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Abstract: 

In this work we study the interacting dark energy (DE) models with Garnda-Oliveros cutoff 

(LGO) within the work of Kaluza-Klein (KK) universe. We established mathematical 

formulas for the equation of state parameter 𝜔ᴧthe decelaration parameter 𝑞 and the 

geometrical statefinder parameters 𝑟, 𝑠. The results show that the universe is in an expansion 

mode for the model under study.  
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I. Introduction: 

The problems that faces the discovery of DE [1-10] are the fine tuning problem [11] and the 

cosmic coincidence problem [11]. In this paper we will try describe the properties of dark 

energy that will deeply explain its problems and give notice about its solutions, we define a 

holographic Kaluza-Klein universe, where the holographic principle [12, 13] is merged in 

Kaluza-Klein universe [14], holographic principle will be useful in defining the limit of dark 

energy density as gives [15, 16], where 𝐿3𝜌ᴧ ≤ 𝐿𝑀𝑝
2, as 𝜌ᴧ energy density of dark energy 

DE, 𝑀𝑝 is the reduce Planck's mass and 𝐿 the size of universe, this inequality led to a very 

useful relation 𝜌ᴧ ∝ 𝐿−2, the horizon size 𝑅 in hologram universe could be described through 

𝑅𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚 = ∫
𝑑𝑡

𝑎(𝑡)

𝑡

0
, the function 𝑎(𝑡) is also be described in any dimension 

𝑎(𝑡)~𝑡2 𝑑(𝜔ᴧ+1)⁄  the DE density is related to the acceleration of universe through 𝑝 = 𝜌ᴧ𝜔ᴧ. 

Also it describe why 𝜔ᴧ < 1. 

This paper is arranged to define and study some cosmological parameters for our model.  

II. Basic equations and KK model: 

According to Kaluza-Klein universe the Friedmann–Lemaître–Robertson–Walke (FLRW) 

metric [17, 18] for flat space is given by: 

 𝑑𝑆2 = 𝑑𝑡2 − 𝑎(𝑡)2(𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin 𝜃2 𝑑𝜑2) + 𝑑𝜓2). (1) 
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where 𝑟 radial component, 𝜃, 𝜑 angular coordinates, 𝜓 extra spatial dimension and 𝑡 is the 

cosmic time. The KK universe is filled with perfect fluid [17, 18] defined by the following 

energy-momentum tensor: 

 𝑇𝜇𝛾 = (𝑃 + 𝜌)𝑈𝜇𝑈𝛾 − 𝑔𝜇𝛾𝑃, (2) 

where 𝜇, 𝛾 = 0,1,2,3,4, 𝑃 = 𝑃ᴧ + 𝑃𝑚the pressure, 𝜌 = 𝜌ᴧ + 𝜌𝑚 density, 𝜌𝑚 energy density 

of dark matter (DM), ᴧ denote dark energy (vacuum energy), 𝑚 the dark matter (DM) and 

𝑈𝜇 , 𝑈𝛾 the five velocity such that 𝑈𝛾𝑈𝛾 = 1. The Einstein field equations [17, 18] are given 

by: 

 
𝑅𝜇𝛾 −

1

2
𝑔𝜇𝛾𝑅 = (к)𝑇𝜇𝛾, (3) 

where 𝑅𝜇𝛾 Ricci tensor, 𝑅 Ricci scalar, 𝑔𝜇𝛾 metric tensor, 𝑇𝜇𝛾 the energy-momentum 

tensor and к the coupling constant that taken к = 1 according to KK metric, 1st Friedman 

equation in 5D space [17, 18]: 

 1 + 𝐻2 =
𝜌

6𝑀𝑝
2. (4) 

2nd Friedman equation in 5D space [17, 18]: 

 
𝐻̇ + 2𝐻2 = −

2𝑝

6𝑀𝑝
2. (5) 

For KK universe we could define Ωᴧfractional energy density of DE and Ω𝑚 fractional 

energy density of DM, Ω𝑘 fractional energy density for universe curvature and 𝜌𝑐critical 

energy density [19]: 

