Collection of Math Notes

Mathematical Constants, Formulas

Edgar Valdebenito

Abstract
Collection of formulas involving mathematical constants
Contenido

1. Series para constantes clásicas que contienen la sucesión
 \[x_n = \sqrt{n + 1} - \sqrt{n} , n = 1,2,3, \ldots \] ...3-5

2. Producto infinito para \(\pi \), ...6-7

3. Productos infinitos para la constante \(e^e \),8-9

4. El número \(v = e^{-e^{e^{-e}}} = 0.5671432 \ldots \),10-11

5. Una fórmula que contiene el número \(\pi \),12-13

6. Fórmulas que contienen el número \(\pi \) y las funciones:
 \(E(q), V(q), R(q), J(q) \), ..14-15

7. Colección de series que involucran la constante \(\pi \),16-22

8. \(\pi \) - Fórmulas, ...23-24

9. Número \(e \), Números harmocinco \(H_n \)25-26

10. Integral que relaciona el número \(\pi \) y los números \(x(n) = \sqrt[n]{1 + \sqrt[n]{1 + \sqrt[n]{1 + \cdots}}} \), \(n \in \mathbb{N} - \{1\} \), ..27

11. Series para \(\pi \), utilizando los vértices de un triángulo,28-30

12. La constante \(\ln 2 \) , ...31-33
SERIES PARA CONSTANTES CLÁSICAS QUE CONTIENEN LA SUCESIÓN $x_n = \sqrt{n+1} - \sqrt{n}$, $n = 1, 2, 3, ...$

EDGAR VALDEBENITO V.
(1991)

Resumen
Se muestran series para algunas constantes clásicas como son: π, $\ln 2$, e, $\zeta(3)$, $\zeta^*(\frac{1}{2})$, G. Las series contienen la sucesión $x_n = \sqrt{n+1} - \sqrt{n}$, $n \in \mathbb{N}$.

1. INTRODUCCIÓN.
Las constantes π, $\ln 2$, e, $\zeta(3)$, $\zeta^*(\frac{1}{2})$, G, se definen como sigue:

$$
\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 3.14159265...
$$

$$
\ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 0.69314718...
$$

$$
e = \sum_{n=0}^{\infty} \frac{1}{n!} = 2.71828182...
$$

$$
\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3} = 1.20205690...
$$

$$
\zeta^*(\frac{1}{2}) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}} = 0.60489864...
$$

$$
G = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} = 0.91596559...
$$

En esta nota se muestran series para las constantes anteriores, que contienen la sucesión:

$$
x_n = \sqrt{n+1} - \sqrt{n} \quad n \in \mathbb{N}
$$

$$
x_n = \{\sqrt{2} - 1, \sqrt{3} - \sqrt{2}, \sqrt{4} - \sqrt{3}, \sqrt{5} - \sqrt{4}, ...\}
$$

2. SERIES.
Collection of math notes

2.1.
\[\pi = 4 - 8 \sum_{n=1}^{\infty} \sum_{k=1}^{n} (-1)^{n+1} x_k^{4n-4k+2} \]

2.2.
\[\zeta\left(\frac{1}{2}\right) = 2 \sum_{n=1}^{\infty} \sum_{k=1}^{n} (-1)^{k-1} x_k^{2n-2k+1} \]

2.3.
\[\ln 2 = 8 \sum_{n=1}^{\infty} \sum_{k=1}^{n} (-1)^{k-1} (n-k+1) x_k^{2n-2k+1} \]

2.4.
\[e = 1 + 4 \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{(n-k+1)}{(k-1)!} x_k^{2n-2k+2} \]

2.5.
\[\pi = 16 \sum_{n=1}^{\infty} \sum_{k=1}^{n} (-1)^{k-1} (n-k+1) x_k^{2n-2k+2} \]

2.6.
\[\zeta(3) = 64 \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{(n-k)}{(n-k)!} x_k^{2n-2k+6} \]

2.7.
\[G = 4 \sum_{n=1}^{\infty} \sum_{k=1}^{n} (-1)^{k-1} k(n-k+1) x_k^{2n-2k+2} \]

2.8.
\[G = 1 + 4 \sum_{n=1}^{\infty} \sum_{k=1}^{n} (-1)^{n} (n-k+1) x_k^{4n-4k+4} \]

2.9.
Para \(m \in \mathbb{N} \):

\[\pi^{2m} = \left(\frac{(2m)!}{2^{2m+1}} \right)^{2m+1} \int_{2}^{2m} \sum_{n=1}^{\infty} \sum_{k=1}^{n} (-1)^{n-k} \left(\frac{(2m)}{(n-k)!} x_k^{4n-4k+4m} \right) \]

donde \(B_m \) son los números de Bernoulli: \(B_m = \left\{ \frac{1}{6}, \frac{1}{30}, \frac{1}{42}, \frac{1}{66}, \frac{5}{693}, \ldots \right\} \)

3. REFERENCIAS.

PRODUCTO INFINITO PARA \(\pi \)

EDGAR VALDEBENITO V.
(1991)

Resumen

Se muestra un producto infinito para el número \(\pi = 3.14159265... \)

1. INTRODUCCIÓN.

El número \(\pi \) se define por la serie: \(\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \), en esta nota se muestra un producto infinito para la constante \(\pi \), además se muestran algunas variantes de dicho producto.

