January 18th, 19th, 28th, 29th, 30th 2016 Anno Domini

Author: Ramesh Chandra Bagadi
Founder, Owner, Co-Director And Advising Scientist In Principal
Ramesh Bagadi Consulting LLC, Madison, Wisconsin-53715, United States Of America.
Email: rameshcbagadi@uwalumni.com

White Paper One {TRL108}
of
Ramesh Bagadi Consulting LLC, Advanced Concepts & Think-Tank, Technology Assistance & Innovation Center, Madison, Wisconsin-53715, United States Of America
Abstract

In this research manuscript, the author has presented some ‘Insights On Universal Normalization Formula’.

Theory

With respect to author’s ‘Universal Recursive Scheme For Generating The Sequence Of Prime Numbers (Of 2nd Order Space)’ shown in the Blue Box Below.

<table>
<thead>
<tr>
<th>Universal Asymmetric Recursion Scheme</th>
<th>Normalized Universal Asymmetric Recursion Scheme</th>
<th>Values of x, a, b</th>
<th>Result</th>
<th>Finalized Pick From The Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ↔ 1 ↔ 2</td>
<td>{x} ↔ {x^2 - a} ↔ {x^2 + b} x }</td>
<td>x = 0, a = -1, b = 2</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>1 ↔ 2 ↔ 0</td>
<td>{0} ↔ {0^2 - (-1)} ↔ {0^2 + 2} }</td>
<td>x = 1, a = -1, b = -1</td>
<td>1 ↔ 2 ↔ 0</td>
<td></td>
</tr>
<tr>
<td>2 ↔ 0 ↔ 1</td>
<td>{1} ↔ {(1)^2 - (2)} ↔ {(1)^2 - 2} }</td>
<td>x = 2, a = 2, b = -1</td>
<td>4 ↔ 2 ↔ 3</td>
<td></td>
</tr>
<tr>
<td>1 ↔ 0 ↔ 2</td>
<td>{1} ↔ {(1)^2 - (1)} ↔ {(1)^2 + 1} }</td>
<td>x = 1, a = 1, b = 1</td>
<td>1 ↔ 0 ↔ 2</td>
<td></td>
</tr>
</tbody>
</table>
Now, noting that the next nearest Prime number found being 3, we now use the set \(\{0, 1, 2\} \) given in the beginning and use its two highest \((\text{Prime})\) numbers and couple the recently found 3 to form a new set \(\{1, 2, 3\} \) and consequently a Asymmetric Universal Recursion Scheme 1 \(\leftrightarrow \) 2 \(\leftrightarrow \) 3. Using the same above scheme we again find a similar table for 1 \(\leftrightarrow \) 2 \(\leftrightarrow \) 3

<table>
<thead>
<tr>
<th>Universal Asymmetric Recursion Scheme</th>
<th>Normalized Universal Asymmetric Recursion Scheme</th>
<th>Values Of (x, a, b)</th>
<th>Result</th>
<th>Finalized Pick From The Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (\leftrightarrow) 2 (\leftrightarrow) 1</td>
<td>({0} \leftrightarrow \frac{(0)^2 - (-2)}{0} \leftrightarrow \frac{(0)^2 + 1}{0})</td>
<td>(x = 0, a = -2, b = 1)</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>2 (\leftrightarrow) 1 (\leftrightarrow) 0</td>
<td>({2} \leftrightarrow \frac{(2)^2 - 1}{2} \leftrightarrow \frac{(2)^2 - 2}{2})</td>
<td>(x = 2, a = 1, b = -2)</td>
<td>4 (\leftrightarrow) 3 (\leftrightarrow) 1</td>
<td>(^3) (\text{(Prime Number Nearest to 2)})</td>
</tr>
</tbody>
</table>