 
Ωᴧ =

𝜌ᴧ

6𝑀𝑝
2𝐻2

, Ω𝑚 =
𝜌𝑚

6𝑀𝑝
2𝐻2

, Ωᴧ =
𝑘

𝑎2𝐻2
 and 𝜌𝑐 = 6𝐻2𝑀𝑝

2, (6) 

where 𝐻 Hubble parameter, which is a unit of measurement used to describe the expansion 

of universe, 𝑘 the Curvature parameter describe the in details(−1,0,1), 𝑎 dimensionless scale 

factor measuring the expansion of universe, 𝑀𝑝 Reduced Planck's mass (√
1

8𝜋𝐺
), 𝐺 the 

gravitational constant from continuity equation [14]: 

 𝜌ᴧ̇ + 4𝐻𝜌ᴧ(𝜔ᴧ + 1) = −𝑄, (7) 

 𝜌𝑚̇ + 4𝐻𝜌𝑚 = 𝑄, (8) 

 𝜌.
𝑜𝑟𝑑𝑒𝑛𝑎𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟

+ 4𝐻𝜌𝑜𝑟𝑑𝑒𝑛𝑎𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 = 𝑄, (9) 

where 𝑄 the energy exchanges term (function describes  the  interaction between DE and 

DM), 𝑄 the energy exchange term (function describes  the  interaction between  ordinary  
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matter with  DE and DM)  and 𝜔ᴧ is the equation of state (it's a dimensionless number 

describe the flow of perfect fluid).  

Multiply Eq.(2) with 
−2Ωᴧ

4𝐻𝜌ᴧ
, we get: 

 
−Ωᴧ𝜔ᴧ = 2 [Ωᴧ +

1

4𝐻
×

𝜌ᴧ̇

6𝑀𝑝
2𝐻2

+
𝑄

24𝑀𝑝
2𝐻3

]. (10) 

The 1st derivative for Ωᴧ is given by: 

 
Ω̇ᴧ =

𝑑

𝑑𝑡
Ωᴧ =

𝑑

𝑑𝑡
(

𝜌ᴧ

6𝑀𝑝
2𝐻2

) =
𝜌̇ᴧ

6𝑀𝑝
2𝐻2

− 2Ωᴧ

𝐻̇

𝐻
, (11) 

 𝜌̇ᴧ

6𝑀𝑝
2𝐻2

= Ω̇ᴧ + 2Ωᴧ

𝐻̇

𝐻
. (12) 

By substituting Eq.(12) in Eq.(10) we get: 

 
−2Ωᴧ𝜔ᴧ = 2 [Ωᴧ +

1

4𝐻
× [Ω̇ᴧ + 2Ωᴧ

𝐻̇

𝐻
] +

𝑄

24𝑀𝑝
2𝐻3

]. (13) 

From 2nd Freidman equation for 5D flat space [17, 18]: 

 𝐻̇ + 2𝐻2 = −
𝜌ᴧ𝜔ᴧ

3𝑀𝑝
2. (14) 

Divided this equation by 𝐻2 gives: 

 𝐻̇

𝐻2
+ 2 = −

2𝜌ᴧ𝜔ᴧ

6𝑀𝑝
2𝐻2

, (15) 

 𝐻̇

𝐻2
+ 2 = −2𝜔ᴧΩᴧ. (16) 

From Eq.(16) in Eq.(13), one finds: 

 𝐻̇

𝐻2
+ 2 = 2 [Ωᴧ +

1

4𝐻
× [Ω̇ᴧ + 2Ωᴧ

𝐻̇

𝐻
] +

𝑄

24𝑀𝑝
2𝐻3], (17) 

 𝐻̇

𝐻2
(1 − Ωᴧ) = −2(1 − Ωᴧ) +

Ωᴧ
̇

2𝐻
+ 2

𝑄

24𝑀𝑝
2𝐻3

. (18) 

Multiply Eq.(18) with 
−2𝐻

1−Ωᴧ
, we get: 

 
−2

𝐻̇

𝐻
= 4𝐻 −

Ωᴧ
̇

1 − Ωᴧ
− 4𝐻

𝑄

24𝑀𝑝
2𝐻3(1 − Ωᴧ)

. (19) 
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By assuming the interaction term 𝑄 can take the form: 

 
𝑄 = 24𝑀𝑝

2𝐻3(1 − Ωᴧ)(1 +
𝑓(𝑡)

𝐻
) (20) 

We introduce 𝑓(𝑡) function to study the behavior of 𝑄, from Eq.(20) in  Eq.(19), we find: 

