Conjecture on an infinity of triplets of primes generated by each 3-Poulet number

Abstract. In this paper I present the following conjecture: for any 3-Poulet number (Fermate pseudoprime to base two with three prime factors) $P=x^{*} y^{*} z$ is true that there exist an infinity of triplets of primes [a, b, c] such that $x * a+a-x=y^{*} b+b-y=z^{*} c+c-z$.

Conjecture:

For any 3-Poulet number (Fermate pseudoprime to base two with three prime factors) $P=x^{*} y^{*} z$ is true that there exist an infinity of triplets of primes [a, b, c] such that $x^{*} a+a-x=y^{*} b+b-y=z^{*} c+c-z$.

The sequence of 3-Poulet numbers is: 561, 645, 1105, 1729, 1905, 2465, 2821, 4371, 6601, 8481, 8911, 10585, 12801, 13741, 13981, 15841 (...). See the sequence A215672 that I posted on OEIS.

Examples:

For $P=561=3 * 11 * 17$,
we need to find [a, b, c] such that $4 * a-3=12 * b-11=$ $18{ }^{*} \mathrm{c}-17$; for this, $[\mathrm{a}, \mathrm{b}, \mathrm{c}]$ must be of the form [9*n + $1,3 * n+1,2 * n+1]$ where n can't be odd, can't be of the form $3 * k+1$ and also can't have the last digit 2,6 or 8. The least n for which $[a, b, c]$ are all three primes is $n=20$ which gives us $[a, b, c]=[181,61$, 41]. The following such triplet is $[a, b, c]=[487,163$, 109] corresponding to $n=54$.

For $P=645=3 * 5 * 43$,
we need to find [a, b, c] such that $4 * a-3=6 * b-5=$ $44 *$ c 43 ; for this, $[a, b, c]$ must be of the form [33*n $+1,22 * n+1,3 * n+1]$, where n can't be odd, can't be of the form $3 * k+2$ and also can't have the last digit 2 or 8. The least n for which $[a, b, c]$ are all three primes is $n=4$ which gives us $[a, b, c]=[133,89,13]$. The following such triplet is $[\mathrm{a}, \mathrm{b}, \mathrm{c}]=[199,133,19]$ corresponding to $n=6$.

For $P=1105=5 * 13 * 17$,
we need to find $[a, b, c]$ such that $6 * a-5=14 * b-13=$ $18 * c$ - 17; for this, [a, b, c] must be of the form [21*n $\left.+1,9 *_{n}+1,7 * n+1\right]$, where n can't be odd, can't be of the form $3^{*} k+2$ and also can't have the last digit 2,4 or 6. The least n for which $[a, ~ b, ~ c] ~ a r e ~ a l l ~ t h r e e ~$
primes is $n=18$ which gives us $[a, b, c]=[379,163$, 127]. The following such triplet is $[\mathrm{a}, \mathrm{b}, \mathrm{c}]=$ [631, 271, 211] corresponding to $n=30$.

For $P=1729=7 * 13 * 19$,
we need to find [a, b, c] such that $8 * a-7=14 * b-13=$ $20 *_{c}-19$; for this, $[\mathrm{a}, \mathrm{b}, \mathrm{c}]$ must be of the form [35*n $+1,20 * n+1,14 * n+1]$, where n can't be odd, can't be of the form $3 * k+1$ and also can't have the last digit 6. The least n for which $[a, b, c]$ are all three primes is n $=2$ which gives us [a, b, c] $=$ [71, 41, 29]. The following such triplet is $[\mathrm{a}, \mathrm{b}, \mathrm{c}]=[491,281,197]$ corresponding to $n=14$.

For $P=1905=3 * 5 * 127$,
we need to find [a, b, c] such that $4 * a-3=6 * b-5=$ 128*c - 127; for this, [a, b, c] must be of the form $[96 * n+1,64 * n+1,3 * n+1]$, where n can't be odd, can't be of the form $3 * k+2$ and also can't have the last digit 4, 6 or 8 . The least n for which $[a, b, c]$ are all three primes is $n=12$ which gives us [a, b, c] = [1153, 769, 37]. The following such triplet is [a, b, c] = [2113, 1409, 67] corresponding to $n=22$.

For $P=2465=5 * 17 * 29$,
we need to find [a, b, c] such that $6 * a-5=18 * b-17=$ $30 *$ c 29; for this, $[a, b, c]$ must be of the form [15*n $+1,5 * n+1,3 * n+1]$, where n can't be odd, can't be of the form $3 * k+1$ and also can't have the last digit 8. The least n for which [a, b, c] are all three primes is n $=2$ which gives us [a, b, c] = [31, 11, 7]. The following such triplet is $[a, b, c]=[181,61,37]$ corresponding to $n=12$.

For $P=2821=7 * 13 * 31$,
we need to find [a, b, c] such that $8 * a-7=14 * b-13=$ $32{ }^{*} \mathrm{c}-31$ f for this, $[\mathrm{a}, \mathrm{b}, \mathrm{c}]$ must be of the form [28*n $\left.+1,16 *_{n}+1,7 *_{n}+1\right]$, where n can't be odd, can't be of the form $3^{*} k+2$ and also can't have the last digit 2 , 4 or 8. The least n for which $[a, b, c]$ are all three primes is $n=16$ which gives us $[a, b, c]=[449,257$, 113]. The following such triplet is $[a, ~ b, ~ c]=[841$, 481, 211] corresponding to $n=30$.

