Two Proofs for the existence of integral solutions ($a_{1}, a_{2}, \ldots \ldots, a_{n}$) of the equation $a_{1} p_{1}{ }^{m}+a_{2} p_{2}{ }^{m}+\ldots \ldots+a_{n} p_{n}{ }^{m}=0$ for any positive integer " m ", for sequence of primes $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathbf{n}}$

Prashanth R. Rao
Abstract: We prove using Bezout's identity that $\mathrm{a}_{1} \mathrm{p}_{1}{ }^{m}+\mathrm{a}_{2} \mathrm{p}_{2}{ }^{\mathrm{m}}+\ldots . .+\mathrm{a}_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}{ }^{m}=0$ has integral solutions for $a_{1}, a_{2}, \ldots \ldots, a_{n}$, where $p_{1}, p_{2}, \ldots, p_{n}$ is a sequence of primes and m is any positive integer.

Proof for $\mathrm{n}>2$

If $p_{1}, p_{2}, p_{3}, \ldots \ldots, p_{n}$ be " n " distinct primes in a sequence and $n>2$ and m is any positive integer, there exists integers $a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n}$ such that,
$\mathrm{a}_{1} \mathrm{p}_{1}{ }^{\mathrm{m}}+\mathrm{a}_{2} \mathrm{p}_{2}{ }^{\mathrm{m}}+\ldots \ldots+\mathrm{a}_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}{ }^{\mathrm{m}}=0$
Since $p_{1}, p_{2}, p_{3}, \ldots \ldots ., p_{n}$ are n distinct primes, therefore the terms $p_{1}{ }^{m}, p_{2}{ }^{m}, p_{3}{ }^{m}, \ldots \ldots ., p_{n}{ }^{m}$ are pair wise co-prime and $\operatorname{gcd}\left(\mathrm{p}_{1}{ }^{\mathrm{m}}, \mathrm{p}_{2}{ }^{\mathrm{m}}, \mathrm{p}_{3}{ }^{\mathrm{m}}, \ldots \ldots ., \mathrm{p}_{\mathrm{n}}{ }^{\mathrm{m}}\right)=1$
This also implies gcd $\left(p_{1}{ }^{m}, p_{2}{ }^{m}, p_{3}{ }^{m}, \ldots \ldots . ., p_{n-1}{ }^{m}\right)=1$

Therefore using Bezout's identity there must exist ($\mathrm{n}-1$) integers
$b_{1}, b_{2}, b_{3}, \ldots \ldots, b_{n-1}$ such that
$\mathrm{b}_{1} \mathrm{p}_{1}{ }^{\mathrm{m}}+\mathrm{b}_{2} \mathrm{p}_{2}{ }^{\mathrm{m}}+\ldots \ldots+\left(\mathrm{b}_{\mathrm{n}-1}\right)\left(\mathrm{p}_{\mathrm{n}-1}\right)^{\mathrm{m}}=1$
Multiplying both sides with $\left(-\mathrm{a}_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}{ }^{m}\right)$ where we choose a_{n} is a non-zero integer,

$$
\left(-a_{n} p_{n}{ }^{m}\right) b_{1} p_{1}{ }^{m}+\left(-a_{n} p_{n}{ }^{m}\right) b_{2} p_{2}{ }^{m}+\ldots \ldots \ldots . .+\left(-a_{n} p_{n}{ }^{m}\right)\left(b_{n-1}\right)\left(p_{n-1}\right)^{m}=\left(-a_{n} p_{n}{ }^{m}\right)
$$

Replacing $\left(-\mathrm{a}_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}{ }^{\mathrm{m}}\right) \mathrm{b}_{1}$ by a_{1},

$$
\left(-a_{n} p_{n}{ }^{m}\right) b_{2} \text { by } a_{2}
$$

$$
\left(-a_{n} p_{n}{ }^{m}\right)\left(b_{n-1}\right) \text { by } a_{n-1}
$$

We have
$\mathrm{a}_{1} \mathrm{p}_{1}{ }^{\mathrm{m}}+\mathrm{a}_{2} \mathrm{p}_{2}{ }^{\mathrm{m}}+\ldots \ldots+\mathrm{a}_{\mathrm{n}-1} \mathrm{p}_{\mathrm{n}-1}{ }^{\mathrm{m}}=\left(-\mathrm{a}_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}{ }^{\mathrm{m}}\right)$
or
$\mathbf{a}_{1} \mathbf{p}_{1}{ }^{m}+\mathbf{a}_{2} \mathbf{p}_{2}{ }^{m}+\ldots \ldots+\mathbf{a}_{\mathrm{n}-1} \mathbf{p}_{\mathrm{n}-1}{ }^{\mathrm{m}}+\mathbf{a}_{\mathrm{n}} \mathbf{p}_{\mathrm{n}}{ }^{\mathbf{m}}=\mathbf{0}$
where $a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n}$ are integers.