2. PRODUCTO INFINITO PARA \(\pi \):

2.1. \(\pi = 4 \prod_{n=1}^{\infty} \left(1 + \frac{(-1)^n}{2n+1} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{2k-1} \right) \)

2.2. \(\pi = 4 \prod_{n=1}^{\infty} \left(1 + \frac{(-1)^n (2n)!}{(2n+1)2^n n! A_n} \right) \)

donde \(A_{n+1} = (2n+1)A_n - (-1)^n \frac{(2n)!}{2^n n!} \), \(n \in \mathbb{N} \), \(A_1 = 1 \)

2.3. \(\pi = 4 \prod_{n=1}^{\infty} \left(1 + \frac{(-1)^n (2n)!}{B_n} \right) \)

donde \(B_{n+1} = 2(n+1)(2n+3) \left(B_n + (-1)^n (2n)! \right) \), \(n \in \mathbb{N} \), \(B_1 = 6 \)

2.4. \(\pi = 4 \prod_{n=1}^{\infty} \left(1 + \frac{(-1)^n}{2n+1} \left[1 - \sum_{k=1}^{n-1} (-1)^k C_k \right] \right) \)
dónde

\[C_k = \left(\frac{(2k)!}{2^k k!} \right)^2 \frac{1}{A_k A_{k+1}} \]

\[A_{k+1} = (2k+1)A_k + (-1)^k \frac{(2k)!}{2^k k!}, \quad k \in \mathbb{N}, \quad A_1 = 1 \]

2.5.

\[\pi = 4 \prod_{n=1}^{\infty} \left(1 + \frac{(-1)^n a_n}{(2n+1)b_n} \right) \]

dónde

\[a_{n+1} = (2n+1)a_n \]
\[b_{n+1} = (2n+1)b_n + (-1)^n a_n, \quad a_1 = b_1 = 1 \]

2.6.

\[\pi = 4 \prod_{n=1}^{\infty} \frac{1 + (-1)^n (2n)!}{(2n+1)D_n} \]

dónde

\[D_n = \sum_{k=0}^{n-1} (-1)^k \frac{(2k)!}{(2k+2)(2n)} \quad n \in \mathbb{N} \]

3. REFERENCIAS.

PRODUCTOS INFINITOS PARA LA CONSTANTE e^e

EDGAR VALDEBENITO V.
(1991)

Resumen
Se muestran algunos productos infinitos para la constante $e^e = 15.15426224147926...$, donde

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2.71828182845904...$$

1. INTRODUCCIÓN.
El número e se define por:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

$$e = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!}$$

$$e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

En esta nota se muestran algunos productos infinitos para el número e^e.

2. PRODUCTOS INFINITOS.
2.1.

$$e^e = 4 \prod_{n=1}^{\infty} \left[\frac{n^n (n+1)^2}{(n+1)^{n(n+1)} + n^n (n+2)^{n+1}} \right]^{\frac{1}{n^n (n+1)^{n+1}}}$$

2.2.

$$e^e = \left(\frac{3}{2} \right)^4 \sqrt{3} \prod_{n=1}^{\infty} \left[\frac{1}{1-2^{-n}} \right]^{\frac{1}{2^n (2^{n+1})^2} \left(\frac{1+2^{-n-1} - \left(\frac{2^{n+1}}{1} \right)^2 \right)^{-3^n}}$$

2.3.

$$e^e = 4 \prod_{n=1}^{\infty} \left[\frac{n+2}{n+1} \right]^{\frac{1}{n!}} \left(\frac{n^n (n+2)^{n+1}}{(n+1)^{2n+1}} \right)^{\sum_{k=0}^{n} \frac{1}{k!}}$$

Edgar Valdebenito
2.4. Para $n \in \mathbb{N}$ sea a_n la sucesión definida por la recurrencia: $a_{n+1} = (n+1)a_n + 1$, $a_1 = 2$. Algunos valores de la sucesión son: $a_n = \{2, 5, 16, 65, 326, 1957, 13700, \ldots\}$.

$$e^e = 4 \prod_{n=1}^{\infty} \left[\frac{n!}{a_n} \left(\frac{a_{n+1}}{(n+1)!} \right) \right]^{n^2(n+2)^{n+1}} \frac{1}{n^e(n+1)^{a_{n+1}}}$$

2.5. Para $n \in \mathbb{N}$ sea a_n la sucesión definida por la ecuación: $a_n = n^{1-n}(n+1)^n$. Algunos valores de la sucesión son: $a_n = \{2, 2^2, 2^2 3^2, 2^3 3^3 4^3, 2^4 3^4 4^4, \ldots\}$.

$$e^e = 4 \prod_{n=1}^{\infty} \left[\frac{n!}{a_n} \left(\frac{a_{n+1}}{(n+1)!} \right) \right]^{n^2(n+1)^{a_{n+1}}} \frac{1}{n^! n^!}$$

3. REFERENCIAS.

EL NÚMERO \(\nu = e^{-e^{-e^{-\cdots}}} = 0.5671432... \)

EDGAR VALDEBENITO V.
(1991)

Resumen

Se muestran algunas fórmulas que involucran el número \(\nu \).

1. INTRODUCCIÓN.

El número \(\nu = e^{-e^{-e^{-\cdots}}} = 0.5671432... \), donde \(e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.7182818... \), satisface la ecuación \(\nu e^\nu = 1 \). En esta nota se muestran algunas fórmulas en las que aparece el número \(\nu \).

2. FÓRMULAS.

2.1. \[
\ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(1 - \frac{2^{2n-1}(2^n - 1)B_n}{(2n)!}\right) \nu^{2n} + \sum_{n=1}^{\infty} \frac{(1 - \nu)^n}{n}
\]

2.2. \[
\nu^\gamma = \Gamma(1 + \nu) \prod_{n=1}^{\infty} \left(1 + \frac{\nu}{n}\right)^{-\nu} \]

2.3. \[
\frac{L}{\pi} = \left(\nu + \frac{L}{\nu}\right) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(2n-1)}{3(2n-1)^2 \zeta(2) + 2\nu^2}
\]

2.4. \[
\nu^\pi + \nu^{-\pi} = 2\prod_{n=1}^{\infty} \left(1 + \frac{4\nu^2}{(2n-1)^2}\right)
\]

2.5. \[
\frac{\nu^{\pi} - \nu^{-\pi}}{\pi^\nu} = 2\nu \prod_{n=1}^{\infty} \left(1 + \frac{\nu^2}{n^2}\right)
\]

3. REFERENCIAS.

UNA FÓRMULA QUE CONTIENE EL NÚMERO π

EDGAR VALDEBENITO V.
(1991)

Resumen
Se muestra una fórmula que contiene el número $\pi = 3.14159265...$

1. INTRODUCCIÓN.
El número π se define por la serie: $\pi = 4\sum_{n=0}^{\infty} (-1)^n$, en esta nota se muestra una fórmula que contiene la constante π.

