From my pdf file equation number $[3]-----[a+b]^{\wedge} n=a{ }^{\wedge} n+$
$2 a^{\wedge} n / 2 x b^{\wedge} n / 2+b^{\wedge} n---$ This is very important equation to the
world.Alerady I have proved it for $n=2$ in my pdf file. Next consider n
greater than 2. Now left side of this equation $[a+b]^{\wedge} n$ comes from the inequality number [2] in my pdf file that you can see it. $C<a+b---[2]$.
So $a+b$ can tends to minimum value C. Then n should be greater than 2
because when $a+b$ decreasing n should be increased for the equation
[37. SO WHEN $a+b$ TENDS TO C equation [3] can be written as $C^{\wedge} n=a$ ${ }^{\wedge} n+2 a^{\wedge} n / 2 x b^{\wedge} n / 2+b^{\wedge} n--[5]--------[a+b]^{\wedge} n$ has tended to $C^{\wedge} n$. NOW
VERY IMPORTANT POINT. In equation [5], right side of the equation $a^{\wedge} n+2 a^{\wedge} n^{\wedge} 2 b^{\wedge} n / 2+b^{\wedge} n$ to become as $--a^{\wedge} n+b^{\wedge} n--$ for that middle term $2 x a^{\wedge} n / 2 \times b^{\wedge} n / 2$ should be tends to ZERO when n is increasing. FOR THAT ab SHOULD BE FRACTIONS .NOW FERMAT LAST THEOREM
PROVED. EQUATION [57 HAS BECOME AS $C^{\wedge} n=a^{\wedge} n+b^{\wedge} n$ when n is greater than 2 with $a b$ is fractions[which means no positive integers.]. O-K. FERMAT LAST THEOREM PROVED BY MR G.L.W.A JAYATHILAKA FROM SRI LANKA. [by one page].

