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Abstract

The Goldbach theorem and the twin prime theoaeenthomologousthe paper from

the prime origin, derived the equations of the twin prime theorem and the Goldbach
theorem,and new prime number theorem.
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Notation

p : a prime number.
p : an odd prime.

7' (P?) : the number of prime# the open intervalp, p?).
T'(P?): the number of twin prime paifg,p + 2) in the open intervalp, p?).

G (x): the number of primg in the open intervalp, p2). p is the largest prime
number less than,/z, and xz — p is prime numberz is a large even integer
©(P) : denotes not more thgmof prime numbers.

plz: p dividesz.

f(z)

~ . denotes equialence relatidr{z) ~ 9(x), namely: Lim — =1,

whenz tends to infinity. 9(@
O: mean big O notation describes the limiting behavior of acfiam when the
argument tends towards a particular value or infinity, Ugualterms of simpler
functions.
Li(x): express the logarithmic integral function or integralddthm Li(z) is a

special function such aki(z) = [5 .
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1. Prime number theorem [1] [2]
Let 7' (Pp2) is the number of primei the open intervalp, p2), P is an odd prime,

7'(p2) > — (P2 ][ 1—7 ) —w(P)—1) (1)

2<p<Pp

wherep is a prime number.
7(P) is not more tharp of prime numbers.

Lemma 1
Let ' (P2) is the number of primei the open intervalp, p2), p is an odd prime,
Let m,(p?) is the number of odd, betweenk p?to (k+1)P2: k > 1
and(P,,P)=1,3<p<pP,p is a prime numberp is an odd prime,
Let g(p?)=my(p?) — «'(P?)

‘g(p2)‘§w'(p2)+w(p)+1 )

where 7(P) is not more tharp of prime numbers.

The proof of lemma 1
Reduction to absurdity.
The proof of primenumber theorem
Proof
By lemma 1 and Chinese remainder theorem, it can be derived
L+ (P) + (x' () +a(p?)(P - [[ 157 - =P ]](p
2<p< P 2<r< p (3)

Hence proving
~(p?) > — (P2 ][ (1-

wherep is a prime number.
7(P) is not more tharp of prime numbers.



. Thetwin primetheorem

Let 7'(p?) is the number of twin prime paifs, p + 2) in the open intervalp, p2),
p is an odd prime,

7P > (P22 [l — = m(m=1)
2<P< P

where (p < p, p+2< p?), pis aprime number.
7(P) is not more tharp of prime numbers.
Among which

c=1Ja- (5)

3<r< p
Lemma 2

Let 7'(p?) is the number of twin prime paits, p + 2) in the open intervalp, p2),
p<p, p+2<p?,pis aprime number is an odd prime.
Let 7, (p?) is the number of od®, betweenk p2 to (k+1)p2, k >1,

and(P,, P)y=1,(P—2,P)=1,3<p<P,Pis aprime number,
p is an odd prime.

Let f(p?) = T, (P?) — T'(P?)
[ £(p2)| < 7' (p2) +7(P) +1 (6)
where (P ) is not more tharp of prime numbers.

The proof of lemma 2
Reduction to absurdity.

Theproof of thetwin primetheorem
Proof

By lemma 2 and Chinese remainder theorem, it can be derived

1+7'(PH+ (T (P?)+ (p-T[»- ——1 =p-J[(r-2) ) (7)
scn<p P? 3<p<P



Hence proving

(E'H(l—%)—w(p)—n (8)

or  T'(PY)>— (p22c. H 1= =)= x(p)-1)

where (P < p, p+2< p? ), p is a prime number.
7(P) is not more tham of prime numbers.

Among which
3. The Goldbach theorem

Let G(z) is the number of prime in the open interva(p, p2), P is the largest
prime numberless thany/z, and x — p is prime numberz is a large even integer

(p—1)
G(z) > (p2- QCH1—— H( 2 —7m(P)—1) (9)
where (P < p < p?), p is a prime number.
7(P) is not more thanp of prime numbers.
Since
= H 1 (10)
3<p<P
When ¢ = 27,
1, 1,
G(z) > —(p?-20 ][ (1—= —)2—=(p) - 1) (12)
2 5 <p<P D



Lemma 3

Let G(z) is the number of prime in the open intervalp, p2), P is the largest
prime numberless than,/z, andz — p is prime numberx is a large even integer

1

p.IIp - M p.IIp.7§.: m
2<r<P 2<pr<P

Let G () is the number of od#, betweenk p2to (k+1)p2?:1 <k <m,

and(P,P)=1,(M+2—-B ,p)=1,3<p<P,Pisaprime number
p is the largest primeumberless thany/z, z is a large even integer

Let g (z) = G\(z) — G(z)

|9(2)| < G(a) +7(P) +1 (12)

wheren(P) is not more tharP of prime numbers.

The proof of lemma 3
Reduction to absurdity.

The proof of the Goldbach theorem
Proof

By lemma 3 and Chinese remainder theorem, it can be derived

14+ G(z) +(G(z) + 9 (@) ( p-]‘[p-# ~=p-J](r-2)]] vy

-2
2<p<P 3<r<P  plz 3(p§p§)p
(13)
where (z —1,p)=1,2<p< P, P is aprime number
1 (p—1)
or G(z) +(G@)+g@)-(p-[[p-— - D=P [[(r-2) > 2
2<p< P P 3<P<P plz3<r<P
. (14)
Hence proving
1 p? 2 (p—1)
Gw)>— (— 10— 1l = —=m-1) (15)
3<pP<p plz 3<p<P
1 1 —1
or G(x)>7(p2.2C-H(1— 7)2.1_[ E§—2§ —7(p)—1)
2<r<pP plz 3<p<P



where (p < p < p?), p is a prime number.

7(P) is not more thanP of prime numbers.

Since

1
c=Ha G =)

3<pr<pP

When ¢ = 27,
1 1,
G(z)>—(p2.20-]J(1— —)2—=(P) - 1)
2 2<p<P
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