twin prime theorem

    the number of prime pG(x)

is the number of primeand less than
√
x , x − p is prime number

is the largest prime 

, is a large even integerx ·
:

are homologous.The Goldbach theorem and the twin prime theorem

the prime origin, derived the equations of the twin prime theorem and the Goldbach 

the paper from 

theorem,and new prime number theorem.
 prime number theorem;
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Let is the number of primes 
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   Prime number theorem

where a prime number.

π( ) is not more than prime numbers.of
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≤ ≤2 p

 1.

Lemma

Let is the number of odd between k to k ,+1( )k
P

and  
k
Pp ,  ( ) = 1, ,≤3 p≤

=Pg ( )

≤

 1

is p a prime number,

 Reduction to absurdity.

The proof of lemma 1

The proof of  prime number theorem

By lemma 1 and Chinese remainder theorem, it can be derived

 Proof

1+ +
∏

p

≤ ≤2 p

· − 1( )=
∏

p 1−( )

≤ ≤2 p (3)

Hence proving

(2)

≥k 1

2

−Let P

where

P+( )

2

2 2

·
1

·
2

·

π 2( )

P

'

π PP 2( )'

π 2( )' < − π( ) − 1( )
1
2

Pp p

p
2

p
p

p

p p

Let is the number of primes 

,

π PP
2( )' Pp

p

p p is p

π 2( )' p

k p pp

π 2( )'
k p

π 2( )' p + π( )p + 1

π( ) is not more than prime numbers.ofp p

π 2( )' p π 2( )' p
p

p
p

p
p

· (
1

)
p

1−
∏

≤ ≤2 p

2
π 2( )' < − π( ) − 1( )

1
2

p
2

p
p

p

is pwhere a prime number.
π( ) is not more than prime numbers.ofp p
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Let is the number of twin prime pairs 

(4)

(p, p + 2)
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   The twin prime theorem

where ( < , p + 2<p ), a prime number.

is not more than prime numbers.of

Among which

C =
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 Reduction to absurdity.

The proof of lemma 2
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The proof of  the twin prime theorem

By lemma 2 and Chinese remainder theorem, it can be derived
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Hence proving
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3.  The Goldbach theorem
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Lemma 3

 Reduction to absurdity.

The proof of lemma 3
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The proof of  the Goldbach theorem

By lemma 3 and Chinese remainder theorem, it can be derived
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