THE MISTAKES BY CAUCHY

WU SHENG-PING

For the zeta function [1] we have

$$A := \int_C dx \frac{x^{s-1}}{e^x - 1}$$

analytic in the whole complex plain, but for s > 1

$$A = \int_0^\infty dx \frac{x^{s-1} - (e^{2\pi i}x)^{s-1}}{e^x - 1}$$

for great n

$$|A^{(n)}(s)| > |C' \int_0^1 dx \ln^n x (x^{s-1} - (e^{2\pi i}x)^{s-1})/x| > C |1 - e^{2(s-1)\pi i}|n!/|(s-1)^n|, C > 0.1$$

This means its convergent radium is less than |s - 1|. Use this function we can easily to deny the Cauchy's theorem. The proof mistakes in that: we should make double limit of partitions P_i and integral circles C_i ,

$$\lim_{C_i} \lim_{P_j} A_{ij}, \lim_{P_j} \lim_{C_i} A_{ij}$$

to ensure the sum of the integration and its errors of area between successive circles of the series, which means the limit is

$$\lim_{P_{j(k,i)}}\lim_{C_i}A_{ij}$$

j is function of k, i. So that it's conformal double limit.

General quantifier and Universal quantifier, these two words seem the same, but this example

$$\lim_{i \to \infty} \lim_{n \to \infty} a_{in} = C$$

and the following is valid

$$\forall i (\lim_{n(i,k),k \to \infty} a_{in})$$

Universal quantifier means conformal limit:

$$\lim_{k \to \infty} (a_{1,n(1,k)}, a_{2,n(2,k)}, \dots)$$

Proof. This condition means $|a_{in}| < C'$. Choose n(k, i) to set

$$\lim_{i \to \infty} a_{i,n(i,k)} = C_k$$

We can easily find

$$\lim_{k\to\infty}C_k=C$$

Date: Apr 27, 2014.

2010 Mathematics Subject Classification. 30B10.

WU SHENG-PING

So that, define General Quantifier: any, is denoted by

 $\forall i$

Universal Quantifier: for all, can be denoted by

@i

The reason of this situation is that inductive or one-after-one proof can't empty the set of natural number.

References

[1] H. M. Edwards (1974). Riemann's Zeta Function. Academic Press. ISBN 0-486-41740-9.

WUHAN UNIVERSITY, WUHAN, CHINA. *E-mail address:* sunylock@139.com

 $\mathbf{2}$