2. FÓRMULA.

\[
\frac{1}{16} \ln \left[\frac{20 + 3\sqrt{6} + 3\sqrt{2}}{20 - 3\sqrt{6} - 3\sqrt{2}} \right]^{\frac{\sqrt{6} + \sqrt{2}}{2\sqrt{2}}} \left[\frac{10 + 3\sqrt{2}}{10 - 3\sqrt{2}} \right]^{\frac{\sqrt{6} - \sqrt{2}}{2\sqrt{2}}} + \\
\frac{1}{8} \left(\sqrt{6} - \sqrt{2} \right) \tan^{-1} \frac{\sqrt{6} - \sqrt{2}}{16} - 2\sqrt{2} \tan^{-1} \frac{3 - \sqrt{2}}{3} + \\
\frac{1}{8} \left(\sqrt{6} + \sqrt{2} \right) \tan^{-1} \frac{\sqrt{6} + \sqrt{2}}{16} - 2\sqrt{2} \tan^{-1} \frac{3 + \sqrt{2}}{7} + \\
\frac{\sqrt{2}}{8} \pi = \sum_{n=0}^{\infty} \frac{(-1)^n}{(12n + 1)3^{12n}}
\]

(1)

Algunas variantes de la fórmula (1) son:

\[
\frac{\ln A}{16} - \sqrt{6} \tan^{-1} \frac{55\sqrt{6}}{144} - \sqrt{2} \tan^{-1} \frac{2428416\sqrt{2}}{10339103} + \sqrt{6} + \sqrt{2} \pi = \sum_{n=0}^{\infty} \frac{(-1)^n}{(12n + 1)3^{12n}}
\]

(2)

\[
\frac{\ln A}{16} + \sqrt{6} \tan^{-1} \frac{6481 - 2840\sqrt{6}}{431} - \sqrt{2} \tan^{-1} \frac{2428416\sqrt{2}}{10339103} + \\
\frac{\sqrt{6} + 2\sqrt{2}}{32} \pi = \sum_{n=0}^{\infty} \frac{(-1)^n}{(12n + 1)3^{12n}}
\]

(3)
\[
\frac{\sqrt{6} + \sqrt{2}}{16} \pi = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)3^{2n+1}} \tag{4}
\]

\[
\ln A = \frac{\sqrt{6} + \sqrt{2}}{16} \pi = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)3^{2n+1}} \tag{5}
\]

En todos los casos:

\[
A = \left(\frac{20 + 3\sqrt{6} + 3\sqrt{2}}{20 - 3\sqrt{6} - 3\sqrt{2}} \right)^{\frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} - \sqrt{2}}} \left(\frac{10 + 3\sqrt{2}}{10 - 3\sqrt{2}} \right)^{\frac{2\sqrt{6}}{2}} \left(\frac{20 + 3\sqrt{6} - 3\sqrt{2}}{20 - 3\sqrt{6} + 3\sqrt{2}} \right)^{\sqrt{6} - \sqrt{2}} \tag{6}
\]

3. REFERENCIAS.

FÓRMULAS QUE CONTIENEN EL NÚMERO π
Y LAS FUNCIONES $E(q)$, $V(q)$, $R(q)$, $J(q)$

EDGAR VALDEBENITO V.
(1991)

Resumen

Se muestran algunas fórmulas que involucran el número $\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 3.141592...$, y las funciones

$E(q)$, $V(q)$, $R(q)$, $J(q)$.

1. INTRODUCCIÓN.

Para $|q| < 1$ las funciones $E(q)$, $V(q)$, $R(q)$, $J(q)$ se definen por:

$$E(q) = 1 + \sum_{n=1}^{\infty} (-1)^{n-1} \left(q^{(4n-3)(6n-4)} - q^{(4n-1)(6n-2)} - q^{2n(12n-1)} - q^{2n(12n+1)} \right)$$

$$E(q) = 1 + q^2 - q^{12} - q^{22} - q^{26} - q^{40} + q^{70} +$$

$$V(q) = \sum_{n=1}^{\infty} (-1)^{n-1} \left(q^{(4n-3)(6n-5)} - q^{2n-1}(12n-7) + q^{2n-1}(12n-5) - q^{4n-4}(6n-1) \right)$$

$$V(q) = q - q^5 + q^7 - q^{15} - q^{35} + q^{51} - q^{67} +$$

$$R(q) = 1 + 2 \sum_{n=1}^{\infty} \left(q^{(4n-2)^2} + q^{4n} \right)$$

$$R(q) = 1 + 2 \left(q^4 + q^{16} + q^{36} + q^{64} + \right)$$

$$J(q) = 2 \sum_{n=1}^{\infty} \left(q^{(4n-3)^2} + q^{4n-3} \right)$$

$$J(q) = 2 \left(q + q^9 + q^{25} + q^{49} + \right)$$

En esta nota se muestran algunas fórmulas (sumas de arctangentes) que involucran la constante π.