Alternate proof for $\mathbf{n}>\mathbf{3}$

Consider again the same equation

$\mathbf{a}_{1} \mathbf{p}_{1}{ }^{m}+\mathbf{a}_{2} \mathbf{p}_{2}{ }^{m}+\ldots \ldots+\mathbf{a}_{\mathrm{n}-1} \mathbf{p}_{\mathrm{n}-1}{ }^{m}+\mathbf{a}_{\mathrm{n}} \mathbf{p}_{\mathrm{n}}{ }^{m}=0$
We derive an alternate simple proof for the existence of integral solutions $a_{1}, a_{2}, \ldots . . a_{n}$ where n is a positive integer and $\mathrm{n}>3$, and m is any positive integer for the equation.

Consider a sequence of primes $p_{1}, p_{2}, \ldots p_{k}, p_{k+1}, \ldots \ldots \ldots . p_{n}$
Let k be a positive integer greater than 1 but less than ($\mathrm{n}-1$), where $\mathrm{n}>3$.

Then consider the sequence of primes $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots . \mathrm{p}_{\mathrm{k}}$
Since $\operatorname{gcd}\left(p_{1}, p_{2}, \ldots p_{k}\right)=1$
Therefore $\operatorname{gcd}\left(\mathrm{p}_{1}{ }^{\mathrm{m}}, \mathrm{p}_{2}{ }^{\mathrm{m}}, \ldots \mathrm{p}_{\mathrm{k}}{ }^{\mathrm{m}}\right)=1$
It follows from Bezout's identity that integers $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots . ., \mathrm{a}_{\mathrm{k}}$ exist such that
$\mathbf{a}_{1} \mathbf{p}_{1}{ }^{\mathbf{m}}+\mathbf{a}_{2} \mathbf{p}_{2}{ }^{\mathrm{m}}+\ldots \ldots . .+\mathbf{a}_{\mathrm{k}} \mathbf{p}_{\mathrm{k}}{ }^{\mathbf{m}}=\mathbf{1}$
Similarly $\operatorname{gcd}\left(p_{k+1}, p_{k+2}, \ldots p_{\mathrm{n}}\right)=1$
Therefore $\operatorname{gcd}\left(p_{k+1}{ }^{m}, p_{k+2}{ }^{m}, \ldots p_{n}{ }^{m}\right)=1$
It follows from Bezout's identity that integers $b_{k+1}, b_{k+2}, \ldots \ldots . ., b_{n}$ exist such that
$b_{k+1} p_{k+1}{ }^{m}+b_{k+2} p_{k+2}{ }^{m}+\ldots \ldots .+b_{n} p_{n}{ }^{m}=\mathbf{1}$
Subtracting (B) from (A) we obtain:
$\left(a_{1} p_{1}{ }^{m}+a_{2} p_{2}{ }^{m}+\ldots \ldots . .+a_{k} p_{k}{ }^{m}\right)-\left(b_{k+1} p_{k+1}{ }^{m}+b_{k+2} p_{k+2}{ }^{m}+\ldots \ldots .+b_{n} p_{n}{ }^{m}\right)=0$
Replacing $-b_{k+1},-b_{k+2}, \ldots \ldots .,-b_{n}$ by $a_{k+1}, a_{k+2}, \ldots \ldots ., a_{n}$
we obtain
$\mathbf{a}_{1} \mathbf{p}_{1}{ }^{m}+\mathbf{a}_{2} \mathbf{p}_{2}{ }^{m}+\ldots \ldots .+a_{k} p_{k}{ }^{m}+a_{k+1} p_{k+1}{ }^{m}+a_{k+2} p_{k+2}{ }^{m}+\ldots \ldots .+a_{n} p_{n}{ }^{m}$
where $a_{1}, a_{2}, \ldots \ldots ., a_{k}, a_{k+1}, a_{k+2}, \ldots \ldots ., a_{n}$ are integers.