 
−2

𝐻̇

𝐻
= 4𝐻 −

Ωᴧ
̇

1 − Ωᴧ
− 4𝐻(1 +

𝑓(𝑡)

𝐻
) (21) 

 
−2

𝐻̇

𝐻
= −4𝑓(𝑡) −

Ωᴧ
̇

1 − Ωᴧ
 (22) 

By integrate Eq.(22) according to time 𝑡, one finds: 

 
−2∫

𝑑𝐻

𝐻
= ∫

𝑑(1 − Ωᴧ)

1 − Ωᴧ
+ ∫[−4𝑓(𝑡)]𝑑𝑡, (23) 

 −2 ln𝐻 = ln(1 − Ωᴧ) − ln 𝐹, (24) 

where ln 𝐹 = ∫4𝑓(𝑡)𝑑𝑡, according to Eq.(24), we get: 

 Ωᴧ = 1 − 𝐻−2𝐹(𝑡). (25) 

From Eq.(16), one finds: 

 

𝜔ᴧ = −

𝐻̇
𝐻2 + 2

2Ωᴧ
. 

(26) 

From KK model the, DE density define in universe size [20, 21] as: 

 𝜌ᴧ = 3𝑚2𝑀𝑝
2𝐿−2, (27) 

where 𝑚 constant (to reconcile the theoretical results to observed results) and L is the future 

event horizon (the event horizon of the observable universe is the largest comoving distance 

from which light emitted now can ever reach the observer in the future). Divided Eq.(27) by 

6𝑀𝑝
2𝐻2, one finds: 

 
Ωᴧ =

𝜌ᴧ

6𝑀𝑝
2𝐻2

=
𝑚2

2
𝐻−2𝐿−2. (28) 

III. Garnda-Oliveros in KK theory: 

Let the future event  horizon equal the red shift horizon equals the Garnda-Oliveros in flat 

space[21] (𝐿−2 = 𝐿𝐺𝑜
−1 = 𝛽𝐻̇ + 𝛼𝐻2as 𝛽, 𝛼 arbitrary constants): 

 
Ωᴧ =

𝑚2

2
𝐻−2𝐿𝐺𝑜

−1 =
𝑚2

2
𝐻−2(𝛽𝐻̇ + 𝛼𝐻2) =

𝑚2

2
(𝛽

𝐻̇

𝐻2
+ 𝛼). (29) 
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By substituting Eq.(29) in Eq.(25), we get: 

 𝑚2

2
(𝛽

𝐻̇

𝐻2
+ 𝛼) = 1 − 𝐻−2𝐹(𝑡), (30) 

 
(
𝑚2

2
)

−1

(𝛽𝐻̇ + 𝛼𝐻2)
−1

(𝐻2 − 𝐹(𝑡)) = 1. (31) 

Eq.(31) is a 1st order differential equation can be divided into two equations: 

 

(
𝑚2

2
(𝛽𝐻̇ + 𝛼𝐻2))

−1

= 𝐻−2𝑋(𝑡)−1  𝑎𝑛𝑑 (𝐻2 − 𝐹(𝑡)) = 𝐻2𝑋(𝑡). (32) 

̇The 1st equation can be solved as 1st order differential equation gives: 

 𝑚2

2
(𝛽𝐻̇ + 𝛼𝐻2) = 𝐻2𝑋(𝑡). (33) 

Divided Eq.(33) with 𝐻2, we get:  

 𝐻̇

𝐻2
= −

𝛼

𝛽
+ (

𝛽𝑚2

2
)

−1

𝑋(𝑡). (34) 

By integrate Eq.(34) according to 𝑡 we get: 

 

∫
𝑑𝐻

𝐻2
= ∫(−

𝛼

𝛽
+ (

𝛽𝑚2

2
)

−1

𝑋(𝑡))𝑑𝑡. (35) 

 

𝐻 = (∫[
𝛼

𝛽
− (

𝛽𝑚2

2
)

−1

𝑋(𝑡)] 𝑑𝑡)

−1

 (36) 

The 2nd equation gives a representation for 𝐹(𝑡), that: 

 𝐻2 − 𝐹(𝑡) = 𝐻2𝑋(𝑡), (37) 

 𝐹(𝑡) = 𝐻2(1 − 𝑋(𝑡)). (38) 

By substitute the present values of 𝐻 = 𝐻0, Ωᴧ = Ωᴧ0
 and 𝑎 = 𝑎0[22] with: 

