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In the present paper we propose the generalized equations for ideal fluid based on space-time algebra of 

sixteen-component sedeons. It is shown that the dynamics of isentropic fluid can be described by 

sedeonic first-order wave equation for fluid potentials. The key features of the proposed formalism are 

illustrated on the problem of the sound waves propagation. We consider the plane wave solution of 

linearized sedeonic wave equation and derive the second-order relations for the sound potentials 

analogues to the Pointing theorem in electrodynamics. The generalization of proposed sedeonic 

equations for the description of viscous fluid is also discussed. 

 

1. Introduction 

The analogy between equations of hydrodynamics and electrodynamics is widely discussed for a long 

time. In particular, there are several attempts to describe the fluid dynamics by the vector fields 

(analogous to electric and magnetic fields) satisfying the Maxwell-like equations and corresponding 

second-order wave equation [1-8]. This approach enables the application of useful electrodynamics’ 

relations to the description of fluid behavior. On the other side, the analogy between hydrodynamics and 

electrodynamics has inspired the reformulation of equations for ideal fluid on the basis of 

noncommutative hypercomplex algebras [9-11]. 

The application of different hypercomplex numbers for the reformulation of electromagnetic field 

equations has a long history. Originally, the equations for electromagnetic field were formulated by 

J.C. Maxwell in terms of quaternions [12] and subsequently this approach was generalized in the works 

[13-15]. The algebraic structure of quaternions with four components (scalar and vector) corresponds to 

the relativistic four-vector concept that allows formulating all equations of electrodynamics in terms of 

quaternionic algebra. However, the essential disadvantage of quaternions is that they do not include 

pseudoscalar and pseudovector components. The full account of the space-inversion symmetry leads to 

the eight-component structures (enclosing scalar, pseudoscalar, vector and pseudovector) such as 

biquaternions (complex quaternions) octonions and octons [16-24]. However, natural generalization of 

this approach is the incorporation of the time-inversion symmetry in algebraic structure that requires the 

consideration of the extended sixteen-component algebras. One of them is the algebra of sedenions 

obtaining from octonions by Cayley-Dickson extension procedure [25-28] but the essential disadvantage 

of sedenions is their non-associativity. 

Recently we proposed the associative algebra of sixteen-component sedeons, which takes into account 

the properties of physical values with respect to the space-time inversion and realizes the scalar-vector 

representation of Poincare group [29,30]. This formalism was successfully applied for the description of 

classical and quantum fields [31-33]. In particular, we have demonstrated the possibility to formulate 

Maxwell-like equations for the fields with nonzero mass of quantum [31,32] and the unification of 

equations for electromagnetic field and weak gravity in the frames of gravitoelectromagnetism theory 

[33]. In present paper we develop the description of ideal fluid using the sedeonic first-order wave 

equation for the fluid potentials.  

2. Preliminaries: symmetric equations of isentropic fluid  

As is well known [34], in terms of traditional vector algebra the dynamics of ideal fluid is described 

by a system of equations, which includes the Euler equation 

1
( ) 0p

t ρ

∂
+ ⋅ + =

∂

v

v v∇ ∇∇ ∇∇ ∇∇ ∇ ,       (2.1) 

continuity equation 
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( ) ( ) 0
t

ρ
ρ ρ

∂
+ ⋅ + ⋅ =

∂
v v∇ ∇∇ ∇∇ ∇∇ ∇ ,      (2.2) 

and adiabatic equation 

( ) 0
s

s
t

∂
+ ⋅ =

∂
v ∇∇∇∇ .       (2.3) 

Here v  is a local fluid velocity, ρ is a density, p  is a pressure, s  is specific entropy per unit mass, ∇∇∇∇  is 

the Hamilton nabla-operator. In the case of isentropic fluid the equations (2.1)-(2.3) can be reduced to a 

system of two symmetric equations [5]. Let us use the well-known thermodynamic relation: 

dw Tds Vdp= + ,       (2.4) 

where w  is a thermal function (enthalpy) of fluid unit mass, T is a temperature, V is the volume of fluid 

unit mass ( 1/V ρ= ). For the isentropic case s const=  we obtain the following relation for differentials  