Now, noting that the next nearest Prime number found being 5, we now use the set \(\{1, 2, 3\} \) given in the beginning and use its two highest \((\text{Prime})\) numbers and couple the recently found 5 to form a new set \(\{2, 3, 5\} \) and consequently a Asymmetric Universal Recursion Scheme 2 \(\leftrightarrow \) 3 \(\leftrightarrow \) 5. Using the same above scheme we again find a similar table for 2 \(\leftrightarrow \) 3 \(\leftrightarrow \) 5

<table>
<thead>
<tr>
<th>Universal Asymmetric Recursion Scheme</th>
<th>Normalized Universal Asymmetric Recursion Scheme</th>
<th>Values Of (x, a, b)</th>
<th>Result</th>
<th>Finalized Pick From The Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (\leftrightarrow) 3 (\leftrightarrow) 5</td>
<td>({2} \leftrightarrow \frac{(2)^2 - (-1)}{2} \leftrightarrow \frac{(2)^2 + 2}{2})</td>
<td>(x = 0, a = -1, b = 3)</td>
<td>4 (\leftrightarrow) 5 (\leftrightarrow) 7</td>
<td>(^7) (\text{(Prime Number Nearest to 5)})</td>
</tr>
</tbody>
</table>
Now, noting that the next nearest Prime number found being 7, we now use the set \(\{2, 3, 5\}\) given in the beginning and use its two highest \(\{Prime\}\) numbers and couple the recently found 7 to form a new set \(\{3, 5, 7\}\) and consequently a *Asymmetric Universal Recursion Scheme*. Using the same above scheme we again find a similar table for \(3 \leftrightarrow 5 \leftrightarrow 7\) and can consequently find the next Prime Number to be 11.

We can keep repeating the aforementioned scheme many, many times so on, so forth and can generate the entire ‘Sequence Of Prime Numbers’ up to a desired limit.

The author replaces, the set \(\{0, 1, 2\}\) by the *Given Sequence Of Triplet Not Containing Zero And Arranged In Ascending Order*, say \(\{\alpha_1, \alpha_2, \alpha_3\}\) and considers the cases of

\[\alpha_2 \leftrightarrow \alpha_1 \leftrightarrow \alpha_3\]

and

\[\alpha_2 \leftrightarrow \alpha_3 \leftrightarrow \alpha_1\]

and use the above Scheme to find \(\alpha_4\).

which will be *Nearest Common Outcome* of the above considered cases when the author’s above mentioned Scheme is implemented on each. In a similar fashion, we can keep generating \(\alpha_5, \alpha_6, \ldots, \alpha_{(n-1)}, \alpha_n\) by considering \(\{\alpha_{i-1}, \alpha_i, \alpha_{i+1}\}\) and considering the cases

\[\alpha_i \leftrightarrow \alpha_{i-1} \leftrightarrow \alpha_{i+1}\]
and

\[\alpha_i \leftrightarrow \alpha_{i+1} \leftrightarrow \alpha_{i-1} \]

and use the above Scheme to find \(\alpha_{i+2} \),

which will be \textit{Nearest Common Outcome} of the above considered cases \(\alpha_i \leftrightarrow \alpha_{i-1} \leftrightarrow \alpha_{i+1} \) and \(\alpha_i \leftrightarrow \alpha_{i+1} \leftrightarrow \alpha_{i-1} \) when the author’s above mentioned Scheme is implemented on each, for any \(1 \leq i \leq n \) for the Elements on the Higher Side of \(\alpha_1 \).

Here the Limit, we have considered is \(1 \leq i \leq n \) for the Elements on the Higher Side of \(\alpha_1 \).

The thusly found Elements, Conform to the Restriction of Belonging to a Complete Recursive Set, on the Higher Side with Limit \(1 \leq i \leq n \) and Starting from \(\alpha_1 \).

