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Abstract

If weintroduce avirtual proper timein the space-time metric, then any physical fieldis
complemented by its own virtual field. Thisvirtual field has an energy-momentum and a
massive in the presence of field sources. In this article we consider the above phenomenon
for the electromagnetic (Maxwell's) field whose own virtual field is scalar-electric. This
virtual scalar-electric field is massive in the presence of electric charges and currents. In the
case of gravitational field its massive virtual field has an energy-momentum and manifests
itself in gravitational interactions. Such massive virtual field could explain the origin of

dark matter and dark energy.

Introduction
In Minkowski space with the metric ds? = c?dt®- dx? the propertimet is

determined by the equality ds? = c?dt *. For amoving particle the proper timet is
measured by the clock which move with thisparticle and at rest relativetoit [1].
Therefore, inamoving inertial reference system (further, i.r.s.) the proper timet is
not observable and not measured directly by the clock of timet.

We consider the system of two expressions ds? given above for theinvariant interval S.
Thereby, we pass from Minkowski space to the four-dimensional space-time with the
double metric. In this four-dimensional bimetric space-time al variables depend not only

on the physical coordinates t,x, y, z, but are also dependent on virtual proper timet .
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Now moving i.r.s. includes the clock of virtual proper timet that isseparated from
the clock of physical time t. Thevirtual proper timet isnot observable timein amoving
I.r.s. We accept by definition that the clock of timet issynchronized with the clock of
timet ini.r.s atrest.

With inclusion of avirtual proper time inthe metric of Minkowski space the physical
electromagnetic (Maxwell's) field is complemented by its virtual scalar-electric field. In the
plane scalar-el ectromagnetic wave the physical electromagnetic wave has atransverse
polarization and the virtual scalar-electric wave has alongitudinal polarization. The virtua
scalar-electric field is massive in the presence of electric charges and currents. Then the
massl ess photons of electromagnetic field with spin 1 and two projections = 1 are becoming
the massive photons of scalar-electromagnetic field with spin 1 and three projections 0, + 1.
Thisresult is physically equivaent to what we have in the case of spontaneous breaking of the
gauge U(1) - symmetry for Abelian vector field [2,3,4]. The massive scal ar-el ectromagnetic
field may also explain the origin of the electron self-energy.

We use the following abbreviations:
the i.r.s. - theinertial reference system,
the t -clock - theclock of timet,

SEM - scalar-electromagnetic,
SE - scalar-electric.
We assume that the indices

i,j, k takeon thevalues 1, 2, 3;
a,B,y takeon thevaues 0,1, 2, 3;

uw,v, A takeon thevalues 0, 1, 2, 3, 5.



. 4-dimensional bimetric pseudo-euclidean space-time Vg

1. 4-dimensional biometric pseudo-euclidean space of 5-vectors V

1) Space V,

V, - 4-dimensional pseudo-euclidean linear space consisting of 4-vectors X* = (X°, X')
with the metric (ds?),, = (dx°)"- (dx')".

2) Space V,

V, - 1-dimensiona linear space consisting of 1-vectors (scalars) X° with the metric
(ds?),,, = (0x*)*.

3) Space V,

V; - 5-dimensional pseudo-euclidean linear space consisting of 5-vectors

x* = (x*, x°) = (X% x', x*)  with the metric (dSZ)VSZ (dxo)z- (dxi)2+ (dx5)2.
4) Space Vg

A) V,q - 4-dimensional linear space consisting of S-vectors x* = (x“, x°) T V; such
that x°x, = (x°)" and that later wewill call 4J5-vectors.