2. FÓRMULAS.

2.1. Para $|q| < 1$ se tiene:
\[
\tan^{-1}(q) = \tan^{-1}\left(\frac{V(q)}{E(q)}\right) + \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1-q^2}{1+q^{4n}}\right)
\]

\[
\tan^{-1}(q) = \frac{1}{2} \tan^{-1}\left(\frac{J(q)}{R(q)}\right) + \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1-q^2}{1+q^{8n}}\right)
\]

\[
\tan^{-1}(q) = \tan^{-1}\left(\frac{J(q)}{R(q)}\right) - \tan^{-1}\left(\frac{V(q)}{E(q)}\right) + \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1-q^2}{1+q^{8n}}\right)
\]

\[\frac{\pi}{12} = \tan^{-1}\left(\frac{V(2-\sqrt{3})}{E(2-\sqrt{3})}\right) + \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{2\sqrt{3}(2-\sqrt{3})^{4n}}{1+(2-\sqrt{3})^{8n}}\right)\]

\[\frac{\pi}{8} = \tan^{-1}\left(\frac{V(\sqrt{2}-1)}{E(\sqrt{2}-1)}\right) + \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{2(\sqrt{2}-1)^{4n}}{1+(\sqrt{2}-1)^{8n}}\right)\]

\[\frac{\pi}{6} = \tan^{-1}\left(\frac{V(\sqrt{3}/3)}{E(\sqrt{3}/3)}\right) + \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{2\sqrt{3} \cdot 3^{2n-1}}{3^{4n}+1}\right)\]

3. REFERENCIAS.

COLECCIÓN DE SERIES QUE INVOLUCRAN LA CONSTANTE π

EDGAR VALDEBENITO V.
(1991)

Resumen
Se muestra una colección de series que contienen la constante π,

$$\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 3.14159265...$$

1. **INTRODUCCIÓN.**

En esta nota mostramos una colección de series que involucran la clásica constante π, y que corresponden a casos particulares de la siguiente fórmula general:

$$\left(p \left(\frac{a^2}{2} - \frac{1}{4} \right) + qa \right) \sin^{-1} (a) + \frac{p a \sqrt{1-a^2}}{4} + q \sqrt{1-a^2} - q =$$

$$= \sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{1}{2} \right)^n \left(p \frac{a^{2n+1}}{2n+3} + q \frac{a^{2n+2}}{2n+2} \right)$$

donde $p,q \in \mathbb{R}$, $0 < a < 1$

Escogiendo los valores de p,q,a, de manera adecuada podemos obtener muchas series que involucran la constante π. A continuación mostramos algunos ejemplos.

2. **EJEMPLOS DE SERIES.**

2.1. Para $a = \sqrt{6} - \sqrt{2}$, $q = a$, $p \in \mathbb{R}$ se tiene:

$$A + B\pi = \sum_{n=0}^{\infty} \frac{(2n)! (2(p+1)n+2p+3)}{16^n (2+\sqrt{3})^n n! (n+1)! (2n+1)(2n+3)} =$$

$$= \sum_{n=0}^{\infty} \frac{1}{3} \left(\frac{1}{2} \right)^n \left(2(p+1)n+2p+3 \right)$$

$$= \sum_{n=0}^{\infty} \frac{3}{2} \left(2+\sqrt{3} \right)^n (n+1)! (2n+3)$$
donde \[A = \left(\frac{5p}{2} + 10 \right) \sqrt{2} - 8 \sqrt{3} + \left(\frac{3p}{2} + 6 \right) \sqrt{6} - 16 \]

\[B = \frac{(5 + 3 \sqrt{3})(4 - (p + 2) \sqrt{3})}{6 \sqrt{2}} \]

2.1.1. Caso \(p = 0 \):

\[
A + B \pi = \sum_{n=0}^{\infty} \frac{(2n)!}{16^n \left(2 + \sqrt{3} \right)^n n!(n+1)!(2n+1)} = \\
= \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} \right)^n}{\left(\frac{3}{2} \right)_n} 4^n \left(2 + \sqrt{3} \right)^n (n+1)!
\]

\[A = 10\sqrt{2} - 8\sqrt{3} + 6\sqrt{6} - 16 \quad B = \frac{1 + \sqrt{3}}{3 \sqrt{2}} \]

2.1.2. Caso \(p = -1 \):

\[
A + B \pi = \sum_{n=0}^{\infty} \frac{(2n)!}{16^n \left(2 + \sqrt{3} \right)^n n!(n+1)!(2n+1)(2n+3)} = \\
= \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} \right)^n}{\left(\frac{3}{2} \right)_n} 4^n \left(2 + \sqrt{3} \right)^n (n+1)!(2n+3)
\]

\[A = \frac{15\sqrt{2}}{2} - 8\sqrt{3} + \frac{9\sqrt{6}}{2} - 16 \quad B = \frac{11 + 7\sqrt{3}}{6 \sqrt{2}} \]

2.1.3. Caso \(p = -4 \):

\[
A + B \pi = -\sum_{n=0}^{\infty} \frac{(2n)!(6n+5)}{16^n \left(2 + \sqrt{3} \right)^n n!(n+1)!(2n+1)(2n+3)} = \\
= -\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} \right)^n}{\left(\frac{2}{2} \right)_n} 4^n \left(2 + \sqrt{3} \right)^n (n+1)!(2n+3)
\]

\[A = -8\sqrt{3} - 16 \quad B = \frac{19 + 11\sqrt{3}}{3 \sqrt{2}} \]

2.1.4.
\[A + \pi = \frac{4}{3} \sum_{n=0}^{\infty} \frac{(2n)!((a(n+1)+3)}{16^n \left(2 + \sqrt{3}\right)^n n!(n+1)!(2n+1)(2n+3)} = \]

\[= \frac{1}{3} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^2 (a(n+1)+3)}{4^n \left(2 + \sqrt{3}\right)^n (n+1)!(2n+3)} \]

\[A = \frac{19\sqrt{6}}{2} - 10\sqrt{3} + 11\sqrt{2} - 16 \quad a = 30\sqrt{6} + 8\sqrt{3} - 54\sqrt{2} - 6 \]

2.1.5.