To compute the that conform to the Restriction of Belonging to a Complete Recursive Set, on the Lower Side (upto a certain Limit) and Starting from \(\alpha_1 \), and going on the Lower Side, we use the following Scheme:

Firstly, we use the following Triplet of Numbers

\[\{\alpha_0, \alpha_1, \alpha_2\} \]

where, \(\alpha_0 \) is a Variable and run our above Scheme in the Blue-Box and find \(\alpha_0 \) for the Result of the Scheme being \(\alpha_3 \) which is already known. In the same fashion, we keep finding the Complete Recursive Set Elements on the Lower Side of \(\alpha_1 \) till a specified Limit, say \(\alpha_{-m} \). Note that the minus Sign is just an Indicator for numbering elements lower than \(\alpha_0 \). Here, the Lower Limit, we have considered is \(\alpha_{-m} \), i.e., \(-m \).

Also, \(\alpha_{-m} \) is the Last Element on the Lower Side found to Exhaustion, i.e., \(-m^h \) Element is the Last Element on the Lower Side found to Exhaustion.
Complete Recursive Subsets Of the thusly found Elements can also be found in the following fashion.

Firstly, we list all the thusly found Elements inclusive of the given three Elements \(\{\alpha_1, \alpha_2, \alpha_3\}\) and form a Set, say \(\alpha_m^{CRS_{\{\alpha_1, \alpha_2, \alpha_3\}}}\). Here, in the notation, \(\alpha_m^{CRS_{\{\alpha_1, \alpha_2, \alpha_3\}}}\) indicates the Set of Elements that form a Complete Recursive Sub-Set formed for the Set \(\{\alpha_1, \alpha_2, \alpha_3\}\) with Lower Limit Term \(\alpha_m\) and Higher Limit Term \(\alpha_n\). We now find all the Subsets, say \(S_j \subseteq \alpha_m^{CRS_{\{\alpha_1, \alpha_2, \alpha_3\}}}\) of this Set \(\alpha_m^{CRS_{\{\alpha_1, \alpha_2, \alpha_3\}}}\). Now for every Sub-Set of \(\alpha_m^{CRS_{\{\alpha_1, \alpha_2, \alpha_3\}}}\) with at least three Elements or more, we use the aforementioned Scheme and find the Elements that Conform to Complete Recursive Sub-Set.

Now, the Union of all these Sets, namely \(\bigcup_{j} \left\{ \alpha_m^{CRS_{\{\alpha_1, \alpha_2, \alpha_3\}}} \right\} \bigcup_{j} \left\{ \text{Cardinality(\geq3)} S_j \right\}\) can be considered as a Universal Beauty Primality Set and/ or Universal Optimal Life Primality Set.

The Three Critical Elements Of Any Sequence That Can Generate All The Elements Of The Sequence And Also Some Additional Elements That Conform To The Complete Recursive Set Ordered By All The Elements Of The Given Sequence Of Concern

Considering and given Sequence as a Set say, \(B = \{\beta_1, \beta_2, \beta_3, \ldots, \beta_{(p-2)}, \beta_{(p-1)}, \beta_p\}\) we, then holistically form all three Distinct Element Sets \(B_{\text{Cardinality(3)}}\) using B. These will be \(p(p-1)(p-2)=(p^3-3p^2+2p)\) in number. Now, using the above detailed Scheme we find all the Elements forming a Complete Recursive Set for each of the Three Element Subsets of \(B = \{\beta_1, \beta_2, \beta_3, \ldots, \beta_{(p-2)}, \beta_{(p-1)}, \beta_p\}\), on the Higher and Lower Side and upto a Certain (different, may be same in some instances) Least Counts on the Higher & Lower Sides such that for one of this thusly found Set, we find all the Elements of the Given Sequence, in the least. The Three Element Subset of the given Sequence can be considered as The Critical Three Elements Of Any Sequence That Can Generate All The Elements Of The Sequence And Also Some Additional Elements That Conform To The
Complete Recursive Set Ordered \{on the Higher and Lower Side and upto a Certain (different, may be same in some instances) Least Counts on the Higher \& Lower Sides\} By All The Elements Of The Given Sequence Of Concern.