B) V,s - pseudo-euclidean space with the double metric (bimetric) which isthe system

(d5%)y,e= (dx°)"- (o) = (ds?),, .
(ds?),,,.= (dx*)"= (ds?),, . or
(05%), 5 = 2 )~ ()" + (0°)f = 2 (6),,,

(05, = (d¢)°= (¢57),,.

vap



It is the latter form of the double metric wecall the canonical form of the metric in Vg
since V; includes thespace V,; .
Definition

For the 4|5-vector X" = (x“, x5) the 4-vector X* iscalled thebasepart and is

denoted x* = x* the 1-vector (scalar) X° iscaled theown part and isdenoted

base 7
X® = X" - Thus, the 4/5-vector X" = (X%, X°) = (X" X*oum) -
2. 4-dimensional bimetric pseudo-euclidean space-time V
1) Thedouble metricin V,g

Let thed-vector X* =(x° x') =(ct,x)1 V, , where V, - 4-dimensiona basic space-
time (Minkowski space) with themetric ds®= dx“dx, = cdt®- dx®. At each point
A (t,x) wedeal only with the physical (observable) coordinates t and Xx.

Let the 1-vector (scalar) X° =ct 1V, , wheret isthe proper time. That is, the metric
in V,: ds®=c’dt >. Then the5-vector x* = (x“, x°) = (ct,x,ct) T V,, where
V, =V, AV, -5-dimensional space-time with the metric
(ds?),, = 2ds® = dx*dx, = cdt®- dx’+ c’dt *.

Definition
4-dimensional bimetric pseudo-euclidean space-time V,; is thelinear space consisting

of 4[5-vectors X", for which

a) the double metric in the projective
ds® = dx“dx, = c*dt*- dx?,

ds? = dx°dx, = c’dt *;



b) the double metric in the canonica form

2ds? = dx"dx, = c’dt?- dx®+c%dt ?,

ds® = dx°dx, = c’dt .

2) Inertial reference system in the space-time V,;

In each movingi.r.s. thereis theclock of virtual proper timet that isseparated from
the clock of physical timet. Therate and direction of time coincide for thet - and
t-clocks ineach i.r.s. where the t-clock at rest.

Corollaries

a) Since the space-time V,; isfour-dimensional, then thevirtual proper timet isnot
observable inamovingi.r.s..
B) S=|x°|= xct. Here and elsewhere thesign * corresponds to the forward /
backward direction of thevirtual proper timet .
y) If Dt 1 0, then theinterval DS isalways timelike, thatis, DS* > 0.
6) Theevent in V,; isdefined by thepoint A(t,X,t). Thus, inthe moving i.r.s.
not al componentsof A (t,X,t) corresponding to the event are physical (observable).
3) Transformation group in Vg

In the space-time V,,; isomorphic to Minkowski space V, as a continuous transformation

group of components X* of the 4[5—vector X" = (X“, X5) we examine the Poincare

group or, in aspecial case, the 6-parametric Lorentz group. The component X° = ct

is Lorentz invariant.



Remarks
a) Thelast statement about transformation of components X* remainsvalid also for
any 4/5-vector a* = (a% a°) such that a‘a, = a,’. Here thebasepart a",,,= a*,
theown part a*,,,= a°.
B) For any 4-vector a* thereis the couple 4/5-vectors @“, = (&% +a°) such tha

aa, = (+a,)° and conversely. On physical reasons, thesigns of a’ and a°® must be

o

coincident. Thus, thereis aone-to-one correspondence between a* and a* = (a“, a5).

3. Invariant systems for 4|5-vectors in the space-time V

Respect to transformations of the Lorentz group we have theinvariant expressions
written below intheform of systems:
1) the 45-vector Xx* = (x“, x*) = (ct, x, ct)
X*X, =inv,
2

X°Xs =inv, Qe XMX, = 2X7;

2) the 4|5-vector of velocity U" (the 4/5-velocity)

3 ' .

u”=L:(u“,u5)=iaeﬂ,u,ﬂ:ia%,l,lg. Here,
ds 8dt @ 88 ce ¢

— 5| — _ _ 2 _ dx

ds = |dx*| =+ cdt =+cedt, ¢ =4 1- (vic)’, V=

5

Then u“u, =1, Uuu,=1, ie Uy, =2.

Corollary
If a°! 0, then a* =a’u" is the 4/5-vector a* = (a“, a°), suchthat a‘a, = a,’

—_ 2
or aa, =2a,".