 𝐻0 = 77.6 (𝑘𝑚
𝑆⁄ ) 𝑀𝑝𝑐⁄ , (39) 

 Ωᴧ0
= 0.7, (40) 

 𝑎0 = 1. (41) 

For the present time 𝑡0, we have (Ωᴧ0
=

𝜌ᴧ0

6𝑀𝑝
2𝐻0

2), then from Eq.(6) we get: 
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Ωᴧ = Ωᴧ0

∗
𝜌ᴧ

𝜌ᴧ0

∗
𝐻0

2

𝐻2
. (42) 

 

Same way for Eq.(27), one finds: 

 𝜌ᴧ

𝜌ᴧ0

=
𝐿0

2

𝐿2
. (43) 

Using Eq.(43) in Eq.(42), we get: 

 
Ωᴧ = Ωᴧ0

∗
𝐿0

2

𝐿2
∗

𝐻0
2

𝐻2
. 

(44) 

By using the concept of future event horizon [20, 21]: 

 
𝐿 = 𝑎(𝑡)∫

𝑑𝑡

𝑎(𝑡)
, 

(45) 

 𝐿̇ = 𝐿𝐻 + 1, (46) 

 𝐿𝐻 = 𝐿̇ − 1. (47) 

Divided Eq.(47) by 𝐿0𝐻0, we find:  

 𝐿𝐻

 𝐿0𝐻0
=

𝐿̇ − 1

 𝐿0𝐻0
, (48) 

 𝐿0𝐻0

𝐿𝐻
=

𝐿0𝐻0

𝐿̇ − 1
. (49) 

By using the proper distance concept [23, 24]:  

 𝑗(𝑡) = 𝑎(𝑡) ∗ 𝑗0 (50) 

where 𝑗(𝑡) the proper distance (Proper distance roughly corresponds to where a distant 

object would be at a specific moment of cosmological time) at time 𝑡 and 𝑗0 the proper 

distance at time 𝑡0, suppose that the proper distance equivalent to the future event horizon. 

We can get: 

 𝐿 = 𝑎(𝑡) ∗ 𝐿0, (51) 

 𝐿̇ = 𝑎̇(𝑡) ∗ 𝐿0. (52) 

From Eq.(52) in Eq.(49), we get: 

 𝐿0𝐻0

𝐿𝐻
=

𝐿0𝐻0

𝑎̇(𝑡) ∗ 𝐿0 − 1
, (53) 
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 𝐿0𝐻0

𝐿𝐻
=

𝐿0𝐻0

𝑎(𝑡)
𝑎(𝑡)

𝑎̇(𝑡) ∗ 𝐿0 − 1
, 

(54) 

 𝐿0𝐻0

𝐿𝐻
=

𝐿0𝐻0

𝑎̇(𝑡)
𝑎(𝑡)

∗ 𝑎(𝑡) ∗ 𝐿0 − 1
. 

(55) 

For 
𝑎̇(𝑡)

𝑎(𝑡)
= 𝐻, Eq.(55) takes the form: 

 𝐿0𝐻0

𝐿𝐻
=

𝐿0𝐻0

𝐿0𝐻𝑎(𝑡) − 1
, (56) 

By using the particle horizon concept [23, 24], one finds: 

 
(1 + 𝑧)𝜐 =

𝐻0

𝐻
=

𝑎0

𝑎
, (57) 

where 𝑧 is the redshift parameter 1 + 𝑧 =
𝜆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝜆𝑒𝑚𝑖𝑡𝑡𝑒𝑑
, from Eq.(57) in Eq.(56), we find: 

 𝐿0𝐻0

𝐿𝐻
=

𝐿0𝐻0

𝐿0𝐻0𝑎0(1 + 𝑧)−2𝜈 − 1
. (58) 

Now by applying Eq.(58) in Eq.(44), we get: 

 
Ωᴧ = Ωᴧ0

∗ (
𝐿0𝐻0

𝐿0𝐻0𝑎0(1 + 𝑧)−2𝜈 − 1
)
2

. (59) 

As from Eq.(42) and Eq.(43): 

 

(𝐿0𝐻0)
2 =

𝑚2

2⁄

Ωᴧ0

, (60) 

By substituting Eq.(60) in Eq.(59), we get: 

 