Note Of Caution \{Speculation\}

One should note that the above detailed Scheme in the Blue-Box may only work well when the three Elements used for such generation all belong to the same Sequence Of Primes of Certain Order Space. When the three elements each belong to different Sequences of Primes each of different Order Space, the process in the Blue Box needs to be modified in the following fashion.

Firstly, we consider the Corresponding Prime Metric Position Elements of three Consecutive Order Space(s) Sequences of Primes and use the Scheme in the Blue-Box modified in the following fashion

Case 1:

\[
\left\{ \begin{array}{l}
D X \\
\end{array} \right\} \leftrightarrow \left\{ \begin{array}{l}
D X - E a^{(R_{l-1})} \\
D X + F b^{(R_{l-1})} \\
\end{array} \right\} \quad D > E, F
\]

\(D X\) belongs to the Sequence Of Primes Of \(D^{th}\) Order Space

\(E a\) belongs to the Sequence Of Primes Of \(E^{th}\) Order Space

\(F b\) belongs to the Sequence Of Primes Of \(F^{th}\) Order Space

And since, we know the Next Element generated which will be the Corresponding Prime Metric Element of the Order Space Sequence Of Primes Next to the (Corresponding Prime Metric Position Elements of the) above considered three Consecutive Order Space(s) Sequences of Primes, using the answers, and using a Similar Procedure of using the Known elements on the Lower and Higher Side we evaluate the Exponents

\(R_1\) and \(R_2\).

We similarly, conduct the same procedure for the other possible cases listed below.
Case 2:

\[
\{D_x\} \leftrightarrow \left\{ D_x - \frac{E a}{(D_x)^{S_1}} \right\} \leftrightarrow \left\{ D_x + \frac{F b^{(R_2-1)}}{(D_x)^{S_2-1}} \right\} \quad (D < E), (D > F)
\]

- \(D_x\) belongs to the Sequence Of Primes Of \(D^\text{th}\) Order Space
- \(E a\) belongs to the Sequence Of Primes Of \(E^\text{th}\) Order Space
- \(F b\) belongs to the Sequence Of Primes Of \(F^\text{th}\) Order Space

Case 3:

\[
\{D_x\} \leftrightarrow \left\{ D_x - \frac{E a}{(D_x)^{S_1}} \right\} \leftrightarrow \left\{ D_x + \frac{F b}{(D_x)^{S_2-1}} \right\} \quad D < E, F
\]

- \(D_x\) belongs to the Sequence Of Primes Of \(D^\text{th}\) Order Space
- \(E a\) belongs to the Sequence Of Primes Of \(E^\text{th}\) Order Space
- \(F b\) belongs to the Sequence Of Primes Of \(F^\text{th}\) Order Space

Case 4:

\[
\{D_x\} \leftrightarrow \left\{ D_x - \frac{E a^{(R_1-1)}}{D_x} \right\} \leftrightarrow \left\{ D_x + \frac{F b}{(D_x)^{S_2-1}} \right\} \quad (D > E), (D < F)
\]

- \(D_x\) belongs to the Sequence Of Primes Of \(D^\text{th}\) Order Space
- \(E a\) belongs to the Sequence Of Primes Of \(E^\text{th}\) Order Space
- \(F b\) belongs to the Sequence Of Primes Of \(F^\text{th}\) Order Space

And similarly, we find \(S_1\) and \(S_2\).

We also conduct the same procedure using Corresponding Prime Metric Position Elements of three Non-Consecutive Order Space(s) Sequences of Primes and can create a Universal Normalization Formula that validates the Modified Blue-Box Scheme when we are working with Elements that belong to Any Order Space Sequence Of Primes for our aforementioned type Analysis.
Conclusion

One can note that using the above Scheme one can create a *Universal Normalization Formula* that validates the Modified Blue-Box Scheme when we are working with Elements that belong to Any Order Space Sequence Of Primes for our aforementioned type Analysis.

Moral

Fulfillment Of Good Promise Is A Good Virtue.