3) the momentum 4|5-vector (the 4/5-momentum) of amassive point particle

+ p* = mcu* = £ (p*, p°) = % EﬂmC)
€ €
p*p, = mM’c®, p°p, = m’c*, ie  p"p, = 2nrc’.

Here, m isthevirtua massof amoving particle. By value m coincides with the physical

mass m, of aparticle at rest.

4) the energy-momentum * p*c = mc’u* = + (E, pc,E).

Here, E =1 mc*, p = m, E = mc?, respectively: the physical energy, 3-momentum,
€ €

the virtual self-energy of amoving particle. By value the virtual self-energy E = mc?

coincides with the physical self-energy E, = m,c” of aparticleat rest.

E2. p2c?= m2c*

E 2= m%?*, ie E?- p%c?+E?=2m%"*.
Remark
n
The 5-acceleration w" = d: = (W“, W5) , W =0, and the5-force
S
n
fu=9 - (fe f°), f°=0, arenot 45-vectors, since, ingeneral case,

ds
ww, 1 0 and f*f 1 o0.
4. The mass current 4|5-vector and the energy-momentum 4|5-tensor of a point particle
in the space-time Vg
The mass current 4|5-vector of amoving point particle

b= pmcut = mec 3 (x*- x*(3))e(@)u*(I)dI, where



5% (x*- x*(3)) = 8%(x“- x*(3)) 3(x°- x°(3)) ., PO (X - x*(I)) dx* =1,
Pm = Me d(X - X(t)) 8(t - t (t)) is the physical mass density.

Let the energy-momentum 4|5-tensor of amassive particle T = jkcu”.
Traceof TW @ TH =2T¢ =2p,c*. T =(Tw, T>), whee Ty =- L, = p,C°.
Te> = jheu®= jrc, forwhich the conservation equation 1, Th° =0 and T, Ty’ =0.

Thevalue T2’ = jhcu® =Tru® or T =2 jE = p _c?u” isnot the4|5-vector

¢
€
and isusualy caled the momentum density of aparticle. The moment 4|5-vector of

aparticle P* = 1 T2 d®x = mcu* = p* iscaled the 45-momentum.
Cc

For the symmetric energy-momentum 4|5-tensor of aparticle T = (T, TS )
thebase part T, =T,% = j“cu® is the symmetric 4-tensor,
theownpart TA = (Trﬁ‘f, Tr?]“) are two equal 4/5-vectors.
By analogy with the 4[5-vector X" for the 4/5-vector T = (Tr?f, T,?f’) there are
theinvariant equalitiess T, T* =T, T,T" =2T,’.
Respectively, for the4|5-tensor T thereare the invariant equalities:
T T =T,T%, a<P,
T, T =2T,,T®  a<v.
5. The charge current 4|5-vector of a massive point particle

The charge current 4[5-vector of a particle with the charge physical e and virtua mass m

j& = peCU" Or jh=—jk :iT,ﬁS, where thevirtual charge density pe =° Pm -
m

e
m mc



If we assume the positive direction of timet and t, then the charge current 4|5-vector

of apaticle j* = pcu* = (j* j°) = (pc,j,pc), wherep is thevirtua charge

density, p = is the physical charge density, j = pcu = pv. Here, j, j* = j.

o |

or %ZCZ' j2 — p2C2.

The equation of current continuity 1, j* = 1,j* =0. Thatis, 1 j° =1 =y

1t

Then thephysical charge Q = gp dv = pdv, dv = edv = d°x.
I1. The scaar-electromagnetic field in the space-time V
1. 5-potential of the SEM-field

Let the scalar-electromagnetic potential A" (x") = (A%, A®) = (¢, A, d) is the
5-vector X*1 Vi, V5=V, AV, , butnot the4|s-vector x'T V,;. Thatis, thescalar
potential ¢ isavirtua invariant, but theinequality A*A 1 A% or @*- A* 1 ¢{° takes
place respect to the transformations of the Lorentz group (of boosts and spatial rotations).