2
1 c

dw dp d ρ
ρ ρ

= = ,      (2.5) 

where c  is the speed of sound ( ( )2
/

s
c p ρ= ∂ ∂ ). It follows that 

1
p w

ρ
=∇ ∇∇ ∇∇ ∇∇ ∇ ,       (2.6) 

2

w

t tc

ρ ρ∂ ∂
=

∂ ∂
,       (2.7) 

2
w

c

ρ
ρ =∇ ∇∇ ∇∇ ∇∇ ∇ .       (2.8) 

Then the system of equations (2.1) - (2.3) is rewritten in the following form:  

( ) 0w
t

∂
+ ⋅ + =

∂

v

v v∇ ∇∇ ∇∇ ∇∇ ∇ ,       (2.9) 

2( ) ( ) 0
w

w c
t

∂
+ ⋅ + ⋅ =

∂
v v∇ ∇∇ ∇∇ ∇∇ ∇ .     (2.10) 

These symmetric equations are suitable for the application in hydrodynamics, aerodynamics and plasma 

physics [5,8]. In contrast to the equations of electromagnetism, the equations (2.9)-(2.10) contain 

nonlinear terms. However despite the nonlinearity these symmetric equations can be easy incorporated in 

the frames of sedeonic algebra. 

3. Space-time sedeons 

Let us briefly recall the basic properties of sedeons [30]. The sedeonic algebra encloses four groups of 

values, which are differed with respect to spatial and time inversion.  

• Absolute scalars ( )V and absolute vectors ( )V
�

 are not transformed under spatial and time inversion.  

• Time scalars ( )Vt
 and time vectors ( )Vt

�
 are changed (in sign) under time inversion and are not 

transformed under spatial inversion.  

• Space scalars ( )Vr
 and space vectors ( )Vr

�
 are changed under spatial inversion and are not 

transformed under time inversion.  

• Space-time scalars ( )Vtr
 and space-time vectors ( )Vtr

�
 are changed under spatial and time inversion. 

Here indexes t  and r  indicate the transformations ( t  for time inversion and r  for spatial inversion), 

which change the corresponding values. All introduced values can be integrated into one space-time 

sedeon Vɶ , which is defined by the following expression:  

V V V V V V V V= + + + + + + +t t r r tr trV
� � � �

ɶ .    (3.1) 

Let us introduce a scalar-vector basis 
0a , 

1a
�

, 
2a
�

, 
3a
�

, where the element 
0a  is an absolute scalar unit 
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( 1≡0a ), and the values 
1a
�

, 
2a
�

, 
3a
�

 are absolute unit vectors generating the right Cartesian basis. Further 

we will indicate the absolute unit vectors by symbols without arrows as 
1a , 

2a , 
3a . We also introduce the 

four space-time units 
0e , 

1e , 
2e , 

3e , where 
0e  is an absolute scalar unit ( 1≡0e ); 

1e  is a time scalar unit 

( ≡1 te e ); 
2e  is a space scalar unit ( ≡2 re e ); 

3e  is a space-time scalar unit ( ≡3 tre e ). Using space-time 

basis eαααα  and scalar-vector basis aββββ  (Greek indexes , 0,1, 2, 3=α βα βα βα β ), we can introduce unified sedeonic 

components Vαβ  in accordance with following relations: 

  
00V V= 0 0e a ,        

  ( )01 02 03
V V V V= + +

0 1 2 3
e a a a

�
,      

  
10V V=t 1 0e a ,        

( )11 12 13
V V V V= + +

t 1 1 2 3
e a a a

�
,        (3.2) 

  
20V V=r 2 0e a ,        

  ( )21 22 23
V V V V= + +

r 2 1 2 3
e a a a

�
,      

  
30V V=tr 3 0e a ,        

  ( )31 32 33
V V V V= + +

tr 3 1 2 3
e a a a

�
.      

