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Abstract

Numerical differentiation is a classical ill-posed problem. In image processing, sometimes we

have to compute the gradient of an image. This involves a problem of numerical differentiation.

In this paper we present a truncation method to compute the gradient of a two-variables

function which can be considered as an image. A Hölder-type stability estimate is obtained.

Numerical examples show that the proposed method is effective and stable.

1 Introduction

Numerical differentiation problems arise in several contexts and have important applications in
science and engineering [1-12]. The problem of numerical differentiation is well known to be ill-posed
in the sense that a small perturbation in given data can induce a large error in the gradient function.
For ill-posed problems, due to the ill-posdness, some regularization technique should be employed.
In the existing literature, various aspects of the problem have been treated. We cannot give here
an exhaustive survey. Let us review some computational methods, e.g., difference methods, spline
methods, Tikhonov regularization methods. In this study, we consider a problem of numerical
differentiation which arises in the image processing. For purposes of theoretical analysis, it is
helpful to think of images f(x, y) as functions in L2(R2), i.e., functions such that

‖f‖ = (

∫

R2

|f(x, y)|2dxdy)
1

2 , (1)

where ‖ · ‖ represents the L2-norm. Denote 2D Fourier transform of f(x, y) by

f̂(ξ, η) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

f(x, y)e−i(ξx+ηy)dxdy. (2)
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In imaging processing, we need to compute ‖∇f‖2. Then from Parseval’s theorem, it yields

∫

R2

|∇f |2dxdy =

∫

R2

∣

∣

∣

∣

∂f

∂ x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂ f

∂y

∣

∣

∣

∣

2

dxdy

=

∫

R2

(ξ2 + η2)|f̂(ξ, η)|2dξdη. (3)

Usually, the available data is the noisy images fδ(x, y) with Fourier transform f̂δ(ξ, η). Hence, we
have to compute ‖∇fδ‖

2. According to (3), we have

∫

R2

|∇fδ|
2dxdy =

∫

R2

(ξ2 + η2)|f̂δ(ξ, η)|
2dξdη. (4)

To make the last integral converge, the function f̂δ(ξ, η) must decay sufficiently fast at infinity. But
in practice, this is not true for a noisy image. Therefore, this is an ill-posed problem. We need to
introduce a regularization method. The idea is very simple and natural: since the ill-posedness of
numerical differentiation is caused by the high frequency component, we cut off them. Actually,
such a similar idea of solving numerical differentiation appeared in [13], but the literature is devoted
to the one-dimensional space. In the present paper, as a remedy, we discuss the stability of gradient
of two-variables function by employing the Fourier truncation method. Some numerical tests show
that the proposed method is effective and stable.

This paper is organized as follows. In Section A, we analyze the ill-posedness of numerical
differentiation and propose Fourier truncation method. In Section B, we discuss the stability of the
truncation method and obtain a Hölder-type convergence estimate of the approximate gradient of
the function . In Section C, we present some illustrative numerical examples.

2 Regularization

In this section we simply analyze the ill-posedness of numerical differentiation and discuss how to
stabilize the gradient of the function. We set a function f(x, y) ∈ Hp(R2) which is a Sobolev space,
p ≥ 1. In order to compute ‖∇f‖, let

ĝ(ξ, η) = (ξ 2 + η 2)
1

2 |f̂(ξ, η)|, (5)

i.e.,

g(x, y) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

(ξ 2 + η 2)
1

2 |f̂(ξ, η)|ei(ξx+ηy)dξdη. (6)

According to (3), we have ‖∇f‖ = ‖g‖.
From the right hand side of (5), we know that ξ2 + η2 can be seen as an amplification factor of

f̂(ξ, η). Therefore,when we consider our problem in L2(R2), the exact data function, f̂(ξ, η) must

2
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decay rapidly as (ξ2 + η2) → ∞. But in practice the input data is affected by noise. We assume
the noisy data function fδ ∈ L2(R2) satisfies

‖f − fδ‖ ≤ δ, (7)

where δ > 0 denotes the noise level. Thus, if we try to obtain the gradient of the function, high
frequency components in the error are magnified and can destroy the solution. In this sense it is
impossible to solve the problem using classical numerical methods and requires special techniques
to be employed. In the forthcoming section, we will present our regularization method to treat the
ill-posed problem. In addition we impose an a-priori bound on the input data(this is necessary for
ill-posed problems), i.e.,

‖f‖p ≤ E, p > 1, (8)

where E > 0 is a constant, ‖f(x, y)‖p denotes the norm in Sobolev space Hp(R2) defined by

‖f(x, y)‖p := (

∫ ∞

−∞

∫ ∞

−∞

(1 + ξ2 + η2)p|f̂(ξ, η)|2dξdη)
1

2 .