Ωᴧ = 𝑚2

2⁄

(

 
 
 

1

𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1

)

 
 
 

2

. (61) 
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By substituting Eq.(61) in Eq.(25), one finds: 

 

1 − 𝐻−2𝐹(𝑡) = 𝑚2

2⁄

(

 
 
 

1

𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1

)

 
 
 

2

, (62) 

 

𝐹(𝑡) = 𝐻2

[
 
 
 
 
 

1 − 𝑚2

2⁄

(

 
 
 

1

𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1

)

 
 
 

2

]
 
 
 
 
 

 (63) 

From Eq.(57) in Eq.(63), we get: 

 

𝐹(𝑡) = (
𝐻0

(1 + 𝑧)
)
2

[
 
 
 
 
 

1 − 𝑚2

2⁄

(

 
 
 

1

𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1

)

 
 
 

2

]
 
 
 
 
 

. (64) 

By substituting Eq.(63) in Eq.(38), we establish: 

 

𝐻2(1 − 𝑋(𝑡)) = 𝐻2

[
 
 
 
 

1 − 𝑚2

2⁄

(

 
 1

𝑎0√
𝑚2

2⁄

Ωᴧ0
(1+𝑧)−2𝜈−1

)

 
 

2

]
 
 
 
 

, (65) 

 

𝐻2𝑋(𝑡) = 𝐻2 𝑚2

2⁄

(

 
 
 

1

𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1

)

 
 
 

2

, (66) 

 

𝑋(𝑡) = 𝑚2

2⁄

(

 
 
 

1

𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1

)

 
 
 

2

= Ωᴧ, (67) 
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From Eq.(67) in Eq.(34), we get: 

 

𝐻̇

𝐻2
= −

𝛼

𝛽
+

1

𝛽

(

 
 
 

1

𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1

)

 
 
 

2

. (68) 

From Eq.(57), we calculate 
𝐻̇

𝐻2
 as: 

 𝑑

𝑑𝑡
(1 + 𝑧)𝜈 =

𝑑

𝑑𝑡
(
𝐻0

𝐻
), (69) 

 𝐻̇

𝐻2
= −𝜈

(1 + 𝑧)𝜈−1𝑧 .

𝐻0
. (70) 

From Eq.(70) in Eq.(68), we get:   

 

𝑧 . =
1

𝜈
(1 + 𝑧)

(

 
 
 

𝛼

𝛽
−

1

𝛽

(

 
 
 

1

𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1

)

 
 
 

2

)

 
 
 

. (71) 

We could calculate Ωᴧ
\, which is given by: 

 
Ωᴧ

\ =
𝑑

𝑑 ln 𝑎
(Ωᴧ), (72) 

where 
𝑑

𝑑 ln 𝑎
(Ωᴧ) =

𝑑𝑧

𝑑 ln 𝑎
(

𝑑

𝑑𝑧
Ωᴧ) =

𝑎𝑧̇

𝑎̇
(

𝑑

𝑑𝑧
Ωᴧ), we get: 

 
Ωᴧ

\ =
𝑧̇

𝐻
(

𝑑

𝑑𝑧
Ωᴧ). (73) 

By substituting from Eq.(57), Eq.(61) and Eq.(71) in Eq.(72), we get: 

 

Ωᴧ
\ = 4𝑎0

√
(𝑚

2

2⁄ )
3

Ωᴧ0

(1 + 𝑧)−2𝜈 (𝑎0√
𝑚2

2⁄

Ωᴧ0

(1 + 𝑧)−2𝜈 − 1)

−3

(
𝛼

𝛽
−

1

𝛽
(𝑎0√

𝑚2

2⁄

Ωᴧ0

(1 + 𝑧)−2𝜈 − 1)

−2

).  

(74) 
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In Fig.(1) we plot Ωᴧ
\ parameter which is mainly used to study the evolution of universe 

as function of 𝑧 for 𝑚 = 0.7, 0.9 𝑎𝑛𝑑 1. 

