Could be explained the origin of dark matter and dark energy through the introduction of a virtual proper time ?

Nikolai V. Volkov
Department of Mathematics, St.Petersburg State Electrotechnical University
5 Prof.Popov str., St.Petersburg, 197376 Russia
e-mail: nikvolkov45@gmail.com

Abstract

If we introduce a virtual proper time in the space-time metric, then any physical field is complemented by its own virtual field. This virtual field has an energy-momentum and a massive in the presence of field sources. In this article we consider the above phenomenon for the electromagnetic (Maxwell`s) field whose own virtual field is scalar-electric. This virtual scalar-electric field is massive in the presence of electric charges and currents. In the case of gravitational field its massive virtual field has an energy-momentum and manifests itself in gravitational interactions. Such massive virtual field could explain the origin of dark matter and dark energy.

Introduction

In Minkowski space with the metric $d s^{2}=c^{2} d t^{2}-d \mathbf{x}^{2}$ the proper time τ is determined by the equality $d s^{2}=c^{2} d \tau^{2}$. For a moving particle the proper time τ is measured by the clock which move with this particle and at rest relative to it [1]. Therefore, in a moving inertial reference system (further, i.r.s.) the proper time τ is not observable and not measured directly by the clock of time t.

We consider the system of two expressions $d s^{2}$ given above for the invariant interval s. Thereby, we pass from Minkowski space to the four-dimensional space-time with the double metric. In this four-dimensional bimetric space-time all variables depend not only on the physical coordinates $t, \mathrm{x}, \mathrm{y}, \mathrm{z}$, but are also dependent on virtual proper time τ.

Now moving i.r.s. includes the clock of virtual proper time τ that is separated from the clock of physical time t. The virtual proper time τ is not observable time in a moving i.r.s. We accept by definition that the clock of time τ is synchronized with the clock of time t in i.r.s. at rest.

With inclusion of a virtual proper time in the metric of Minkowski space the physical electromagnetic (Maxwell's) field is complemented by its virtual scalar-electric field. In the plane scalar-electromagnetic wave the physical electromagnetic wave has a transverse polarization and the virtual scalar-electric wave has a longitudinal polarization. The virtual scalar-electric field is massive in the presence of electric charges and currents. Then the massless photons of electromagnetic field with spin 1 and two projections ± 1 are becoming the massive photons of scalar-electromagnetic field with spin 1 and three projections $0, \pm 1$. This result is physically equivalent to what we have in the case of spontaneous breaking of the gauge $\mathrm{U}(1)$ - symmetry for Abelian vector field [2,3,4]. The massive scalar-electromagnetic field may also explain the origin of the electron self-energy.

We use the following abbreviations:
the i.r.s. - the inertial reference system ,
the t-clock - the clock of time t,
SEM - scalar-electromagnetic,
SE - scalar-electric.
We assume that the indices
i, j, k take on the values $1,2,3$;
α, β, γ take on the values $0,1,2,3$;
μ, ν, λ take on the values $0,1,2,3,5$.