Then sedeon (3.1) can be written in the following expanded form: 

         ( )00 01 02 03
V V V V= + + +

0 0 1 2 3
V e a a a aɶ       

         ( )10 11 12 13V V V V+ + + +1 0 1 2 3e a a a a      (3.3) 

             ( )20 21 22 23V V V V+ + + +2 0 1 2 3e a a a a       

             ( )30 31 32 33V V V V+ + + +3 0 1 2 3e a a a a .      

The sedeonic components Vαβ  are numbers (complex in general). Further we will omit units 0a  and 
0e  for 

the simplicity. The important property of sedeons is that the equality of two sedeons means the equality of 

all sixteen components Vαβ .  

Let us consider the multiplication rules for the basis elements 
na  and 

ke  (Latin indexes n, k = 1, 2, 3). 

The unit vectors 
na  have the following multiplication and commutation rules: 

2 1= =n n na a a ,              (3.4) 

= −n k k na a a a (for ≠n k ),             (3.5) 

i=1 2 3a a a ,  i=2 3 1a a a ,  i=3 1 2a a a ,                  (3.6) 

while the space-time units 
ke  satisfy the following rules: 

2 1= =k k ke e e ,              (3.7) 

= −n k k ne e e e (for ≠n k ),             (3.8) 

i=1 2 3e e e ,  i=2 3 1e e e ,  i=3 1 2e e e .                    (3.9) 

Here and further the value i  is imaginary unit 2( 1)i = − . The multiplication and commutation rules for 

sedeonic absolute unit vectors 
na  and space-time units 

ke  can be presented for obviousness as the tables 1 

and 2. Note that units 
ke  commute with vectors 

na : 

=n k k na e e a               (3.10) 

for any n  and k . 

In sedeonic algebra we assume the Clifford multiplication of vectors. The sedeonic product of two 

vectors A
�

 and B
�

 can be presented in the following form: 

( )AB A B A B = ⋅ + × 

� � �� � �
.         (3.11) 

Here we denote the sedeonic scalar multiplication of two vectors (internal product) by symbol “ ⋅ ” and 

round brackets 
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( ) 1 1 2 2 3 3A B A B A B A B⋅ = + +
� �

,        (3.12) 

and sedeonic vector multiplication (external product) by symbol “× ” and square brackets 

( ) ( ) ( )2 3 3 2 3 1 1 3 1 2 2 1A B i A B A B i A B A B i A B A B × = − + − + −  1 2 3a a a
� �

.     (3.13) 

 

Table 1. Multiplication rules for absolute unit vectors 
na . 

 

 

 

 

 

 

 

Table 2. Multiplication rules for space-time units 
ke . 

 
 
 
 
 
 
 
 
Note that in sedeonic algebra the expression for the vector product differs from analogous expression in 

Gibbs-Heaviside vector algebra. For the transition to the common used vector algebra the change 

[ ]i A ∇× ⇒ − × 

��
∇∇∇∇ ΑΑΑΑ  should be made in all vector expressions. 

4. Generalized sedeonic equation of ideal liquid 

Let us assume that speed of sound is independent of the coordinates and time (c = const). Then, if we 

introduce the vector potential A
�

 

A cv=
� �

,       (4.1) 

the equations (2.9) and (2.10) can be represented in the following symmetric form: 

1
( ) 0v A w

c t

∂ 
+ ⋅∇ + ∇ = 

∂ 

�� ��
,     (4.2) 

1
( ) ( ) 0v w A

c t

∂ 
+ ⋅∇ + ∇⋅ = 

∂ 

�� ��
.     (4.3) 

In sedeon algebra, the system of equations (4.2) - (4.3) can be written as a single first-order wave 

equation: 