IV. Calculations of same cosmological parameters: 

By substituting Eq.(61) and Eq.(68) in Eq.(16), one finds: 

 

𝜔ᴧ =

(2 −
𝛼
𝛽
) +

1
𝛽

(

 
 
 

1

𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1

)

 
 
 

2

−2𝑚2

2⁄

(

 
 
 

1

𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1

)

 
 
 

2 , (75) 

 

𝜔ᴧ =
1

𝑚2

(

 
 

(
𝛼

𝛽
− 2)(𝑎0

√
𝑚2

2⁄

Ωᴧ0

(1 + 𝑧)−2𝜈 − 1)

2

−
1

𝛽

)

 
 

. (76) 

In Fig.(2),  we plot 𝜔ᴧ as function of 𝑧 for 𝑚 = 0.7, 0.9 𝑎𝑛𝑑 1. We observe that 𝜔ᴧ < −1 

for all values that indicates our universe according to our model is described by phantom 

evolution. The deceleration parameter 𝑞 [25],  that defines  as  a dimensionless measure of 

the cosmic acceleration of the expansion of space in a Friedmann–Lemaître–Robertson–

Walker universe is given by: 

 
𝑞 = −(1 +

𝐻̇

𝐻2
). (77) 

By substituting Eq.(61) in Eq.(77), we get: 

 

𝑞 = 1 +
𝛼

𝛽
−

1

𝛽
(𝑎0

√
𝑚2

2⁄

Ωᴧ0

(1 + 𝑧)−2𝜈 − 1)

−2

. (78) 

In Fig.(3), we plot 𝑞 as function of 𝑧 for 𝑚 = 0.7, 0.9 𝑎𝑛𝑑 1. The plot shows, for all the 

values of 𝑚, we took into account the deceleration parameter has an increasing behavior, 

always staying at negative level. 

To study the properties of DE, we introduce the statefinder parameters 𝑟, 𝑠 the statefinder 

[26, 27] is a geometrical diagnostic and allows us to characterize the properties of dark 
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energy in a model independent manner. The statefinder is dimensionless and is constructed 

from the scale factor of the Universe and its time derivatives only. The parameter 𝑟 forms 

the next step in the hierarchy of geometrical cosmological parameters after the Hubble 

parameter 𝐻 and the deceleration parameter 𝑞, while 𝑠 is a linear combination of 𝑞 and 𝑟 

chosen in such a way that it does not depend upon the dark energy  density.  The statefinder 

pair 𝑟, 𝑠 is algebraically related to the equation of state of dark energy and its first time 

derivative, the state-finder operator 𝑟 is given by: 

 
𝑟 = 1 + 3

𝐻̇

𝐻2
+

𝐻̈

𝐻3
, (79) 

where: 

 𝑑

𝑑𝑡
(

𝐻̇

𝐻2
) = 𝐻 (

𝐻̈

𝐻3
− 2(

𝐻̇

𝐻2
)

2

), (80) 

 𝐻̈

𝐻3
=

1

𝐻

𝑑

𝑑𝑡
(

𝐻̇

𝐻2
) + 2(

𝐻̇

𝐻2
)

2

. (81) 

From Eq.(68), we could calculate 
𝑑

𝑑𝑡
(

𝐻̇

𝐻2) as: 

 𝑑

𝑑𝑡
(

𝐻̇

𝐻2
)

=
4𝑎0

𝛽
√

𝑚2

2⁄

Ωᴧ0

(1 + 𝑧)−2𝜈 (
𝛼
𝛽

−
1
𝛽

(𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1)

−2

)

(𝑎0
√

𝑚2

2⁄

Ωᴧ0
(1 + 𝑧)−2𝜈 − 1)

3  

(82) 

By substituting Eq.(82) in Eq.(81), and find: 

 

𝐻̈

𝐻3
=

4𝑎0

𝐻0𝛽
√

𝑚2

2⁄

Ωᴧ0

(1+𝑧)−𝜈(
𝛼

𝛽
−

1

𝛽
(𝑎0√

𝑚2
2⁄

Ωᴧ0
(1+𝑧)−2𝜈−1)

−2

)

(𝑎0√
𝑚2

2⁄

Ωᴧ0
(1+𝑧)−2𝜈−1)

3 + 2

(

 
 

−
𝛼

𝛽
+

1

𝛽

(

 
 1

𝑎0√
𝑚2

2⁄

Ωᴧ0
(1+𝑧)−2𝜈−1

)

 
 

2

)

 
 

2

.  