Since the ill-posedness of the problem is caused by the high frequency components, a natural
way to stabilize the problem is to eliminate all high frequencies and instead consider (6) only for
ξ2 + η2 ≤ ξmax with the noisy data fδ, where ξmax is a regularization parameter. Then we get a
regularized solution with noisy data

gδξmax
(x, y) =

1

2π

∫

R2

(ξ2 + η2)
1

2Xmax|f̂δ(ξ, η)|e
i(ξx+ηy)dξdη, (9)

where Xmax is the characteristic function satisfies

Xmax(ξ, η) =

{

1, (ξ2 + η2)
1

2 ≤ ξmax,

0, (ξ2 + η2)
1

2 > ξmax.

In the following sections we will derive an error estimate and discuss how to compute it numerically.

3 Error estimate

In this section we derive a bound on the difference between (6) and (9). We assume that we have
an a priori bound on the exact input data, ‖f‖p ≤ E (see(8)). The relation between any two
regularized solution (9) is given by the following lemma.
Lemma 1. Suppose that we have two regularized functions gδξmax

(x, y) and gξmax
(x, y) defined by

(9) with data fδ and f ,satisfying ‖f − fδ‖ ≤ δ. If we select ξmax = (E
δ
)

1

p , p > 1, then we can get
the error bound

‖gξmax
(x, y)− gδξmax

(x, y)‖ ≤ E
1

p δ1−
1

p . (10)
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Proof. From the Parseval theorem we have

‖gξmax
(x, y)− gδξmax

(x, y)‖2L2(R2)

= ‖ĝξmax
(ξ, η) − ĝδξmax

(ξ, η)‖2L2(R2)

=

∫∫

(ξ2+η2)
1

2 ≤ξmax

(ξ2 + η2)(|f̂(ξ, η)| − |f̂δ(ξ, η)|)
2dξdη

≤ξ2max‖f̂ − f̂δ‖
2 = ξ2max‖f − fδ‖

2 ≤ ξ2maxδ
2.

Using ξmax = (E
δ
)

1

p , we obtain

‖gξmax
(x, y)− gδξmax

(x, y)‖ ≤ E
1

p δ1−
1

p .

Form Lemma 1 we see that the function defined by (9) depends continuously on the input data f .
Next we will investigate the difference between (6) and (9) with the same exact data f .
Lemma 2. Let g(x, y) and gξmax

(x, y) be the (6) and (9) with the same exact data f , and let

ξmax = (E
δ
)

1

p , p > 1. Suppose that ‖f‖p ≤ E, then

‖g(x, y)− gξmax
(x, y)‖ ≤ E

1

p δ1−
1

p . (11)

Proof. As in Lemma 1 we start with the Parseval relation, and using the fact (|ξ|2 + |η|2)
1

2 > ξmax,
we get

‖g(x, y)− gξmax
(x, y)‖2 = ‖ĝ(ξ, η)− ĝξmax

(ξ, η)‖2

=

∫∫

(|ξ|2+|η|2)
1

2 >ξmax

(ξ2 + η2)|f̂(ξ, η)|2dξdη

=

∫∫

(ξ2+η2)
1

2 >ξmax

(ξ2 + η2)

(1 + ξ2 + η2)p
(1 + ξ2 + η2)p|f̂(ξ, η)|2dξdη

≤E2 sup

(ξ2 + η2)
1

2 > ξmax

(ξ2 + η2)

(1 + ξ2 + η2)p

≤E2ξ2(1−p)
max .

Now we use the bound ‖f‖p ≤ E (see(8)), and as before we have ξmax = (E
δ
)

1

p which leads to the
error bound

‖g(x, y)− gξmax
(x, y)‖ ≤ E

1

p δ1−
1

p .

Now we are ready to formulate the main result of this section:
Theorem 1. Suppose that g(x, y) is given by (6) with exact data f and that gδξmax

(x, y) is given
by (9) with noisy data fδ. If we have a bound ‖f‖p ≤ E, and the measured function fδ satisfies

4
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‖f − fδ‖ ≤ δ, and if we choose ξmax = (E
δ
)

1

p where p > 1, then we get the error bound

‖g(x, y)− gδξmax
(x, y)‖ ≤ 2E

1

p δ1−
1

p . (12)

Proof. Let gξmax
(x, y) be defined by (9) with exact data f . Then by using the triangle inequality

and the two previous lemmas we get

‖g(x, y)− gδξmax
(x, y)‖

≤ ‖g(x, y)− gξmax
(x, y)‖ + ‖gξmax

(x, y)− gδξmax
(x, y)‖

≤E
1

p δ1−
1

p + E
1

p δ1−
1

p

=2E
1

p δ1−
1

p .

