Two Proofs for the existence of integral solutions $(a_1, a_2,...,a_n)$ of the equation $a_1p_1^m + a_2p_2^m + ... + a_np_n^m = 0$ for any positive integer "m", for sequence of primes $p_1, p_2, ..., p_n$

Prashanth R. Rao

Abstract: We prove using Bezout's identity that $a_1p_1^m + a_2p_2^m + \ldots + a_np_n^m = 0$ has integral solutions for a_1, a_2, \ldots, a_n , where p_1, p_2, \ldots, p_n is a sequence of primes and m is any positive integer.

Proof for n>2

If $p_1, p_2, p_3, \ldots, p_n$ be "n" distinct primes in a sequence and n>2 and m is any positive integer, there exists integers $a_1, a_2, a_3, \ldots, a_n$ such that,

 $a_1p_1^{m} + a_2p_2^{m} + \ldots + a_np_n^{m} = 0$

Since $p_1, p_2, p_3, \ldots, p_n$ are n distinct primes, therefore the terms $p_1^m, p_2^m, p_3^m, \ldots, p_n^m$ are pair wise co-prime and gcd $(p_1^m, p_2^m, p_3^m, \ldots, p_n^m)=1$ This also implies gcd $(p_1^m, p_2^m, p_3^m, \ldots, p_{n-1}^m)=1$

Therefore using Bezout's identity there must exist (n-1) integers $b_1, b_2, b_3, \ldots, b_{n-1}$ such that

 $b_1p_1^m + b_2p_2^m + \ldots + (b_{n-1})(p_{n-1})^m = 1$

Multiplying both sides with $(-a_n p_n^m)$ where we choose a_n is a non-zero integer,

 $(-a_{n}p_{n}^{m}) b_{1}p_{1}^{m} + (-a_{n}p_{n}^{m}) b_{2}p_{2}^{m} + \dots + (-a_{n}p_{n}^{m}) (b_{n-1})(p_{n-1})^{m} = (-a_{n}p_{n}^{m})$

Replacing $(-a_np_n^m) b_1$ by $a_{1,}$ $(-a_np_n^m) b_2$ by $a_{2,}$

 $(-a_{n}p_{n}^{m})(b_{n-1})$ by a_{n-1}

We have

 $a_1p_1^{m} + a_2p_2^{m} + \ldots + a_{n-1}p_{n-1}^{m} = (-a_np_n^{m})$

or

 $a_1p_1^{m} + a_2p_2^{m} + \dots + a_{n-1}p_{n-1}^{m} + a_np_n^{m} = 0$ where $a_1, a_2, a_3, \dots, a_n$ are integers.

Alternate proof for n>3

Consider again the same equation

 $a_1p_1^{m} + a_2p_2^{m} + \dots + a_{n-1}p_{n-1}^{m} + a_np_n^{m} = 0$

We derive an alternate simple proof for the existence of integral solutions a_1, a_2, \dots, a_n where n is a positive integer and n>3, and m is any positive integer for the equation.

Consider a sequence of primes $p_1, p_2, \dots, p_k, p_{k+1}, \dots, p_n$ Let k be a positive integer greater than 1 but less than (n-1), where n>3.

Then consider the sequence of primes p_1, p_2, \dots, p_k

Since $gcd(p_1,p_2,...p_k)=1$

Therefore $gcd(p_1^m, p_2^m, \dots, p_k^m) = 1$

It follows from Bezout's identity that integers a_1, a_2, \ldots, a_k exist such that

 $a_1p_1^{m} + a_2p_2^{m} + \dots + a_kp_k^{m} = 1$ (A)

Similarly $gcd(p_{k+1},p_{k+2},\ldots,p_n)=1$

Therefore $gcd(p_{k+1}^{m}, p_{k+2}^{m}, ..., p_{n}^{m}) = 1$

It follows from Bezout's identity that integers $b_{k+1}, b_{k+2}, \ldots, b_n$ exist such that

 $b_{k+1}p_{k+1}^{m}+b_{k+2}p_{k+2}^{m}+...+b_{n}p_{n}^{m}=1$ (B)

Subtracting (B) from (A) we obtain:

 $(a_1p_1^m + a_2p_2^m + \dots + a_kp_k^m) - (b_{k+1}p_{k+1}^m + b_{k+2}p_{k+2}^m + \dots + b_np_n^m) = 0$

Replacing $-b_{k+1}, -b_{k+2}, \dots, -b_n$ by $a_{k+1}, a_{k+2}, \dots, a_n$

we obtain

 $a_1p_1^m + a_2p_2^m + \dots + a_kp_k^m + a_{k+1}p_{k+1}^m + a_{k+2}p_{k+2}^m + \dots + a_np_n^m$ where $a_1, a_2, \dots, a_k, a_{k+1}, a_{k+2}, \dots, a_n$ are integers.