In the case of amassive SEM-field with sources the 4-potential A* (X") clearly depends
on thevirtual proper timet , i.e. 1, A“1 0. Thus, themassive SEM-field with the
5-potential A" (X"') isconsidered in V,, where the 4/5-vector X' = (X“, X°) .

In the case of amassless SEM-field without sources the 5-potential A" does not

depend on the virtual proper timet , thatis, ,A* =0. Thus, the massess SEM-field
is considered actually inV, and isgiven by the5-potential A* (x*), x“1 V,. Thetheory
of amassless SEM-field isinvariant respect to gauge transformations of the potential A, :
A,® AS=A -1 f, where f:q 9"f =0.

In what follows we will use mainly the Heaviside-Lorentz system of units, where
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e =4na, h=c=1.

2. 5-tensor of the SEM-field strengths

e 0 Ey E, E Co

g- Ex 0 -H, H, -0
F.=1.A, - 1,A,= (EH,C,-3) = g E, H, 0 -H, -2,0, where

¢-E -Hy Hy 0 -9,7

é- C 5% 9 9, 035

the physical electricfield E =- grad ¢ - % , the physical magneticfield H =rotA ,

thevirtual electricfield 9 =- grad ¢ - A , thevirtual scalar field C = % _Je
it qt

[ bese

For the antisymmetric 5-tensor F,, = (F =%,

Fo"') thebasepart FI2*=F, = (E,H)

is the antisymmetric 4-tensor of the physica EM-field, theown part F2" = (Fu51 F5u),

wv

where F , =(C,-9,0) =- F,,, aretwoopposite 5-vectorsof thevirtual SE-field

5u 7

which is not observable directly in amovingi.r.s.

By analogy with the 4/5-vector A*, for the4|5-tensor F, wehave theinequdities:
FF 1 FF™, a<p, ie H*-E?*1l C*- 9%

FF™ 1 2FF™, a<v.

2

Inthe general case, F;F™ 1 Fg*, ie. C*-2%1 0. Theequality takesplace in

the specia case for aplane SEM-wave.
3. Transformation of the virtual SE-field strengths

The physica EM- and virtual SE- fields transform independently under the Lorentz

group. Asaresult of boosts thevirtual SE-field transformsas the 4-vector F *° =(C,9):

V—3+C), where ¢ =,/1- V?, V=|V]|.

e+l

ce=2(c+va), =3+

€ €




11

4. Thefirst union of the SEM-field equations

ﬂquk + ﬂVFMl + ﬂkFuv = O, |e
rotk = - E, divH =0,
it

rotd = - E, gradC:E- AES
qit it it

5. The charge current 5-vector
i*=(i%j%)=(p.j. p), where j* isphysical, j°=p isvirtua, but j* * pu*.

Thus, j" isnot the4/5-vector. Fromthis, j, j*1 j.° or p*-j*1 p°.

6. Lagrangians of the massive SEM-field with sources
Thefull Lagrangian L =L, +L,,, , where

Li=Llew= - iFquW"'éMzA“A“: %(EZ- H?+3%- C?) +§M2((p2-A2+(1)2) ,

m thisisthe virtual mass of aquantum SE-field, L, = - A, j".

Since L, =L{,+L}|.,ie Lg, =Lg+Lg,, then theown part of Lagrangian L :

own

L, =Ll +Lin = %Fuslr“5 +§M2AHA“ WA
= 3(32_ CZ) +EM2((|)2-A2+(1)2) - pd , thebasepart of Lagrangian L :
2 2
- 1 o | .
LbasezL{)ase-l-legste :_ZFaBFﬁ'AaJ _;(Ez' H2) - (%(P'JA).