\[B \pi = \sum_{n=0}^{\infty} \frac{(2n)!((a(n+1)+1)}{16^n \left(2 + \sqrt{3}\right)^n n!(n+1)!(2n+1)(2n+3)} = \]

\[= \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^2 (a(n+1)+1)}{4^n \left(2 + \sqrt{3}\right)^n (n+1)!(2n+3)} \]

\[B = \frac{11\sqrt{6} - 16\sqrt{3} + 19\sqrt{2} - 24}{6} \quad a = 8\sqrt{6} - 8\sqrt{2} - 6 \]

2.2. Para \(a = q = \frac{1}{2} \), \(p \in \mathbb{R} \):

\[\frac{(2-p)}{3} \pi + (p+4)\sqrt{3} - 8 = \sum_{n=0}^{\infty} \frac{(2n)!\left(2(p+1)n+2p+3\right)}{16^n n!(n+1)!(2n+1)(2n+3)} = \]

\[= \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^2 (2(p+1)n+2p+3)}{4^n (n+1)!(2n+3)} \]

2.2.1. Caso \(p = 0 \):

\[\pi + 6\sqrt{3} = 12 + \frac{3}{2} \sum_{n=0}^{\infty} \frac{(2n)!}{16^n n!(n+1)!(2n+1)} = \]

\[= 12 + \frac{3}{2} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^2}{4^n (n+1)!} \]

2.2.2. Caso \(p = -1 \):

Edgar Valdebenito

18
\[\pi + 3\sqrt{3} = 8 + \sum_{n=0}^{\infty} \frac{(2n)!}{16^n n! (n+1)! (2n+1)(2n+3)} = \]
\[= 8 + \sum_{n=0}^{\infty} \frac{{(1)}^2_n}{\left(\frac{3}{2}\right)_n} 4^n (n+1)! (2n+3) \]

2.2.3. Caso \(p = -4 \):
\[\pi = 4 + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(2n)! (6n+5)}{16^n n! (n+1)! (2n+1)(2n+3)} = \]
\[= 4 + \frac{1}{2} \sum_{n=0}^{\infty} \frac{{(1)}^2_n (6n+5)}{\left(\frac{3}{2}\right)_n} 4^n (n+1)! (2n+3) \]

2.3. Para \(a = q = \frac{1}{\sqrt{2}} \), \(p \in \mathbb{R} \):
\[\frac{\pi}{\sqrt{2}} + \frac{(p+4)\sqrt{2} - 8}{2} = \sum_{n=0}^{\infty} \frac{(2n)! (2(p+1)n+2p+3)}{8^n n! (n+1)! (2n+1)(2n+3)} = \]
\[= \sum_{n=0}^{\infty} \frac{{(1)}^2_n (2(p+1)n+2p+3)}{\left(\frac{3}{2}\right)_n} 2^n (n+1)! (2n+3) \]

2.3.1. Caso \(p = 0 \):
\[\frac{\pi}{\sqrt{2}} + 2\sqrt{2} = 4 + \sum_{n=0}^{\infty} \frac{(2n)!}{8^n n! (n+1)! (2n+1)} = \]
\[= 4 + \sum_{n=0}^{\infty} \frac{{(1)}^2_n}{\left(\frac{3}{2}\right)_n} 2^n (n+1)! \]

2.3.2. Caso \(p = -4 \):
\[\frac{\pi}{\sqrt{2}} = 4 - \sum_{n=0}^{\infty} \frac{(2n)! (6n+5)}{8^n n! (n+1)! (2n+1)(2n+3)} = \]
2.3.3. Caso $p = -1$:

\[
\frac{\pi + 3}{\sqrt{2}} = 4 + \sum_{n=0}^{\infty} \frac{(2n)!}{8^n n!(n+1)!(2n+1)(2n+3)} =
\]

\[
= 4 + \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)_n^2 \frac{3}{2} \frac{2^n (n+1)!}{(2n+3)}
\]

2.3.4. Caso $p = 4\sqrt{2} - 1$:

\[
\frac{\pi}{\sqrt{2}} = \sum_{n=0}^{\infty} \frac{(2n)! \left[(8\sqrt{2} - 6)(n+1) + 1 \right]}{8^n n!(n+1)!(2n+1)(2n+3)} =
\]

\[
= \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)_n^2 \left[(8\sqrt{2} - 6)(n+1) + 1 \right] \frac{3}{2} \frac{2^n (n+1)!}{(2n+3)}
\]

2.4. Para $a = q = \frac{\sqrt{3}}{2}, \ p \in \mathbb{R}$:

\[
\frac{2(p+6)}{9\sqrt{3}} \pi + \frac{p\sqrt{3} - 12}{9} = \sum_{n=0}^{\infty} \frac{(2n)! \left(2(p+1)n + 2p + 3 \right)}{n!(n+1)!(2n+1)(2n+3)} \left(\frac{3}{16} \right)^n =
\]

\[
= \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)_n^2 \left(\frac{2(p+1)n + 2p + 3}{n!(n+1)!(2n+3)} \left(\frac{3}{4} \right)^n \right)
\]

2.4.1. Caso $p = 0$:

\[
\frac{4\pi}{3\sqrt{3}} = \frac{4}{3} + \sum_{n=0}^{\infty} \frac{(2n)!}{n!(n+1)!(2n+1)(2n+3)} \left(\frac{3}{16} \right)^n =
\]

\[
= \frac{4}{3} + \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)_n^2 \left(\frac{3}{4} \right)^n \frac{3}{2} \frac{2^n (n+1)!}{(2n+3)}
\]

Edgar Valdebenito 20
2.4.2. Caso $p = -1$:

\[
\frac{10\pi}{3\sqrt{3}} = \frac{1}{\sqrt{3}} = 4 + \sum_{n=0}^{\infty} \frac{(2n)!}{n!(n+1)!(2n+1)(2n+3)} \left(\frac{3}{16}\right)^n
\]

\[
= 4 + 3 \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)^n}{\left(\frac{3}{2}\right)_n (n+1)! (2n+3)} \left(\frac{3}{4}\right)^n
\]