From Theorem 1 we find that (9) is an approximation of the exact gradient function g(x, y). The
approximation error depends continuously on the measurement error.
Remark 1. From the the triangle inequality

∣

∣‖g(x, y)‖ − ‖gδξmax
(x, y)‖

∣

∣ ≤ ‖g(x, y)− gδξmax
(x, y)‖, we

can see that if δ → 0, then ‖gδξmax
(x, y)‖ → ‖g(x, y)‖ = ‖∇f‖.

4 Numerical examples

Numerical implementation is completed by Matlab in IEEE double precision with unit round-off
1.1· 10−16. The test interval is (x, y) ∈ [0, 1]× [0, 1] and the total number of test points is 50× 50.
The regularized solutions were computed by the 2D discrete Fast Fourier Transform (2D FFT)
[14] and 2D inverse discrete Fast Fourier Transform (2D IFFT) according to formula (9). The
regularization parameter ξmax is chosen by Theorem 1. In the following numerical test, we give
comparison between the numerical solution and exact solution g(x, y).

Example 1. Consider a function

f(x, y) = e−(x−0.5)2−(y−0.5)2 .

Fig.1(1) shows the regularization solution with 1% random noise and ξmax = 50.
Fig.1(2) shows the exact solution g(x, y).
Example 2. Consider a function

f(x, y) = sin(2πx) sin(2πy).

Fig.2(1) shows the regularization solution with 1% random noise and ξmax = 120.
Fig.2(2) shows the exact solution g(x, y).

5 Conclusion

We have proposed an efficient numerical method for solving a classical ill-posed problem-numerical
differentiation. We have proved that the numerical method is stable and given a Hölder-type error
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Figure 1: (1). The regularized solution; (2). The exact solution.
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estimate. The method is based on Fourier truncation in the frequency space. The theoretical
estimate is simple and the algorithm is effective. The method will be expected to deal with other
ill-posed problems when we find the ill-posedness of the problem is caused by the high frequency
components.

Acknowledgment

The authors thank the referees for their valuable comments. This work is partially supported by
the National Natural Science Foundation of China (Nos 11001223 11061030), the Research Fund
for the Doctoral Program of Higher Education of China (No. 20106203120001) and the Doctoral
Foundation of Northwest Normal University, China (No. 5002-577). The authors would like to
thank Prof. Ruyun Ma(Department of Mathematics, Northwest Normal University, China) for his
help.

References

[1] S.R.Deans, The Radon Transform and Some of its Applications. New York: John Wiley, 1983.

[2] J.Cheng, Y.C.Hon, Y.B.Wang, A numerical method for the discontinuous solutions of Abel
integral equations. Contemp.Math. (348)233-243, 2004.

[3] R.Gorenflo, S.Vessella, Abel Integral Equations. Berlin: Springer-Verlag, 1991.

[4] M.Hanke,O.Scherzer, Error analysis of an equation error method for the identification of
the diffusion coefficient in a quasi-linear parabolic differential equation. SIAM J.Appl.Math.
(59)1012-1027, 1999.

[5] J.Cullum, Numerical differentiation and regularization. SIAM J.Numer.Anal. (8)254-265, 1971.

[6] C.W.Groetsch, Differentiation of approximately specified functions. Amer.Math.Month.
(98)847-850, 1991.

[7] M.Hanke, O.Scherzer, Inverse problem light,numerical differentiation.
Amer.Math.Month.(108)512-521, 2001.

[8] R.Qu, A new approach to numerical differentiation and integration. Math.Comput.Modell.
(24)55-68, 1996.

[9] A.G.Ramm, A.B.Smirnova, On stable numerical differentiation. Math.Comput. (70)1131-1153,
2001.

[10] T.J.Rivlin, Optimally stable Lagrangian numerical differentiation. SIAM J.Numer.Anal.
(12)712-725, 1975.

8

http://www.ijmes.com/


International Journal of Mathematical Engineering and Science (IJMES)
Volume 3 Issue 4 (Year 2014) ISSN : 2277-6982

http://www.ijmes.com/

[11] Y.B.Wang,X.Z.Jia,J.Cheng, A numerical differentiation method and its application to
reconstruction of discontinuity. Inverse Probl. (18)1461-1476, 2002.

[12] R.S.Anderssen, M.Hegland,For numerical differentiation, dimensionality can be a blessing.
Math.Comput. (68)1121-1141, 1999.

[13] Z.Qian, C.L.Fu, X.T.Xiong and T.Wei, Fourier truncation method for high order numerical
derivatives. Appl. Math.Comput. (18)1940-948, 2006.

[14] C.F.VanLoan, Computational Frameworks for the Fast Fourier Transform. Philadelphia:
SIAM, 1992.

9

http://www.ijmes.com/

	Introduction
	Regularization
	Error estimate
	Numerical examples
	Conclusion