Obviously, Lagrangian L[ =L, isgaugeinvariant, but L{ =L isnot.
7. The second union of equations of the massive SEM-field with sources. Elimination

of theinfrared divergences

Proca equations for the massive SEM-field with sources are obtained from the

Lagrangians L and L, @as thesystem
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ﬂvFvu +M2AH = jH’

T.F> + M?A*=0 . From this, the equations:
diVE +a%p =p +1° rotH +m2A=j+1E+ 12

it T
1C _ m_ : . o
— =m°@p, —=m"A. Inthedifference of these equations we obtain :
it 1t

: _ . . E .
ﬂapaﬁ = jP, thatis, divE =p, rotH =j +%. Also, from the system we obtain

theequation: T,F* + x?A° = j°, thatis, divd +m’dp =p - % :

Corollary
Asfollows from the equations of the massive SEM-field, thevirtual SE-field as the
unobservable own part of SEM-field variesintimet and, therefore, ismassivein the
presence of field sources. The small virtual mass » of quantum SE-field protects from the
infrared catastrophe in QED [5]. The physical EM-field as the observable base part of SEM-
field ismassless and long-range.
8. Wave equations for a massive SEM-field with sources

Using the Stéickelberg Lagrangians with the interaction term

— 1 v 1 2 1 .
L =- ZFWF“ - E(‘HHA“) +EM2A“A“- At

(1, A%)" + Z0?A A" - A°,

1
:-_F FH5_
s 2

2

L

own

N e

we obtain the system of SEM-field equations
TFE™ + m2A" = jH

TsF > + M?A® =0, withthecondition 9 ,A* =0.
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That is equivalent to the system of wave equations for the 5-potential A"
(0 - w?)A"=-j*, where 1 =- 91",
(1> + #?)A*=0,  withthecondition f,A°=0.
Since 1.1° = 'ny'nY + 9%, then from the system we get the equations::
War =- jo, (W- wm?)A*=- j° where W=- 777
Then the system of wave equations for the SEM-field strengths
(W - w®)F™ =-3%,  where J"=q4j"- 7"j*,
(1°+m?)F? =0.
From here, the wave equationsfor EM-field strengths :
WEe®=- 3% (12+u2)F*® =o0.
The wave equations for SE-field strengths: (B - w?) F® =- 3,
That is, for thestrengths @ and C of thevirtual massive SE-field:

(W - M2)3:gradp+% (- MZ)C::T]—t- %

9. The equation of current continuity. Conserved charges

From the SEM-field equations it follows the equation of current continuity ,j* =0
together with the condition . j°= 0. Therefore, in V,s thephysical charge

Q, = 0i°(x*) d3x = gp d°x, thevirtual charge Q, = i°(x") d°x = gp d°x, where

|Qo|>1Qs 1, since p =

o |

, areconserved in time; %QO =0, dd_Qs =0.
t

10. The canonical energy-momentum tensor of the massive SEM-field

From thefull Lagrangian L, of the massive SEM-field we can obtain the energy-

momentum tensor T = (T, Tévn) » O inthe matrix form
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av g Vo

T(‘LB Tu5 . -
T“V:fée 9=¢s .6 h°
-I—Su T55ﬂ g :

v R ug

All equalities below are given with an accuracy to terms that disappear upon
integration over d°X in V,.
The base part of the energy-momentumtensor T/, =T *»  has the physical

components. theenergy density (C=1)

w=T® =2 (E2+H?- 92- C?) - émz(q)z- A2+ ) =TZ - TL,

N e

g - the momentum density 3-vector, Cg ={T°i} = [EH]- C3 = {TOi}EM - {TOi}SE’
S- the energy flux density 3-vector (the Poynting vector), = S ={1} = [EH]- Co,
C

thestress 3-tensor - 6 ={ T},

The own part of the energy-momentum tensor T/, = (T BT 5“) has the components:

u=T%=-

N e

(E*- H®- 2°+C?) +§M2(cp2- AP+ (%) = Le- Ly,

vitud: v=T®=3E, ch={T"®}=[3H]+CE, ZR={T%}=[3H] +CE.
C
Trace of the energy-momentum tensor of the massive SEM-field

TH=Tg+T; =-

N |

(Ez_ H2+92- Cz) - éMZ((PZ' A2+(1)2) =- Ly, .