I. 4-dimensional bimetric pseudo-euclidean space-time $\mathrm{V}_{4 \mid 5}$

1. 4-dimensional biometric pseudo-euclidean space of 5-vectors $\mathrm{V}_{4 \mid 5}$
1) Space V_{4}
V_{4}-4-dimensional pseudo-euclidean linear space consisting of 4-vectors $x^{\alpha}=\left(x^{0}, x^{i}\right)$ with the metric $\left(d s^{2}\right)_{\mathrm{V} 4}=\left(d x^{0}\right)^{2}-\left(d x^{i}\right)^{2}$.
2) Space V_{1}
V_{1}-1-dimensional linear space consisting of 1-vectors (scalars) x^{5} with the metric $\left(d s^{2}\right)_{\mathrm{V}_{1}}=\left(d x^{5}\right)^{2}$.
3) Space V_{5}
V_{5}-5-dimensional pseudo-euclidean linear space consisting of 5 -vectors $x^{\mu}=\left(x^{\alpha}, x^{5}\right)=\left(x^{0}, x^{i}, x^{5}\right) \quad$ with the metric $\left(d s^{2}\right)_{\mathrm{V} 5}=\left(d x^{0}\right)^{2}-\left(d x^{i}\right)^{2}+\left(d x^{5}\right)^{2}$.
4) Space $V_{4 \mid 5}$
A) $\mathrm{V}_{4 \mid 5}$-4-dimensional linear space consisting of 5-vectors $x^{\mu}=\left(x^{\alpha}, x^{5}\right) \in \mathrm{V}_{5}$ such that $x^{\alpha} x_{\alpha}=\left(x^{5}\right)^{2}$ and that later we will call $4 \mid 5$-vectors.
B) $\mathrm{V}_{4 \mid 5}$ - pseudo-euclidean space with the double metric (bimetric) which is the system $\left(d s^{2}\right)_{\mathrm{V} 45 \mathrm{5}}=\left(d x^{0}\right)^{2}-\left(d x^{i}\right)^{2}=\left(d s^{2}\right)_{\mathrm{V} 4}$, $\left(d s^{2}\right)_{\mathrm{V} 45}=\left(d x^{5}\right)^{2}=\left(d s^{2}\right)_{\mathrm{V}_{1}}, \quad$ or
$\left(d s^{2}\right)_{\mathrm{V} 4 \mid 5}=\frac{1}{2}\left[\left(d x^{0}\right)^{2}-\left(d x^{i}\right)^{2}+\left(d x^{5}\right)^{2}\right]=\frac{1}{2}\left(d s^{2}\right)_{\mathrm{V} 5}$,
$\left(d s^{2}\right)_{\mathrm{V} 4 \mid 5}=\left(d x^{5}\right)^{2}=\left(d s^{2}\right)_{\mathrm{V}_{1}}$.

It is the latter form of the double metric we call the canonical form of the metric in $\mathrm{V}_{4 \mid 5}$ since V_{5} includes the space $\mathrm{V}_{4 \mid 5}$.

Definition

For the $4 \mid 5$-vector $x^{\mu}=\left(x^{\alpha}, x^{5}\right)$ the 4 -vector x^{α} is called the base part and is denoted $x^{\alpha}=x_{\text {base }}^{\mu}$, the $1-$ vector (scalar) x^{5} is called the own part and is denoted $x^{5}=x^{\mu}{ }_{\text {own }}$. Thus, the $4 \mid 5$-vector $x^{\mu}=\left(x^{\alpha}, x^{5}\right)=\left(x_{\text {base }}^{\mu}, x_{\text {own }}^{\mu}\right)$.

2. 4-dimensional bimetric pseudo-euclidean space-time $\mathrm{V}_{4 \mid 5}$

1) The double metric in $V_{4 \mid 5}$

Let the 4-vector $x^{\alpha}=\left(x^{0}, x^{i}\right)=(c t, \mathbf{x}) \in \mathrm{V}_{4}$, where V_{4}-4-dimensional basic spacetime (Minkowski space) with the metric $d s^{2}=d x^{\alpha} d x_{\alpha}=c^{2} d t^{2}-d \mathbf{x}^{2}$. At each point $A(t, \mathbf{x})$ we deal only with the physical (observable) coordinates t and \mathbf{x}.

Let the 1 -vector (scalar) $x^{5}=c \tau \in \mathrm{~V}_{1}$, where τ is the proper time. That is, the metric in $\mathrm{V}_{1}: d s^{2}=c^{2} d \tau^{2}$. Then the 5-vector $x^{\mu}=\left(x^{\alpha}, x^{5}\right)=(c t, \mathbf{x}, c \tau) \in \mathrm{V}_{5}$, where $\mathrm{V}_{5}=\mathrm{V}_{4} \oplus \mathrm{~V}_{1}$-5-dimensional space-time with the metric $\left(d s^{2}\right)_{\mathrm{V} 5}=2 d s^{2}=d x^{\mu} d x_{\mu}=c^{2} d t^{2}-d \mathbf{x}^{2}+c^{2} d \tau^{2}$.

Definition

4-dimensional bimetric pseudo-euclidean space-time $\mathrm{V}_{4 \mid 5}$ is the linear space consisting of $4 \mid 5$-vectors x^{μ}, for which
a) the double metric in the projective

$$
\begin{aligned}
& d s^{2}=d x^{\alpha} d x_{\alpha}=c^{2} d t^{2}-d \mathbf{x}^{2}, \\
& d s^{2}=d x^{5} d x_{5}=c^{2} d \tau^{2}
\end{aligned}
$$

b) the double metric in the canonical form
$2 d s^{2}=d x^{\mu} d x_{\mu}=c^{2} d t^{2}-d \mathbf{x}^{2}+c^{2} d \tau^{2}$, $d s^{2}=d x^{5} d x_{5}=c^{2} d \tau^{2}$.
2) Inertial reference system in the space-time $V_{4 \mid 5}$

In each moving i.r.s. there is the clock of virtual proper time τ that is separated from the clock of physical time t. The rate and direction of time coincide for the τ - and t-clocks in each i.r.s. where the t-clock at rest.