References

Ramesh Chandra Bagadi

Vixra Publications
as on January 30th, 2016 Anno Domini {Indian Standard Time}
www.vixra.org/author/ramesh_chandra_bagadi

[100] viXra:1601.0306 submitted on 2016-01-28 05:56:59, (1 unique-IP downloads)

The Three Critical Elements Of Any Sequence That Can Generate All The Elements Of The Sequence And Also Some Additional Elements That Conform To The Complete Recursive Set Ordered By All The Elements Of The Given Sequence Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Holistic Complete Determinants {Version II}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Holistic Complete Determinants
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Cross Product {Version II}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Large Sized Determinants Computing Algorithm
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Classification Of Prime Numbers
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Generation Of Elements Forming A Complete Recursive Set On The Higher And Lower Side {From And Up To Specified Limits} Of A Three Distinct Element Set {Version II}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Generation Of Elements Forming A Complete Recursive Set On The Higher Side
{Up To A Specified Limit} Of A Three Distinct Element Set {Not Containing
Zero} Arranged In Ascending Order
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

downloads)

Natural Memory Embedding
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[91] viXra:1601.0188 submitted on 2016-01-18 03:36:03, (3 unique-IP
downloads)

Generation Of Elements Forming A Complete Recursive Set On The Higher And
Lower Side {From And Up To Specified Limits} Of A Three Distinct Element Set
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

downloads)

Universal Scheme To Find The Recursion Scheme Of Any Set Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[89] viXra:1601.0164 submitted on 2016-01-15 05:32:01, (5 unique-IP
downloads)

Primality Tree Analysis
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

downloads)
Any Sequence Of Concern’s Evolution Function With Respect To The Evolution Function Of Sequence Of Primes
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Cross Product
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[86] viXra:1601.0140 submitted on 2016-01-13 06:33:34, (5 unique-IP downloads)

Universal Scheme To Find The Next Term Of A Triplet Sequence Not Containing Zero And Arranged In Ascending Order
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Hyper-Causality Invokement Of Verbose Sounds Through Electromagnetic Wave-Guide Effect
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life {Version 5}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Quantizing Ability And/ Or Hyper-Causality Invoking Ability Of Truth Statements In Samskrutam Language
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Preventing Cancerous Growth
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[81] viXra:1601.0087 submitted on 2016-01-10 06:05:04, (2 unique-IP downloads)

One Step Evolutionary Growth Of Any Primality Set Of Concern {Evolution - Version 5}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[80] viXra:1601.0084 submitted on 2016-01-09 08:41:16, (1 unique-IP downloads)

Primality Engineering II
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Solving Any Puzzle
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[78] viXra:1601.0071 submitted on 2016-01-08 05:19:14, (4 unique-IP downloads)
Street Vendor Business(es) Quantification And Optimization
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[77] viXra:1601.0049 submitted on 2016-01-06 05:19:42, (5 unique-IP downloads)

Universal Recursion Scheme That Is Vertically {Maximally} Evolving
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Vision Tunneler. Universal Infinite Frequency Tunneler
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Space Folding Recursion Scheme
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[74] viXra:1601.0019 submitted on 2016-01-03 21:40:40, (5 unique-IP downloads)

Universal Recursive Comparator
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Generation Of The Recursion Scheme Of Any Complete Primality Tree Of Concern {Version III}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics
Optimal Business Varietization
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Generation Of The Recursion Scheme Of Any Complete Primality Tree Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Lateral Load Increment Scheme Quantization For Use In Push Over Analysis Scheme Generally Used In Multi-Storeyed Structural Analysis
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Recursion Scheme Of Any Complete Primality Tree Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

On the Theory Of Complete Recursive Sub-Sets Of A Given Set Of Concern. Definition Of A Galaxy
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Truth Of Recursive Kind {Version IV}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Truth Of Recursive Kind {Version III}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Complementary Lower End Prime Pair And Complementary Higher End Prime Pair
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Theory Of Evolution {Version Iv OR 4}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Schema Of Construction Of Infinity Geodesic Of Any Aspect Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Un-Biased Complete Evolution
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