1
( ) 0i v

c t

 ∂  
+ ⋅∇ + ∇ =  

∂  
t r

e e W
� ��

ɶ ,     (4.4) 

where the sedeonic wave function Wɶ  is  

w A+
tr

W = e
�

ɶ ,      (4.5) 

so, in expanded form the equation (4.4) can be written as 

( )1
( ) 0i v w A

c t

 ∂  
+ ⋅∇ + ∇ + =  

∂  
t r tr

e e e
�� ��

.    (4.6) 

Indeed, after the act of operator on the wave function in (4.6) we get  

 
1e  

2e  
3e  

1e  1 i 3e  i− 2e  

2e  i− 3e  1 i 1e  

3e  i 2e  i− 1e  1 

 

 
1a  

2a  
3a  

1a  1 i 3a  i− 2a  

2a  i− 3a  1 i 1a  

3a  i 2a  i− 1a  1 
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( )1
( )

1
( ) 0.

v A i A i A
c t

i v w w
c t

∂   + ⋅∇ + ∇ ⋅ + ∇×   ∂ 

∂ 
+ ⋅∇ + ∇ = 

∂ 

r t t

t r

e e e

+ e e

� � �� � ��

� ��
   (4.7) 

Separating the values with different space-time properties we obtain the following system of equations: 

( )1
( ) 0v w A

c t

∂ 
+ ⋅∇ + ∇⋅ = 

∂ 

�� ��
,     (4.8) 

1
( ) 0v A w

c t

∂ 
+ ⋅∇ + ∇ = 

∂ 

�� ��
,     (4.9) 

0A ∇× = 

��
.               (4.10) 

As can be seen the equations (4.8) and (4.9) coincide with equations (4.2) and (4.3). The equation (4.8) is 

the law of enthalpy conservation and vector A
�

 is the enthalpy flux. The equation (4.9) describes the 

change of enthalpy flux. The equation (4.10) means that the circulation of enthalpy flux along the closed 

contour (in the simply connected geometry) is equal to zero.  

5. Maxwell equations for ideal fluid 

Of course, the potentials w  and A
�

 satisfy also the second order wave equation. By analogy with 

electrodynamics we can also introduce the appropriate field strengths, which satisfy the equations similar 

to Maxwell's equations. 

Let us introduce the operator  

1
( )D v

c t

∂ 
= + ⋅∇ 

∂ 

��
.      (5.1) 

Then the sedeonic first-order wave equation (4.6) is rewritten as 

( )( ) 0i D w A+ ∇ + =t r tre e e
��

.     (5.2) 

Applying the operator ( )i D + ∇t re e
�

 to the equation (5.2), we obtain the second-order wave equation 

( )( )( ) 0i D i D w A+ ∇ + ∇ + =t r t r tre e e e e
�� �

.    (5.3) 

We can introduce the scalar-vector field strengths in accordance with the following definitions: 

E DA w= − − ∇
�� �

,        

H i A = − ∇× 

��
,            (5.4) 

( )Dw Aε = + ∇ ⋅
��

.       

Then the second-order wave equation (5.3) can be represented as  

( )( ) 0i D i E Hε+ ∇ − − =t r t r te e e e e
� � �

.    (5.5) 

The field strengths ε , E
�

 and H
�

 satisfy the system of equations, similar to the Maxwell equations in 

electrodynamics [5,6]. Indeed, performing the action of the operators in the equation (5.5) and separating 

the variables with different spatial and temporal properties, we get 

( )
( )

0,

0,

0,

0.

E D

H

DE i H

DH i E

ε

ε

∇ ⋅ + =

∇ ⋅ =

 + ∇× + ∇ = 

 − ∇× = 

� �

� �

� � � �

� � �

     (5.6) 

If we require the calibrating condition similar to the Lorentz gauge in electrodynamics  
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( ) 0Dw A+ ∇ ⋅ =
��

,     (5.7) 

then the scalar filed ε  can be eliminated ( 0ε = ). In this case the wave equation (5.5) is rewritten as  

( )( ) 0i D E H+ ∇ + =t r r te e e e
� � �

,     (5.8) 

and the system (5.6) takes the following form: 

( )
( )

0,

0,

0,

0.

