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Abstract

In the framework of divergence-free quantum field theory, we demonstrate how
to compute the thermal free energy of bosonic and fermionic fields. While our
computations pertain to one loop, they do indicate the method to be applied
in higher-loops. In the course of our derivations, use is made of Poisson’s
summation formula, and the resulting expressions involve the zeta function.
We note that the logarithmic terms involve temperature as an energy scale
term.

1 Introduction

It should be well-known that the methods of statistical thermodynamics[1] can be ap-
plied to quantum field theory[2], where thermal contributions for free and interacting
quantum fields can be described by partition functions that can computed using the
path integrals of the corresponding Euclidean field theory. The one-loop contributions
to the partition integrals of thermal field theories may be easily computed using the
zeta-function technique[3],[4],[5]. The latter method is equivalent, at the one-loop level, to
our divergence-free effective action framework[6] for quantum field theory. Our purpose
in this article is to demonstrate the one-loop thermal computations for bosonic and
fermionic field, and indicate how to to use resulting expressions for the propagators in
other one- and higher-loop computations.

Recalling that our technique of regularizing the one-loop contribution commences with
the representation of the natural logarithm such as:

ln(A) = %ε

(
−1

ε

1

Aε

)
%ε = lim

ε→0

(
∂

∂ε
ε

)
(1)

Here ε is a limiting parameter, and %ε is a corresponding pole-removing operator. The
above expression is easily shown by writing A−ε = e−ε ln(A), and expanding in ε.

In our following computations, we shall apply the above representation to one-loop
contributions in momentum space. We shall perform discrete summations using zeta
functions, then apply the operator %ε, thus yielding divergence-free results.
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2 Bosonic Contribution

The one-loop contribution to the free energy F of a bosonic quantum field is given by

− βF = −1

2
tr(lnWij) (2)

Here β = 1/kT , and Wij is the bilinear kernel of the bosonic fields in compact notation.
For a simple scalar component in momentum space, we have

F = δ3(0)
2β

∫
p

ln(p2 +M2)

⇒ V
2β

∑
n

∫
d3p

(2π)3
ln
(

4π2n2

β2 + p2 +M2
) (3)

Here, the discrete summation with n is over all integral values, p is the 3-momentum,
and M is the mass associated with the quantum field. Notice how δ3(0) is replaced
by a finite volume V . Hence, up to a constant term, we can write for the free energy
density:

1

2β

∑
n

∫
d3p

(2π)3
ln

(
n2 +

β2p2

4π2
+
β2M2

4π2

)
(4)

Scaling the 3-momentum integration variable like p→ (2π/β)p, we obtain

1

2

1

β4

∑
n

∫
d3p ln

(
n2 + p2 +

β2M2

4π2

)
(5)

Now introducing the limiting representation for the logarithm, we write

− 1

2

1

β4

1

ε

∑
n

∫
d3p

1(
n2 + p2 + β2M2

4π2

)ε (6)

where we have suppressed the operator %ε. Notice that the effect of this operator on
the above expression is simply to extract the coefficient of the term linear in ε, after
integration over 3-momentum, and executing the discrete summation.

Integrating over the 3-momentum p, we obtain

− 1

2

π
3
2

β4

Γ(ε− 3/2)

Γ(1 + ε)

∑
n

1(
n2 + β2M2

4π2

)ε−3/2 (7)

Now using the representation

Γ(α)A−α =

∞∫
0

dλλα−1e−λA (8)

we obtain

− 1

2

π3/2

β4

1

Γ(1 + ε)

∑
n

∞∫
0

dλλε−5/2 e
−λ

(
n2+β2M2

4π2

)
(9)
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Applying Poisson’s summation formula

∞∑
n=−∞

e−tn
2

=
(π
t

)1/2 ∞∑
n=−∞

e−
π2

t
n2

(10)

we obtain

− 1

2

π2

β4

1

Γ(1 + ε)

∑
n

∞∫
0

dλλε−3 e
−
(
π2

λ
n2+λβ

2M2

4π2

)
(11)

We need to compute the n = 0 term and the n 6= 0 terms separately. The n = 0 of the
above expression gives

− 1

2

π2

β4

Γ(ε− 2)

Γ(1 + ε)

(
β2M2

4π2

)2−ε

= − M4

32π2

1

ε(ε− 1)(ε− 2)

(
β2M2

4π2

)−ε
(12)

Picking out the coefficient of the linear term in ε, we obtain for this term

− M4

32π2

{
3

2
− ln

(
β2M2

4π2

)}
(13)

This is the usual contribution in divergence-free quantum field theory. Notice, however,
that whereas the logarithmic argument would have an arbitrary scale, it is scaled here
with temperature.

We now manipulate the n 6= 0 terms. Because of the symmetry n↔ −n, we write

− π2

β4

1

Γ(1 + ε)

∞∑
n=1

∞∫
0

dλλε−3 e
−
(
π2

λ
n2+λβ

2M2

4π2

)
(14)

We need to expand with respect to the mass M . Now making the change of variable

λ =
1

ρ

∞∫
0

dλ =

∞∫
0

dρ

ρ2
(15)

we obtain

− π2

β4

1

Γ(1 + ε)

∞∑
n=1

∞∫
0

dρ ρ1−ε e
−
(
π2n2ρ+β2M2

4π2
1
ρ

)
(16)

Expanding with respect to M , we obtain

− π2

β4

1

Γ(1 + ε)

∞∑
k=0

(−1)k

k!

(
β2M2

4π2

)k ∞∑
n=1

∞∫
0

dρ ρ1−ε−k e−π
2n2ρ (17)

Integrating over ρ,

− π2

β4

∞∑
k=0

(−1)k

k!