(83) 
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By substituting Eq.(83) and Eq.(68) in Eq.(79), one finds: 

 

𝑟 = 1 + (−
𝛼

𝛽
+

1

𝛽
(𝑎0√

𝑚2

2⁄

Ωᴧ0

(1 + 𝑧)−2𝜈 − 1)

−2

)

(

 
 

3 +

4𝑎0

𝐻0𝛽
√

𝑚2

2⁄

Ωᴧ0

(1 + 𝑧)−𝜈 (−
𝛼

𝛽
+

1

𝛽
(𝑎0√

𝑚2

2⁄

Ωᴧ0

(1 + 𝑧)−2𝜈 − 1)

−2

)

−3

+

2(−
𝛼

𝛽
+

1

𝛽
(𝑎0√

𝑚2

2⁄

Ωᴧ0

(1 + 𝑧)−2𝜈 − 1)

−2

)

)

 
 

.  

(84) 

  (85) 

Cutting-edge Fig.(4), we plot 𝑟 as function of 𝑧 for 𝑚 = 0.7, 0.9 𝑎𝑛𝑑 1. The state-finder 

operator 𝑠 is given by: 

 

𝑠 =
3

𝐻̇
𝐻2 +

𝐻̈
𝐻3

6
𝐻̇
𝐻2 + 9

. (86) 

By substituting Eq.(79) and Eq.(77) in Eq.(86), we establish: 

 
𝑠 = −

𝑟 − 1

3 − 6𝑞
. (87) 

 

 

 

By substituting Eq.(85) and Eq.(78) in Eq.(87), we get: 
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𝑠 = − 

(

 
 

3+
4𝑎0
𝐻0𝛽

√
𝑚2

2⁄

Ωᴧ0
(1+𝑧)−𝜈(−

𝛼

𝛽
+

1

𝛽
(𝑎0√

𝑚2
2⁄

Ωᴧ0
(1+𝑧)−2𝜈−1)

−2

)

−3

+2(−
𝛼

𝛽
+

1

𝛽
(𝑎0√

𝑚2
2⁄

Ωᴧ0
(1+𝑧)−2𝜈−1)

−2

)

)

 
 

(−3(
𝛼

𝛽
−

1

𝛽
(𝑎0√

𝑚2
2⁄

Ωᴧ0
(1+𝑧)−2𝜈−1)

2

)+6)

  

  (88) 

In Fig.(5), we plot 𝑠 as function of 𝑧 for 𝑚 = 0.7, 0.9 𝑎𝑛𝑑 1. It's easy to find the relation 

between 𝑟 and 𝑠.  

Using Eq.(85) and Eq.(88), we plot 𝑟 with 𝑠 for 𝑚 = 0.7, 0.9 𝑎𝑛𝑑 1, as shown in Fig.(6), 

from the plot, we notice that the parameters and show some decreasing behavior for the 

evolution of our model. 

V. Conclusion: 

We investigated the behavior of deceleration parameter "𝑞" the equation of state parameter 

"𝜔Λ", and the statefinder parameters " 𝑟 𝑎𝑛𝑑 𝑠" for KK universe enclosed by LGO cutoff. 

We have evaluated the equation of state parameter. It is found that 𝐸𝑜𝑆 >  −1 four our 

model, that assumes that our universe has a phantom model [28, 29] behaved for assumed 

model, Also by studying the evolution of the deceleration with cosmic time we see that the 

universe has accelerated expansion behavior.  

Finally we study the geometrical parameter 𝑠 and 𝑟 the interaction of 𝑠 − 𝑟 plane have 

been considered for different values of 𝑚 as 𝑚 = 0.7,0.9 𝑎𝑛𝑑 1. These types of 

parameters are used to investigate the universe expansion scenarios. Also they are used to 

get the difference between DE and ΛCDE. 

. 
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Fig.1 Evaluation of the change in fractal energy density of dark energy (Ωᴧ) according to 

ln(𝑎) as a function of redshift parameter (𝑧) 

 

Fig.2 Evaluation of the equation of state (𝜔ᴧ) as a function of redshift parameter (𝑧) 

 

Fig.3 Evaluation of the deceleration parameter (𝑞) as a function of redshift parameter (𝑧)  
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Fig.4 Evaluation of the statefinder parameter (𝑟) as a function of redshift parameter (𝑧) 

 

Fig.5 Evaluation of the statefinder parameter (𝑠) as a function of redshift parameter (𝑧) 

 

Fig.6 Evaluation of the statefinder parameter (𝑠) as a function of statefinder parameter (𝑟) 