NP Versus P Problem. Schroedinger's Cat In A Box Problem
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Objective Of The Universe. Universal Beauty Primality. Universal Optimal Life Primality. The Aforementioned Three Aspects As Restrictions For Evolution {Version II of All The Aforementioned}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Representation Of Alphabets By Set Of Prime Numbers – Primality Engineering I {Version II}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Truth Of Recursive Kind {Version II}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Recursive Scheme To Generate The Sequence Of Primes Of Any Order
{Say, Rth} Space
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Karma-Falam. Why-To.
Authors: Ramesh Chandra Bagadi
Category: General Mathematics
Universal Recursive Scale Shifting Technique

Universal Recursion Scheme That Is Vertically {Maximally} Evolving

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Removing And/ Or Minimizing The Redundancies In The Primality Of Any Aspect Of Concern {Version II}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Removing And/ Or Minimizing The Redundancies In The Primality Of Any Aspect Of Concern

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Daily Wage Labour Work Order(s) Placed Instantaneous Quantification And Exigent Work Order(s) Realization Facilitation System

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

First Meaning(s) Of All The English Alphabet(s)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics
Recommended Human Conduct
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Knowing The Infinitely Deeper Meaning - An Example Of Natural Memory Embedding
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Knowing The Infinitely Deeper Meaning. The Universal Infinite Logic Distiller
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[44] viXra:1512.0312 submitted on 2015-12-14 00:00:25, (6 unique-IP downloads)

On The Governmental Policy Of Acquiring And/ Or Purchase Of Individual Citizen Property For Governmental Reforms {Version I}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Light Type Holistic Reference Frames For Characterizing Universal Electro-Magnetic Phenomena
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Maximizing Relativistic Electro-Magnetic Fringe Displacement Effect Width
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

REprersentation Of Alphabets By Prime Numbers - Primality Engineering - I
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[40] viXra:1512.0268 submitted on 2015-12-09 03:30:14, (12 unique-IP downloads)

Theory Of Evolution Through Consecutive Asymmetric Imaging Technique
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Truth Assessment Of Any Consciousness Information
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[38] viXra:1512.0218 submitted on 2015-12-05 00:41:24, (16 unique-IP downloads)

‘Pi’ Value And/ Or Its Higher Order Equivalents Value Precision Quantized Increase Based Refinement Of Any Primality And/ Or Any Recursion Scheme Of Any Aspect Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[37] viXra:1512.0117 submitted on 2015-12-04 02:24:10, (12 unique-IP downloads)
Holistic Flood Proof City Design. Instantaneous Flood Water Draining System Theory
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Aspect Recursion Scheme {Version 2}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Aspect Recursion Scheme {Version 1}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Your Good Nature Is Your Real Wealth
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Relativistic Transformations In Standard Prime Metric And/ Or Corresponding Reverse Direction Prime Metric Within Some Selected Domains Of Complementable Bounds
Authors: Ramesh Chandra bagadi
Category: General Mathematics

[36] viXra:1512.0021 submitted on 2015-12-03 00:53:45, (9 unique-IP downloads)

[35] viXra:1512.0008 submitted on 2015-12-02 00:45:31, (9 unique-IP downloads)

[34] viXra:1511.0238 submitted on 2015-11-25 02:01:26, (29 unique-IP downloads)

Fulfill Your Life (Version 4)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Evolution Through Quantization (Version III)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[30] viXra:1511.0190 submitted on 2015-11-20 09:00:08, (13 unique-IP downloads)

Rth Order Space Sequence Of Primes Based Prime Metric Algebra
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Recursive Tessellation Based Scheme To Derive The Evolution Scheme Of Any Aspect Set Of Concern {Evolution Through Quantization (Version Two)}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Living A Happy Life (Version II)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Living A Happy Life (Version III)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Living A Happy Life
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Recursive Algoritmic Scheme For The Generation Of Sequence Of Prime Numbers (Of 2nd Order Space)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life {Version 3}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Recursion Scheme Of The Sequence Of Primes {Of Second (2nd) Order Space}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Theory Of ‘Complementable Bounds’ And ‘Universe(s) In Parallel’ Of Any Sequence Of Primes Of RthOrder Space
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