2.4.3. Caso $p = 4\sqrt{3}$:

\[
(2 + \sqrt{3})^\pi = 4 \sum_{n=0}^{\infty} \frac{(2n)! \left(8\sqrt{3} + 2\right)(n+1) + 1}{n!(n+1)!(2n+1)(2n+3)} \left(\frac{3}{16}\right)^n
\]

\[
= 9 \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)^n \left(8\sqrt{3} + 2\right)(n+1) + 1}{\left(\frac{3}{2}\right)_n (n+1)! (2n+3)} \left(\frac{3}{4}\right)^n
\]

2.5. Para $a = q = \frac{\sqrt{6} + \sqrt{2}}{4}$, $p \in \mathbb{R}$:

\[
A + B\pi = \sum_{n=0}^{\infty} \frac{(2n)! \left(2(p+1)n + 2p+3\right)}{n!(n+1)!(2n+1)(2n+3)} \left(\frac{2 + \sqrt{3}}{16}\right)^n
\]

\[
= \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)^n \left(2(p+1)n + 2p+3\right)}{\left(\frac{3}{2}\right)_n (n+1)! (2n+3)} \left(\frac{2 + \sqrt{3}}{4}\right)^n
\]

\[
A = \frac{\sqrt{3}(3\sqrt{3} - 5)}{2} \left(p + 4 - 4\sqrt{6} - 4\sqrt{2}\right)
\]

\[
B = \frac{\sqrt{3}(3\sqrt{3} - 5)}{12} \left(20 + 5(p+2)\sqrt{3}\right)
\]

2.5.1. Caso $p = 0$:

\[
A + B\pi = \sum_{n=0}^{\infty} \frac{(2n)!}{n!(n+1)!(2n+1)(2n+3)} \left(\frac{2 + \sqrt{3}}{16}\right)^n
\]

\[
= \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)^n}{\left(\frac{3}{2}\right)_n (n+1)!} \left(\frac{2 + \sqrt{3}}{4}\right)^n
\]
\[A = 6\sqrt{6} + 8\sqrt{3} - 10\sqrt{2} - 16 \quad B = \frac{5\sqrt{2}\left(\sqrt{3} - 1\right)}{6} \]

2.6.Para \(a = \frac{1}{2} \), \(p = 2 \), \(q \in \mathbb{R} \):

\[
\frac{(2q - 1)\pi}{3} + (4q + 1)\sqrt{3} - 8q = \sum_{n=0}^{\infty} \frac{(2n)! \left(2(q + 1)n + 3q + 2\right)}{16^n n!(n + 1)(2n + 1)(2n + 3)} = \\
= \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)_n^2 \frac{(2(q + 1)n + 3q + 2)}{4^n (n + 1)(2n + 3)}
\]

2.6.1.Caso \(q = 0 \):

\[
\sqrt{3} - \frac{\pi}{3} = 2\sum_{n=0}^{\infty} \frac{(2n)!}{16^n (n!)^3 (2n + 1)(2n + 3)} = \\
= 2\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)_n \frac{1/2}{4^n n!(2n + 3)}
\]

2.6.2.Caso \(q = \frac{2\sqrt{3} + 3}{4} \):

\[
\left(2\sqrt{3} + 1\right)\pi = \frac{3}{2}\sum_{n=0}^{\infty} \frac{(2n)! \left((4\sqrt{3} + 4)n + 6\sqrt{3} + 17\right)}{16^n n!(n + 1)(2n + 1)(2n + 3)} = \\
= \frac{3}{2}\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)_n^2 \frac{(4\sqrt{3} + 4)n + 6\sqrt{3} + 17}{4^n (n + 1)(2n + 3)}
\]

3. REFERENCIAS.

EDGAR VALDEBENITO V.
(1991)

Resumen
Se muestran algunas fórmulas que involucran la constante $\pi = 3.14159265...$

1. INTRODUCCIÓN.
EL número Pi se define por la serie: $\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$, en esta nota se muestran algunas fórmulas que contienen la constante π.

2. FÓRMULAS.
2.1.
$$a = \frac{2-\sqrt{1+3\sqrt{1+3\sqrt{1+...}}}}{2+\sqrt{1+3\sqrt{1+3\sqrt{1+...}}}} = \frac{\pi^2}{324} \prod_{n=1}^{\infty} \left(\frac{2n-1}{2n} \right)^4 \left(\frac{(18n)^2-1}{4(9n-5)(9n-4)} \right)^2$$

2.2.
$$a = \sum_{n=1}^{\infty} \frac{\pi^{2n}}{3^{4n}} \sum_{k=1}^{n} \frac{\left(2^{2k}-1\right)\left(2^{2n-2k}-1\right)B_kB_{n-k}}{(2k)!(2n-2k)!}$$

B_k son los números de Bernoulli $B_k = \left\{ \frac{1}{6}, \frac{1}{30}, \frac{1}{42}, \frac{1}{30}, \frac{5}{66}, ... \right\}$

2.3.
$$a = -1 + \frac{81}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{1}{(9n-5)^2} + \frac{1}{(9n-4)^2} \right)$$

2.4.
$$a = \frac{81}{\pi^2} \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{1}{(9k-5)(9k-4)(9n-9k-5)(9n-9k-4)}$$

3. REFERENCIAS.

NÚMERO e, NÚMEROS HARMONICOS H_n

EDGAR VALDEBENITO V.
(1991)

Resumen
Se muestran tres fórmulas que relacionan la constante $e = 2.71828182...$, y los números harmánicos $H_n = \sum_{k=1}^{n} \frac{1}{k}$.