(
β2M2

4π2

)k
Γ(2− ε− k)

Γ(1 + ε)

∞∑
n=1

(
1

π2n2

)2−ε−k

(18)
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Now using the definition of the zeta function

ζ(z) =
∞∑
n=1

1

nz
(19)

we write the series

− π2

β4

∞∑
k=0

(−1)k

k!

(
β2M2

4π2

)k (
1

π2

)2−ε−k
Γ(2− ε− k)

Γ(1 + ε)
ζ(4− 2ε− 2k) (20)

Adding the above result for n 6= 0 to the preceding n = 0 contribution, we obtain for
the first few terms of the free energy density:

F

V
= − M4

64π2

{
3

2
+ 2γ − ln

(
M2β2

π2

)}
− π2

90β4
+

M2

24β2
− ζ ′(−2)M6β2

192π2
+ · · · (21)

Here γ ≈ 0.57722 is the Euler constant, and ζ ′(−2) ≈ −0.03045. Notice that for a
massless quantum field (M = 0), we have the familiar radiational term ∼ T 4.

3 Fermionic Contribution

Turning to the case of a fermionic quantum field component, we obtain the one-loop
result for the free energy density with an opposite sign:

F

V
= − 1

2β

∑
n

∫
d3p

(2π)3
ln

{
(n+

1

2
)2 +

β2p2

4π2
+
β2M2

4π2

}
(22)

Notice, however, that the discrete energy eigenvalue is (n + 1/2) where n takes on all
integral values. Now scaling the 3-momentum variable like p→ (2π/β)p, we obtain

− 1

2

1

β4

∑
n

∫
d3p ln

{
(n+

1

2
)2 + p2 +

β2M2

4π2

}
(23)

Introducing our limiting representation for the logarithm,we write

1

2

1

β4

1

ε

∑
n

∫
d3p

1{
(n+ 1

2
)2 + p2 + β2M2

4π2

}ε (24)

where, again, we have suppressed the operator %ε, however, we should remember to
keep only the coefficient of the contribution which is linear in ε, after integrating over
3-momentum, and doing the discrete summation.

Integrating over the 3-momentum p, we obtain

1

2

π3/2

β4

Γ(ε− 3/2)

Γ(1 + ε)

∑
n

1{(
n+ 1

2

)2
+ β2M2

4π2

}ε−3/2 (25)
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Now using the representation

Γ(α)A−α =

∞∫
0

dλλα−1 e−λA (26)

we obtain

1

2

π3/2

β4

1

Γ(1 + ε)

∑
n

∞∫
0

dλλε−5/2 e
−λ

{
(n+ 1

2)
2
+β2M2

4π2

}
(27)

Applying the modified Poisson’s summation formula

∞∑
n=−∞

e−t(n+
1
2
)2 =

(π
t

)1/2 ∞∑
n=−∞

(−1)ne−
π2

t
n2

(28)

we obtain

1

2

π2

β4

1

Γ(1 + ε)

∑
n

(−1)n
∞∫
0

dλλε−3 e
−
(
π2

λ
n2+λβ

2M2

4π2

)
(29)

The n = 0 term of the above expression gives

1

2

π2

β4

Γ(ε− 2)

Γ(1 + ε)

(
β2M2

4π2

)2−ε

=
M4

32π2

1

ε(ε− 1)(ε− 2)

(
β2M2

4π2

)−ε
(30)

Picking out the coefficient of the term that is linear in ε, we obtain for the above

M4

64π2

{
3

2
− ln

(
β2M2

4π2

)}
(31)

Turning to the n 6= 0 terms, and from the symmetry under n↔ −n, we have

π2

β4

1

Γ(1 + ε)

∞∑
n=1

(−1)n
∞∫
0

dλλε−3 e
−
(
π2

λ
n2+λβ

2M2

4π2

)
(32)

Now making the change of variable

λ =
1

ρ

∞∫
0

dλ =

∞∫
0

dρ

ρ2
(33)

we obtain

π2

β4

1

Γ(1 + ε)

∞∑
n=1

(−1)n
∞∫
0

dρ ρ1−ε e
−
(
π2n2ρ+β2M2

4π2
1
ρ

)
(34)

Expanding with respect to M , we obtain

π2

β4

1

Γ(1 + ε)

∞∑
k=0

(−1)k

k!

(
β2M2

4π2

)k ∞∑
n=1

(−1)n
∞∫
0

dρ ρ1−ε−k e−π
2n2ρ (35)
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Integrating over ρ,

π2

β4

∞∑
k=0

(−1)k

k!

(
β2M2

4π2

)k
Γ(2− ε− k)

Γ(1 + ε)

∞∑
n=1

(−1)n
(

1

π2n2

)2−ε−k

(36)

Including the n = 0 result and looking at the first few terms of the above series, we
obtain for the free energy density of a free fermionic field component:

M4

64π2

(
3

2
+ 2γ − ln

(
β2M2

4π2

))
− 7π2

720β4
+

M2

48β2
+

7ζ ′(−2)M6β2

192π2
+ · · · (37)

where ζ ′(−2) ≈ −0.03045.

4 Discussion

The one-loop divergence-free thermal computations that we have presented in the pre-
ceding sections can easily be extended to higher loops, in any desired field theoretical
model. In the above, we have dealt with a regular operator like 1/∆α. Higher-loop
computations would involve propagators that can always be combined to take such a
form, but they might also involve momenta-dependent vertices, such as in gauge and
gravitational theories, but it would not be too difficult to make the required extensions.

It would be interesting to examine the corrections to the thermal free energy due to
field interactions. Most interesting would be the effects of quantum gravity. The cor-
responding high-temperature contributions may have important applications in stellar
and cosmological physics.
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