Conjecture on the primes of the form $(q+n){ }^{2 \wedge} n+1$ where q odd prime

Abstract

In this paper I first conjecture that for any non-null positive integer n there exist an infinity of primes p such that the number $q=(p-1) / 2^{\wedge} n-n$ is also prime and than I conjecture that for any odd prime q there exist an infinity of positive integers n such that the number $p=(q+n) * \wedge^{\wedge} n+1$ is prime.

Conjecture:

For any non-null positive integer n there exist an infinity of primes p such that the number $q=(p-1) / 2^{\wedge} n$ - n is also prime.

Examples:

(for $\mathrm{n}=1$)

```
: for p = 13, (13 - 1)/2^1 - 1 = 5, prime;
: for p = 17, (17 - 1)/2^1 - 1 = 7, prime;
: for p = 29, (29 - 1)/2^1 - 1 = 13, prime;
: for p = 37, (37 - 1)/2^1 - 1 = 17, prime;
: for p = 41, (41 - 1)/2^1 - 1 = 19, prime;
: for p = 61, (61 - 1)/2^1 - 1 = 29, prime;
    [...]
: for p = 104537, (104537 - 1)/2^1 - 1 = 52267, prime;
: for p = 104729, (104729 - 1)/2^1 - 1 = 52363, prime.
```


Examples:

(for $\mathrm{n}=2$)

```
: for p = 29, (29 - 1)/2^2 - 2 = 5, prime;
: for p = 37, (37 - 1)/2^2 - 2 = 7, prime;
: for p = 53, (53 - 1)/2^2 - 2 = 11, prime;
: for p = 61, (61 - 1)/2^2 - 2 = 13, prime;
    [...]
: for p = 104693, (104693 - 1)/2^2 - 2 = 26171, prime.
: for p = 104717, (104717 - 1)/2^2 - 2 = 26177, prime.
```


Examples:

```
(for \(\mathrm{n}=3\) )
```

: for $\mathrm{p}=113,(113-1) / 2^{\wedge} 3-3=11$, prime;
: for $\mathrm{p}=192$, $(192-1) / 2^{\wedge} 3-3=23$, prime;
: for $\mathrm{p}=257$, (256-1)/2^3-3=29, prime;
: for $\mathrm{p}=353,(353-1) / 2^{\wedge} 3-3=41$, prime.

Examples:

(for $n=4$)

```
: for p = 113, (113 - 1)/2^4 - 4 = 3, prime;
: for p = 337, (337-1)/2^4 - 4 = 17, prime;
: for p = 433, (433-1)/2^4 - 4 = 23, prime.
```


Examples:

(for $n=5$)
: for $\mathrm{p}=577,(577-1) / 2^{\wedge} 5-5=13$, prime.

Examples:

(for $n=6$)
: for $\mathrm{p}=577$, (577-1)/2^6-6=3, prime;
[...]
: for $p=104513$, (104513-1)/2^6-6=1627, prime.

Conjecture:

For any odd prime q there exist an infinity of positive integers n such that the number $p=(q+n) *{ }^{\wedge} n+1$ is prime.

```
: for q = 3, the least n for which p is prime is n =
    4, because (3 + 4)* ^^4 + 1 = 113, prime;
: for q = 5, the least n for which p is prime is n =
    1, because (5 + 1)*2^1 + 1 = 13, prime;
: for q = 7, the least n for which p is prime is n =
    1, because (7 + 1)*2^1 + 1 = 17, prime;
: for q = 11, the least n for which p is prime is n =
    2, because (11 + 2)*2^2 + 1 = 53, prime;
: for q = 13, the least n for which p is prime is n =
    1, because (13 + 1)*2^1 + 1 = 29, prime;
: for q = 17, the least n for which p is prime is n =
    1, because (17 + 1)*2^1 + 1 = 37, prime;
: for q = 19, the least n for which p is prime is n =
    1, because (19 + 1)*2^1 + 1 = 41, prime;
: for q = 23, the least n for which p is prime is n =
    2, because (23 + 2)*2^2 + 1 = 101, prime;
: for q = 29, the least n for which p is prime is n =
    1, because (29 + 1)*2^1 + 1 = 61, prime;
: for q = 31, the least n for which p is prime is n =
    5, because (31 + 5)*2^5 + 1 = 1153, prime [note the
    interesting fact that for n = 4 is obtained (31 +
    4)*2^4 + 1 = 561, the first absolute Fermat
    pseudoprime].
```

Taking seven larger consecutive primes were obtained:
: for q = 104693, the least n for which p is prime is $\mathrm{n}=8$, because $(104693+8) * 2 \wedge 8+1=26803457$, prime;
: for $q=104701$, the least n for which p is prime is $\mathrm{n}=2$, because $(104701+2) * 2 \wedge 2+1=418813$, prime;
: for $q=104707$, the least n for which p is prime is $\mathrm{n}=2$, because $(104707+2) * 2^{\wedge} 2+1=418837$, prime;
: for $q=104711$, the least n for which p is prime is $\mathrm{n}=4$, because $(104711+4) * 2^{\wedge} 4+1=1675441$, prime;
: for $q=104717$, the least n for which p is prime is $\mathrm{n}=7$, because (104717 + 7)*2^7 $+1=$ 13404673, prime;
: for q = 104723, the least n for which p is prime is n = 1, because (104723 + 1)*2^1 + 1 = 209449, prime;
: for $q=104729$, the least n for which p is prime is $\mathrm{n}=8$, because (104729 + 8)*2^8 + $1=26812673$, prime;

Note the relative small value of n for which the first prime is found!