1. INTRODUCCIÓN.

La constante e de Euler se define por:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^{\infty} \frac{1}{k!}$$

Los números harmónicos $H_n = \sum_{k=1}^{n} \frac{1}{k}$, $n \in \mathbb{N} = \{1, 2, 3,...\}$, aparecen en una infinidad de fórmulas matemáticas y tienen propiedades interesantes. A continuación mostramos algunas relaciones que involucran números harmónicos:

\[
H_{n+1} = H_n + \frac{1}{n+1}
\]

\[
H_{n+m} = H_n + \sum_{k=1}^{m} \frac{1}{n+k} = H_m + \sum_{k=1}^{n} \frac{1}{m+k}
\]

\[
H_n + H_m = 2H_n + \sum_{k=n+1}^{m} \frac{1}{k} = 2H_m - \sum_{k=n+1}^{m} \frac{1}{k} \quad n < m
\]

\[
H_n H_m = H_n^2 + H_n \sum_{k=n+1}^{m} \frac{1}{k} = H_n^2 - H_m \sum_{k=n+1}^{m} \frac{1}{k} \quad n < m
\]

\[
H_n = \frac{a_n}{b_n} \Leftrightarrow \begin{cases}
(a_{n+1})a_n + b_n = a_l = b_l \equiv 1 \\
b_{n+1} = (n+1)b_n
\end{cases}
\]

\[
H_n = \left\{1, \frac{3}{2}, 1, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, ... \right\}
\]

En esta nota se muestran tres fórmulas que involucran el número e y los números H_n.

2. FÓRMULAS.
\[e = \lim_{n \to \infty} n^{1/H_n} \]

\[e = 1 + \sum_{n=1}^{\infty} \left((n+1)^{1/H_{n+1}} - n^{1/H_n} \right) \]

\[e = \prod_{n=1}^{\infty} \left(\frac{n+1}{n} \right)^{1/(n+1)H_n} \]

3. REFERENCIAS.

INTEGRAL QUE RELACIONA EL NÚMERO π
Y LOS NÚMEROS $x(n) = \sqrt[n]{1 + \sqrt[2n]{1 + \sqrt[4n]{1 + \ldots}}}, \quad n \in \mathbb{N} - \{1\}$

EDGAR VALDEBENITO V. (1991)

Resumen
Se muestra una fórmula integral que involucra la constante $\pi = 3.141592\ldots$, y los números
$n \in \mathbb{N} - \{1\}$.

1. INTRODUCCIÓN.

EL número Pi se define por la serie: $\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$, los números $x(n) = \sqrt[n]{1 + \sqrt[2n]{1 + \sqrt[4n]{1 + \ldots}}}, \quad n \in \mathbb{N} - \{1\}$, satisfacen la ecuación $(x(n))^n - x(n) - 1 = 0$.

En esta nota se muestra una fórmula integral que relaciona el número π y los números $x(n)$.

2. INTEGRAL.

$$\pi \sqrt[3]{1 + \sqrt[2]{1 + \sqrt[4]{1 + \ldots}}} = \frac{\pi}{4} \int_{0}^{\infty} \frac{n(3 + e^t)^n - 2^n e^t - 3 \cdot 2^n - 1}{(3 + e^t)^n - 2^n t - 2^{n-1}} e^t dt$$

3. REFERENCIAS.

SERIES PARA π UTILIZANDO LOS VERTICES DE UN TRIANGULO

EDGAR VALDEBENITO V.
(1991)

Resumen. Usando los vértices de un triangulo y la serie de Taylor para la función $\arcsen(x)$, se pueden obtener series para el número π.

1. INTRODUCCIÓN.
Consideremos un triángulo con vértices en los puntos:

$$V1=(a_1,a_2), V2=(b_1,b_2), V3=(c_1,c_2)$$

$$A = d(V1,V2), B = d(V2,V3), C = d(V1,V3)$$

$$\measuredangle V1 = \beta, \measuredangle V2 = \gamma, \measuredangle V3 = \alpha$$

La condición para que $V1,V2,V3$ sean los vértices de un triángulo es:

$$\begin{vmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ c_1 & c_2 & 1 \end{vmatrix} = a_1b_2 + b_1c_1 + c_2b_1 - b_2c_1 - a_2b_1 - a_1c_2 \neq 0$$

Por trigonometría sabemos que:

$$A^2 = B^2 + C^2 - 2BC \cos(\alpha)$$

$$B^2 = A^2 + C^2 - 2AC \cos(\beta)$$

$$C^2 = A^2 + B^2 - 2AB \cos(\gamma)$$

poniendo: $P = \cos(\alpha), Q = \cos(\beta), R = \cos(\gamma)$, se tiene:

$$P = \frac{B^2 + C^2 - A^2}{2BC}, Q = \frac{A^2 + C^2 - B^2}{2AC}, R = \frac{A^2 + B^2 - C^2}{2AB}$$

Se tienen dos casos:

Caso 1. P, Q, R todos positivos.
Caso2. Alguno de los números P, Q, R es negativo. Supondremos: $P > 0, Q > 0, R < 0$.

Caso1. $P > 0, Q > 0, R > 0$:

Se tiene que: $\pi = \alpha + \beta + \gamma$, y por trigonometría:

$$\frac{\pi}{2} = \sin^{-1}(P) + \sin^{-1}(Q) + \sin^{-1}(R)$$

usando la serie de Taylor para la función $\text{arcsen}(x) = \sin^{-1}(x)$, se tiene:

$$\frac{\pi}{2} = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2 (2n+1)} \left(P^{2n+1} + Q^{2n+1} + R^{2n+1} \right)$$

Caso2. $P > 0, Q > 0, R < 0$:

Se tiene que: $\pi = \alpha + \beta + \gamma$, y por trigonometría:

$$\frac{\pi}{2} = \sin^{-1}(P) + \sin^{-1}(Q) - \sin^{-1}(-R)$$

usando la serie de Taylor para la función $\text{arcsen}(x) = \sin^{-1}(x)$, se tiene:

$$\frac{\pi}{2} = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2 (2n+1)} \left(P^{2n+1} + Q^{2n+1} - (-R)^{2n+1} \right)$$