Corollaries

$\alpha)$ Since the space-time $V_{4 \mid 5}$ is four-dimensional, then the virtual proper time τ is not observable in a moving i.r.s..
β) $s=\left|x^{5}\right|= \pm c \tau$. Here and elsewhere the sign \pm corresponds to the forward / backward direction of the virtual proper time τ.
$\gamma)$ If $\Delta \tau \neq 0$, then the interval ΔS is always timelike, that is, $\Delta S^{2}>0$.
$\delta)$ The event in $\mathrm{V}_{4 \mid 5}$ is defined by the point $A(t, \mathbf{x}, \tau)$. Thus, in the moving i.r.s. not all components of $A(t, \mathbf{x}, \tau)$ corresponding to the event are physical (observable).
3) Transformation group in $V_{4 \mid 5}$

In the space-time $\mathrm{V}_{4 \mid 5}$ isomorphic to Minkowski space V_{4} as a continuous transformation group of components x^{α} of the $4 \mid 5$-vector $x^{\mu}=\left(x^{\alpha}, x^{5}\right)$ we examine the Poincare group or, in a special case, the 6-parametric Lorentz group. The component $x^{5}=c \tau$ is Lorentz invariant.

Remarks

$\alpha)$ The last statement about transformation of components x^{α} remains valid also for any $4 \mid 5$-vector $a^{\mu}=\left(a^{\alpha}, a^{5}\right)$ such that $a^{\alpha} a_{\alpha}=a_{5}{ }^{2}$. Here, the base part $a_{\text {base }}^{\mu}=a^{\alpha}$, the own part $a^{\mu}{ }_{\text {own }}=a^{5}$.
β) For any 4-vector a^{α} there is the couple $4 \mid 5$-vectors $a^{\mu}{ }_{ \pm}=\left(a^{\alpha}, \pm a^{5}\right)$ such that $a^{\alpha} a_{\alpha}=\left(\pm a_{5}\right)^{2}$ and conversely. On physical reasons, the signs of a^{0} and a^{5} must be coincident. Thus, there is a one-to-one correspondence between a^{α} and $a^{\mu}=\left(a^{\alpha}, a^{5}\right)$.
3. Invariant systems for $4 \mid 5$-vectors in the space-time $\mathrm{V}_{4 \mid 5}$

Respect to transformations of the Lorentz group we have the invariant expressions written below in the form of systems:

1) the $4 \mid 5$-vector $x^{\mu}=\left(x^{\alpha}, x^{5}\right)=(c t, \mathbf{x}, c \tau)$
$x^{\alpha} x_{\alpha}=$ inv,
$x^{5} x_{5}=$ inv, \quad i.e. $\quad x^{\mu} x_{\mu}=2 x_{5}^{2}$;
2) the $4 \mid 5$-vector of velocity u^{μ} (the $4 \mid 5$-velocity)
$u^{\mu}=\frac{d x^{\mu}}{d s}=\left(u^{\alpha}, u^{5}\right)= \pm\left(\frac{d t}{d \tau}, \mathbf{u}, 1\right)= \pm\left(\frac{1}{\varepsilon}, \frac{\mathbf{v}}{c \varepsilon}, 1\right)$. Here,
$d s=\left|d x^{5}\right|= \pm c d \tau= \pm c \varepsilon d t, \quad \varepsilon=\sqrt{1-(\mathbf{v} / c)^{2}}, \quad \mathbf{v}=\frac{d \mathbf{x}}{d t}$.
Then $u^{\alpha} u_{\alpha}=1, \quad u^{5} u_{5}=1$, i.e. $\quad u^{\mu} u_{\mu}=2$.
Corollary
If $a^{5} \neq 0$, then $a^{\mu}=a^{5} u^{\mu}$ is the $4 \mid 5-$ vector $a^{\mu}=\left(a^{\alpha}, a^{5}\right)$, such that $a^{\alpha} a_{\alpha}=a_{5}{ }^{2}$ or $a^{\mu} a_{\mu}=2 a_{5}^{2}$.
3) the momentum $4 \mid 5$-vector (the $4 \mid 5$-momentum) of a massive point particle
$\pm p^{\mu}=m c u^{\mu}= \pm\left(p^{\alpha}, p^{5}\right)= \pm\left(\frac{m c}{\varepsilon}, \frac{m \mathbf{v}}{\varepsilon}, m c\right)$,
$p^{\alpha} p_{\alpha}=m^{2} c^{2}, \quad p^{5} p_{5}=m^{2} c^{2}, \quad$ i.e. $\quad p^{\mu} p_{\mu}=2 m^{2} c^{2}$.
Here, m is the virtual mass of a moving particle. By value m coincides with the physical mass m_{0} of a particle at rest.
4) the energy-momentum $\pm p^{\mu} c=m c^{2} u^{\mu}= \pm(E, \mathbf{p} c, \mathrm{E})$.