E

H

DE i H

DH i E

∇⋅ =

∇⋅ =

 + ∇× = 

 − ∇× = 

� �

� �

� � �

� � �

     (5.9) 

The analogy with electrodynamics is obvious. However the second-order wave equation (5.3) has the 

superfluous solutions, since initially wave function satisfies the first-order equation (4.6). In fact, the 

initial equation (4.6) (and corresponding equation (5.2)) means that corresponding field strengths ε , E
�

 

and H
�

 are equal to zero: 

0i E Hε − − =t r te e e
� �

.     (5.10) 

6. Linearized wave equation  

Let us consider the weak disturbance (| v | c<<
�

) of laminar constant fluid flow. In this case convective 

derivative is simplified and operator (5.1) can be represented as  

( )0 0

1
D v

c t

∂ 
= + ⋅∇ 

∂ 

��
,      (6.1) 

where 
0

v const=
�

 is the velocity of fluid flow [34], which does not depend on time and coordinates. Then 

0D  is the linear operator and corresponding wave equation  

( )( )0 0i D w A+ ∇ + =t r tre e e
��

     (6.2) 

is gauge-invariant. Indeed it is simple to see that this equation is not changed under the following 

replacement  

( ) ( ) ( )0, , ,w r t w r t D r tα⇒ +
� � �

,     (6.3) 

( ) ( ) ( ), , ,A r t A r t r tα⇒ − ∇
� � �� � �

,     (6.4) 

where ( ),r tα
�

 is arbitrary function satisfying the homogeneous second order wave equation 

( ) ( )2

0 , 0D r tα− + ∆ =
�

         (6.5) 

in accordance with Lorentz gauge condition (5.7). 

In linear approximation the field strengths (5.4) is rewritten as: 

0 ,

,

E D A w

H i A

= − − ∇

 = − ∇ × 

�� �

��       (6.7) 

and the Maxwell equations (5.9) take the following form: 
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( )

( )

0

0

0,

0,

0,

0.

E

H

D E i H

D H i E

∇ ⋅ =

∇ ⋅ =

 + ∇× = 

 − ∇ × = 

� �

� �

� � �

� � �

     (6.6) 

If we multiply last two equations in (6.6) on corresponding field strengths (scalar multiplication) and 

add them together we obtain the following relation: 

( ) ( )2 2

0

1
0

2
D E H i E H + − ∇ × = 

� � � � �
,    (6.8) 

which is the analog of Pointing theorem in electrodynamics [21,32]. 

7. Sound waves 

Let us consider the oscillatory motion of a fluid with speed | v | c<<
�

. In this case, the operator 

corresponding to convective derivative ( )v ⋅∇
�

 can be neglected [34] and sedeonic wave equation (4.4) is 

simplified as  

1
0i

c t

∂ 
+ ∇ = 

∂ 
t r

e e W
�
ɶ .     (7.1) 

The first-order wave equation (7.1) has the solution in the form of plane wave:  

( ){ }exp i t +i k rω− ⋅W U
� �

ɶ ɶ
= .     (7.2) 

Here ω  is a frequency, k
�

 is a wave vector and the wave amplitude Uɶ  does not depend on coordinates 

and time. For equation (7.1) the dependence of the frequency on the wave vector has two branches:  

ckω
±

= ± ,      (7.3) 

where k  is the modulus of wave vector ( | |k k=
�

). In general, the solution of equation (7.1) can be written 

as a plane wave of the following form [31]:  

( ){ }expi k i t + i k r
c

ω
ω±

±

 
+ − ⋅ 

 
t rW e e M

� � �
ɶ ɶ

= ,   (7.4) 

where Mɶ  is arbitrary sedeon with constant components, which do not depend on coordinates and time. 