2. EJEMPLOS.

2.1. Caso1. $(a_1, a_2) = (3, 4), (b_1, b_2) = (1, 1), (c_1, c_2) = (4, 1)$

$$A^2 = 13, B^2 = 9, C^2 = 10$$

$$P = \frac{1}{\sqrt{10}}, Q = \frac{7}{\sqrt{130}}, R = \frac{2}{\sqrt{13}}$$

$$\frac{\pi}{2} = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2 (2n+1)} \left(\left(\frac{1}{\sqrt{10}} \right)^{2n+1} + \left(\frac{7}{\sqrt{130}} \right)^{2n+1} + \left(\frac{2}{\sqrt{13}} \right)^{2n+1} \right)$$

2.2. Caso2. $(a_1, a_2) = (2, 2), (b_1, b_2) = (1, 1), (c_1, c_2) = (5, 1)$

$$A^2 = 2, B^2 = 16, C^2 = 10$$
\[P = \frac{3}{\sqrt{10}}, \quad Q = -\frac{1}{\sqrt{5}}, \quad R = \frac{1}{\sqrt{2}} \]

\[
\pi = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2} \left(\frac{3}{\sqrt{10}} \right)^{2n+1} - \left(\frac{1}{\sqrt{5}} \right)^{2n+1} + \left(\frac{1}{\sqrt{2}} \right)^{2n+1}
\]

3. REFERENCIAS.

LA CONSTANTE $\log(2)$

EDGAR VALDEBENITO V.
(1991)

Resumen. Se muestran algunas fórmulas para la constante $\log(2) \equiv \ln(2) = 0.69314...$

1. INTRODUCCIÓN.

Recordamos la clásica serie para $\ln(2)$:

$$\ln(2) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} -$$

En esta nota se muestran algunas series trigonométricas para $\ln(2)$.

2. FÓRMULAS.

2.1. Para $0 < x \leq \frac{\pi}{2}$, se tiene:

$$\ln(2) = \sum_{n=1}^{\infty} \frac{(\cos(x))^{2^n} - (\cos(2x))^n}{n}$$

2.2. Para $0 \leq x < \frac{\pi}{2}$, se tiene:

$$\ln(2) = \sum_{n=1}^{\infty} \frac{(\sin(x))^{2^n} - (-1)^n (\cos(2x))^n}{n}$$

2.3. Para $0 < x < \frac{\pi}{2}$, se tiene:

$$\ln(2) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(\sin(x))^{2^n} + (\cos(x))^{2^n} - (\cos(2x))^{2n}}{n}$$

2.4. Para $0 < x < \frac{\pi}{8}$, se tiene:
\[\ln(2) = \sum_{n=1}^{\infty} \left(1 - \tan(x) \right)^n - \left(\tan(x) \right)^{2n} - \left(1 - \tan(2x) \right)^n \]

3. CASOS PARTICULARES.

3.1.

\[\ln(2) = \sum_{n=1}^{\infty} \frac{(1/\sqrt{2})^{2n}}{n} = \sum_{n=1}^{\infty} \frac{1}{n 2^n} \]

\[\ln(2) = \sum_{n=1}^{\infty} \frac{\left(\frac{1}{2} \sqrt{2 + \sqrt{2}} \right)^{2n}}{n} - \left(\frac{1}{\sqrt{2}} \right)^n \]

\[\ln(2) = \sum_{n=1}^{\infty} \frac{\left(\frac{1}{2} \sqrt{2 + \sqrt{2} + \sqrt{2}} \right)^{2n}}{n} - \left(\frac{1}{2} \sqrt{2 + \sqrt{2}} \right)^n \]

3.2.

\[\ln(2) = \sum_{n=1}^{\infty} \frac{\left(\frac{1}{2} \sqrt{2 - \sqrt{2}} \right)^{2n}}{n} - (-1)^n \left(\frac{1}{\sqrt{2}} \right)^n \]

\[\ln(2) = \sum_{n=1}^{\infty} \frac{\left(\frac{1}{2} \sqrt{2 - \sqrt{2} + \sqrt{2}} \right)^{2n}}{n} - (-1)^n \left(\frac{1}{2} \sqrt{2 + \sqrt{2}} \right)^n \]

\[\ln(2) = \sum_{n=1}^{\infty} \frac{\left(\frac{1}{2} \sqrt{2 - \sqrt{2} + \sqrt{2} + \sqrt{2}} \right)^{2n}}{n} - (-1)^n \left(\frac{1}{2} \sqrt{2 + \sqrt{2} + \sqrt{2}} \right)^n \]
3.3.

\[\ln(2) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \sqrt{2 - \sqrt{2}} \right)^{2n} + \left(\frac{1}{2} \sqrt{2 + \sqrt{2}} \right)^{2n} - \left(\frac{1}{2} \sqrt{2 + \sqrt{2}} \right)^{2n} \]

\[\ln(2) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \sqrt{2 - \sqrt{2} + \sqrt{2}} \right)^{2n} + \left(\frac{1}{2} \sqrt{2 + \sqrt{2} + \sqrt{2}} \right)^{2n} - \left(\frac{1}{2} \sqrt{2 + \sqrt{2}} \right)^{2n} \]

\[\ln(2) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{\sqrt{5 - \sqrt{5}}}{8} \right)^{2n} + \left(\frac{\sqrt{5} + 1}{4} \right)^{2n} - \left(\frac{\sqrt{5} - 1}{4} \right)^{2n} \]

3.4.

\[\ln(2) = \sum_{n=1}^{\infty} \left(\frac{2 - \sqrt{2}}{n} \right)^n - \left(\sqrt{2} - 1 \right)^{2n} \]

4. REFERENCIAS.