The Synonymity Between The Five Elements Of (At) Planet Earth And The Five
Digits Of Human Palm
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Genuinity Validation Of Any 'Original Work Consciousness Of Concern' And
Decorrupting 'Corrupted Original Work Consciousness'
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[19] viXra:1510.0391 submitted on 2015-10-26 02:45:01, (15 unique-IP downloads)

Musical Life (Version II)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Musical Life
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

The Universal Wave Function Of The Universe (Verbose Form)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life (Version 2)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Quantized Variable Dimensional Equivalents Of Any Technology Of Concern : An Example Of The (William F. Baker)'s Buttressed Core Design Concept
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Evolution Through Quantization
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Time Evolution Juxtaposition Of The Observables Based Dirac Type Commutator And The Consequential Wave Equation Of Photon
Authors: Ramesh Chandra Bagadi
Category: Mathematical Physics

A Condition For The Suspension Of Gravitational Field
Authors: Ramesh Chandra Bagadi
Category: Classical Physics

Some Basic Definitions Of Fractional Calculus
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Recursive Crossing Science Of Genetic Kind
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Recursive Consecutive Element Differential Of Prime Sequence (And/ Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Complete Recursive Subsets Of Any Set Of Concern And/ Or Orthogonal Universes In Parallel Of Any Set Of Concern In Completeness (Version II)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

All You Need to Know About Euclidean and Euclidean Type Inner Product Scheme
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Complete Recursive Subsets Of Any Set Of Concern And/ Or Orthogonal Universes In Parallel Of Any Set Of Concern In Completeness
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal One Step Natural Evolution And/ Or Growth Scheme Of Any Set Of Concern And Consequential Evolution Quantization Based Recursion Scheme Characteristically Representing Such Aforementioned Evolution And/ Or Growth
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Natural Recursion Schemes Of Rth Order Space
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

The Prime Sequence’s (Of Higher Order Space’s) Generating Algorithm
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

The Prime Sequence Generating Algorithm
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Ramesh Chandra Bagadi

OTHER PUBLICATIONS

1. ‘Quantification Of The Criterion For Corrosion Onset’ pp (1277-1284)
2. ‘Corrosion Of Galvanized Reinforcement Bars Due To An Electrothermodynamic Parameter: Pyroelectricity’ pp (238-242)

Ramesh Chandra Bagadi

Cornell University LibraryarXiv.org>cs> arXiv:1009.3809v1
Computer Science > Data Structures and Algorithms

1. One, Two, Three and N Dimensional String Search Algorithms
Ramesh C. Bagadi
(Submitted on 20 Sep 2010 (this version))

Acknowledgements

The author would like to express his deepest gratitude to all the members of his loving family, respectable teachers, en-dear-able friends, inspiring Social Figures, highly esteemed Professors, reverence deserving Deities that have deeply contributed in the formation of the necessary scientific temperament and the social and personal outlook of the author that has resulted in the conception, preparation and authoring of this research manuscript document.
Tribute

The author pays his sincere tribute to all those dedicated and sincere folk of academia, industry and elsewhere who have sacrificed a lot of their structured leisure time and have painstakingly authored treatises on Science, Engineering, Mathematics, Art and Philosophy covering all the developments from time immemorial until then, in their supreme works. It is standing on such treasure of foundation of knowledge, aided with an iota of personal god-gifted creativity that the author bases his foray of wild excursions into the understanding of natural phenomenon and forms new premises and scientifically surmises plausible laws. The author strongly reiterates his sense of gratitude and infinite indebtedness to all such ‘Philosophical Statesmen’ that are evergreen personal librarians of Science, Art, Mathematics and Philosophy.

Dedication

All of the aforementioned Research Works, inclusive of this One are Dedicated to Lord Shiva.