Indeed the expression  

i k
c

ω± 
+ 

 
t r

e e
�

      (7.5) 

is so-called zero divisor since taking into account (7.3) we have 

0i k i k
c c

ω ω± ±  
+ + ≡  

  
t r t r

e e e e
� �

.     (7.6) 

In simplest case Mɶ  can be chosen as constant sedeon αtM = eɶ , then we have  

( ){ }expw A + k i t + i k r
c

ω
α ω±

±

 
+ − ⋅ 

 
tr trW = e e

� �� �
ɶ

= .   (7.7) 

Thus this plane wave solution describes the scalar wave of enthalpy w  and longitudinal vector wave of 

sound potential A
�

.  

8. The second-order relations for sound potentials 

Multiplying the equation (7.1) on the sedeon ( w A− tre
�

) from the left, we have the following equation: 

( ) ( )1
0w A i w A

c t

∂ 
− + ∇ + = 

∂ 
tr t r tr

e e e e
� ��

.    (8.1) 
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Performing the sedeonic multiplication and separating the quantities with different spatial and temporal 

properties, we get the relations for the sound potentials: 

( ) ( ) ( )2 21
0

2
w A A w w A

c t

∂
+ + ⋅∇ + ∇ ⋅ =

∂

� � �� �
,     (8.2) 

( ) ( ) ( ) ( )2 21 1
2 0

2
w A wA A A A A A A

c t

∂   ∇ + + + ∇ ⋅ − ⋅∇ + × ∇× =  ∂

� � � � � � � �� � � �
,  (8.3) 

1
0

A
w A A w A

c t

 ∂
   ∇× + ×∇ + × =     ∂ 

�
� � �� �

,     (8.4) 

( ) 0A A ⋅ ∇× = 

� ��
.       (8.5) 

The expressions (8.2) and (8.3) are the “Poynting” theorem for the sound potentials satisfying the first-

order wave equation (7.1). 

9. Highly symmetric sedeonic wave equation 

To take into account the effects associated with the fluid entropy the equation (4.6) can be extended in 

the following highly symmetric form: 

( )1
( ) 0i v w A s B

c t

 ∂  
+ ⋅∇ + ∇ + + + =  

∂  
t r tr tr

e e e e
�� � ��

.    (9.1) 

Here following to the symmetry requirement we included the entropy s  and the additional vector 

potential B
�

 characterizing the entropy flux as it will be shown below. Performing sedeonic multiplication 

in (9.1) we obtain: 

( )

( )

( )

1
( )

1
( )

1
( )

1
( )

1
( ) .

i v w s A B
c t

i v w w
c t

v s i s
c t

v A i A i A
c t

i v B B B
c t

 ∂  
+ ⋅∇ + ∇ + + + =  

∂  

∂ 
+ ⋅∇ + ∇ 

∂ 

∂ 
+ + ⋅∇ + ∇ 

∂ 

∂   + + ⋅∇ + ∇ ⋅ + ∇×   ∂ 

∂   + + ⋅∇ + ∇ ⋅ + ∇×   ∂ 

t r tr tr

t r

r t

r t t

t r r

e e e e

e e

e e

e e e

e e e

�� � ��

� ��

� ��

� � �� � ��

� � � � � ��

    (9.2) 

Separating the values with different space-time properties, we get the following symmetric system of 

equations: 

( )1
( ) 0v w A

c t

∂ 
+ ⋅∇ + ∇⋅ = 

∂ 

�� ��
,     (9.3) 

( )1
( ) 0v s B

c t

∂ 
+ ⋅∇ + ∇ ⋅ = 

∂ 

� � ��
.     (9.4) 

1
( ) 0v A w

c t

∂ 
+ ⋅∇ + ∇ = 

∂ 

�� ��
,     (9.5) 

1
( ) 0v B s

c t

∂ 
+ ⋅∇ + ∇ = 

∂ 

� � ��
,     (9.6) 

0A ∇× = 

��
,       (9.7) 

0B ∇× = 

� �
.       (9.8) 
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The equations (9.3) - (9.6) are the conservation laws for enthalpy, entropy and corresponding fluxes. The 

equations (9.7) and (9.8) mean that the circulation of enthalpy flux and entropy flux along the closed 

contour (in the simply connected geometry) is equal to zero.  