Corollary
The virtual SE-field brings in the negative contribution to the energy-momentum of
the SEM-field. Thus, for hydrogen atom in an external field the virtual SE-field shifts

the energy levels and thisleads to two additional amendments.
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11. Equations of the virtual SE-waves. The plane SEM-wave
We can obtain the equations of the SEM-waves from the equations for a massive SEM-
field, when j"=m=0. Inparticular, the equationsof the virtua SE-waves:

div3=—E, roo =0, gradC = - AENy
1t 1t

Here below the dot above denotes the differentiation with respect totime t.

Let the propagation direction of the plane SEM-wave n//Ox. Wecanfind i.r.s.
inwhich A°=@=const! 0. Then E =- A, H=rotA.
Thus, E=[HN], H=[nE], |E|=|H|, NE=0, NnH =0, EH =0.
That is, the physical EM-waves are transverse. Further, 9 = - grad¢d = n&), Cc= <is :
Thus, 2 =nC, C=n3, 2//n, |C|=|3|, DE=0, DH =0.
That is, thevirtual SE-waves are longitudinal.
Since H>=E?*, C*=97, then T,=0 and the energy density of the plane SEM-wave
T =E?- D%, ThePoyntingvector S=[EH]- C3 =S, - S =n(E*- 3°)=nT,, .
Thatis, T,,=NS.
12. The equation of motion of the charged point particle in an external massive SEM-field
fr=j,F* - m*1*(AA") , where j" - thecharge current 5-vector, f;" - the 5-force
acting on the particle with the physical charge e and virtual mass m..

This point particle movesin an external massive SEM-field in the forward direction of

timet and timet. Otherhand, f* =3 Ts5 = pmddl , Where p, - the physical mass
S

density of aparticle (seel.4) and T}’ - the momentum density 4|5-vector of aparticle.

Hence, f°=]E+pC- M 1°(AA"), = BE- pd+ [ H] - w2 N(AA"),
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5
f°=]9- pC - W T°(AA). However, 1= p, " =0. Therefore,
S

0=j,F"- m*71°(A/A"). Wecanseethat 1,(A A")=0.Then, jF¥=]3- pC=0,
e pC=j2 or C=VI.

On the other hand, the 5-force acting on a moving charge from an external massive
SEM-field with the energy-momentum tensor T*', isequa f* =9q,T". Fromthe
equaity f* = f* follows that f.°=f°=0. Thatis, 1,7*=0.

13. Thefield origin of the electron virtual mass

The consideration of only the physical EM-field cannot explain the origin of mass, self-
energy and momentum of an electron. The stability of an electron cannot be achieved only
through physical electromagnetic forces[6,7]. It should aso take into account the virtua
massive SE-field.

In the space-time V,;  the virtual mass m of amoving electron (see1.3) hasthe origin of
amassive SEM-field and isexplained by the presence of the virtual self-SEM-field of an
electron. The latter corresponds to the nonzero base part of the energy-momentum 5-vector
of the massive SEM-field, i.e, T{o, =T*1 0.

Since the momentum density of the virtual self-SEM-field of an electron

h :E{Tif’} =1 ([3H] + CE) , where =1, then the 3-momentum
C Cc

M =0hd’ == ([PH] + CE) d®.

O |lr

In i.r.s., where the eectron at rest, C¢=0, H¢=0. From the transformation of

the SEM-field strengths (see 11.3) it follows that C ==V13, H = [VE].
C C
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Then, U =i2 V OPE d°x =mV , where thevirtual mass of an electron
c
=i2 OPE d°x, T®=DE . Thus, thevirtual self-energy mc* = PE d°x .
c

Also, we have proved the equality = Of “d*x = §jmdx , where j - thevirtual
Cc

mass current 4-vector (seel.4).

Remark

By value the virtual self-energy of amoving electron E = mc? = O2E d*x coincides
with the physical self-energy of an electronat rest E, = m,c* = E* d°x , i.e with
the energy of the electrostatic field [8,9].
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