10. Sedeonic equations for viscous fluid 

The symmetric equations (9.1) and (9.3)-(9.6) can be expanded for the description on viscous fluid by 

addition of operator describing the dissipative processes caused by internal friction [4]. Let us introduce 

the operator 

1
( )D v

c t
υ υ

∂ 
= + ⋅∇ − ∆ 

∂ 

��
     (10.1) 

where υ  is viscosity of fluid. Then the wave equation (9.1) can be reformulated as generalized Navier-

Stokes equation  

( )( ) 0i D w s A Bυ + ∇ + + + =t r tr tre e e e
�� �

,    (10.2) 

or in expanded form 

( )1
( ) 0i v w s A B

c t
υ

 ∂  
+ ⋅∇ − ∆ + ∇ + + + =  

∂  
t r tr tre e e e

�� � ��
.   (10.3) 

Performing sedeonic multiplication in (10.3) we obtain the following generalized equations for viscous 

fluid: 

( )

( )

1
( ) 0,

1
( ) 0,

1
( ) 0,

1
( ) 0,

0,

0.

v w A
c t

v s B
c t

v A w
c t

v B s
c t

A

B

υ

υ

υ

υ

∂ 
+ ⋅∇ − ∆ + ∇ ⋅ = 

∂ 

∂ 
+ ⋅∇ − ∆ + ∇ ⋅ = 

∂ 

∂ 
+ ⋅∇ − ∆ + ∇ = 

∂ 

∂ 
+ ⋅∇ − ∆ + ∇ = 

∂ 

 ∇× = 

 ∇× = 

�� ��

� � ��

�� ��

� � ��

��

� �

    (10.4) 

On the other hand, applying the operator ( )i Dυ + ∇t re e
�

 to the equation (10.2), we obtain the following 

second-order wave equation for viscous fluid 

( )( )( ) 0i D i D w s A Bυ υ+ ∇ + ∇ + + + =t r t r tr tre e e e e e
�� � �

.    (10.5) 

Similar to (5.5) we can introduce the complex scalar-vector field strengths in accordance with the 

following definitions: 

( )
( )

,

,

,

.

E D A w B

H iD B i s i A

D w A

h iD s i B

υ

υ

υ

υ

ε

 = − − ∇ − ∇ × 

 = − − ∇ − ∇ × 

= + ∇ ⋅

= − − ∇ ⋅

�� � � �

�� � �

��

� �

,          (10.6) 

Then the wave equation (10.5) takes the following form: 

( )( ) 0i D i i h E Hυ ε+ ∇ − − − =t r t r r te e e e e e
� � �

.    (10.7) 

Performing the action of operator in (10.7) we get the following system of the Maxwell equations:  
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( )

( )

0,

0,

0,

0.

D E

D h H

D E i H

D H i E h

υ

υ

υ

υ

ε

ε

+ ∇ ⋅ =

+ ∇ ⋅ =

 + ∇× + ∇ = 

 − ∇× + ∇ = 

� �

� �

� � � �

� � � �

         (10.8) 

If we require the Lorentz gauge conditions  

( )
( )

0,

0,

D w A

D s B

υ

υ

+ ∇ ⋅ =

+ ∇ ⋅ =

��

� � ,     (10.9) 

then the scalar fields ε  and h  can be eliminated and the system (10.8) takes the following form: 

( )

( )

0,

0,

0,

0.

E

H

D E i H

D H i E

υ

υ

∇ ⋅ =

∇ ⋅ =

 + ∇× = 

 − ∇ × = 

� �

� �

� � �

� � �

     (10.10) 

These are the Maxwell equations for viscous fluid. 

11. Sedeonic equations for sound in viscous fluid 

In case of | v | c<<
�

 the operator corresponding to convective derivative ( )v ⋅∇
�

 can be neglected and 

sedeonic wave equation (10.3) takes the following form: 

1
0i

c t
υ

 ∂  
− ∆ + ∇ =  

∂  
t re e W

�
ɶ .     (11.1) 

We will find the solution in the form of plane wave:  

( ){ }exp i t +i k rω− ⋅W U
� �

ɶ ɶ
= ,     (11.2) 

where the wave amplitude Uɶ  does not depend on coordinates and time. The dispersion relation for the 

equation (11.1) is  

2 2 2 2 4 2 2
2 0i c k c k c kω υ ω υ+ − − = ,     (11.3) 

The solution of this equation is 

2i ck ckω υ
±

= − ± ,      (11.4) 

In general, the solution of equation (11.1) can be written as a plane wave of the following form [31]:  

( ){ }2 expi k i k i t + i k r
c

ω
υ ω±

±

  
+ + − ⋅  

  
t rW e e M

� � �
ɶ ɶ

= ,   (11.5) 

where Mɶ  is arbitrary sedeon with constant components, which do not depend on coordinates and time. 

Indeed the expression  

2i k i k
c

ω
υ±  

+ +  
  

t re e
�

      (11.6) 

is the zero divisor since taking into account (11.4) we have 

2 2
0i k i k i k i k

c c

ω ω
υ υ± ±     

+ + + + ≡     
     

t r t r
e e e e

� �

.    (11.7) 

In simplest case Mɶ  can be chosen as constant sedeon iα β−t rM = e eɶ , then we have  
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( ){ }2 2+ expw s A B i k k i k k i t + i k r
c c

ω ω
α υ β υ ω± ±

±

        
+ + + + + + + − ⋅       

        
tr tr tr tr

W = e e e e
� � �� � �ɶ

= .  (11.8) 

This plane wave solution describes the scalar waves of enthalpy w  and entropy s  as well as the 

longitudinal vector waves of sound potentials A
�

 and B
�

. 

13. Conclusion 

Thus we have developed the description of ideal fluid on the basis of noncommutative algebra of 

space-time sedeons. We have shown that the equations describing the dynamics of ideal fluid can be 

reformulated in the compact symmetric form of single sedeonic first-order wave equation for fluid 

potentials w , A
�

, s , B
�

, which are analogs of electric 
e

ϕ ,
e

A
�

 and magnetic 
m

ϕ ,
m

A
�

 potentials in 

electrodynamics This representation allows one to introduce the corresponding field strengths and 

formulate the system of Maxwell-like equations as well as the second-order wave equation and derive the 

relations for the energy and momentum of hydrodynamic fields. However this procedure leads to an 

increase in the order of the equations and as a consequence to appearance of redundant solutions. So the 

sedeonic first-order wave equation is more appropriate. We have demonstrated that in linear 

approximation the sedeonic equation for sound has the plane wave solution for scalar and vector 

potentials with specific polarization properties. Also we derived the second-order relations for the sound 

potentials analogues to the Pointing theorem in an electrodynamics.  

In addition, based on symmetric consideration we proposed the extended sedeonic first-order wave 

equation describing the viscous fluid. On the one hand, this equation can be also reformulated as the 

system of Maxwell equations for field strengths but with other complicated nonlinear differential operator. 

On the other hand, neglecting the convective derivative we obtained the sedeonic equation for the sound 

waves in viscous fluid. In this case the plane wave solution is based at the same sedeonic zero devisor 

properties but has more complicated space-time structure. 

Of course, the extended sedeonic wave equation (10.3) is obtained from the symmetry considerations 

and should be specified in each concrete case. In particular, we propose that considered equations should 

be additionally investigated for the description of turbulent fluid motion.  
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