Here, $E=\frac{1}{\varepsilon} m c^{2}, \mathbf{p}=\frac{m \mathbf{v}}{\varepsilon}, \mathrm{E}=m c^{2}$, respectively: the physical energy, 3-momentum, the virtual self-energy of a moving particle. By value the virtual self-energy $\mathrm{E}=m c^{2}$ coincides with the physical self-energy $E_{0}=m_{0} c^{2}$ of a particle at rest.
$E^{2}-\mathbf{p}^{2} \mathbf{c}^{2}=m^{2} c^{4}$,
$\mathrm{E}^{2}=m^{2} c^{4}, \quad$ i.e. $\quad E^{2}-\mathbf{p}^{2} \mathrm{c}^{2}+\mathrm{E}^{2}=2 m^{2} c^{4}$.
Remark

The 5-acceleration $w^{\mu}=\frac{d u^{\mu}}{d s}=\left(w^{\alpha}, w^{5}\right), w^{5}=0$, and the 5 -force
$f^{\mu}=\frac{d p^{\mu}}{d s}=\left(f^{\alpha}, f^{5}\right), f^{5}=0$, are not $4 \mid 5$-vectors, since, in general case,
$w^{\alpha} w_{\alpha} \neq 0 \quad$ and $\quad f^{\alpha} f_{\alpha} \neq 0$.
4. The mass current $4 \mid 5$-vector and the energy-momentum 4|5-tensor of a point particle in the space-time $\mathrm{V}_{4 \mid 5}$

The mass current $4 \mid 5$-vector of a moving point particle
$j_{m}^{\mu}=\rho_{m} c u^{\mu}=m c \int \delta^{4 \mid 5}\left(x^{\lambda}-x^{\lambda}(\vartheta)\right) \varepsilon(\vartheta) u^{\mu}(\vartheta) d \vartheta, \quad$ where
$\delta^{4 \mid 5}\left(x^{\lambda}-x^{\lambda}(\vartheta)\right)=\delta^{4}\left(x^{\alpha}-x^{\alpha}(\vartheta)\right) \delta\left(x^{5}-x^{5}(\vartheta)\right), \int \delta^{4 / 5}\left(x^{\lambda}-x^{\lambda}(\vartheta)\right) d x^{\alpha}=1$, $\rho_{m}=m \varepsilon \delta(\mathbf{x}-\mathbf{x}(t)) \delta(\tau-\tau(t))$ is the physical mass density.

Let the energy-momentum 4|5-tensor of a massive particle $T_{m}^{\mu \nu}=j_{m}^{\mu} c u^{\nu}$.

Trace of $T_{m}^{\mu \nu}: T_{\mu}^{\mu}=2 T_{\alpha}^{\alpha}=2 \rho_{m} c^{2} . T_{m}^{\mu 5}=\left(T_{m}^{\alpha 5}, T_{m}^{55}\right)$, where $T_{m}^{55}=-L_{m}=\rho_{m} c^{2}$. $T_{m}^{\mu 5}=j_{m}^{\mu} c u^{5}=j_{m}^{\mu} c$, for which the conservation equation $\partial_{\mu} T_{m}^{\mu 5}=0$ and $\partial_{5} T_{m}^{\mu 5}=0$.

The value $T_{m}^{\mu 0}=j_{m}^{\mu} c u^{0}=T_{m}^{\mu 5} u^{0}$ or $T_{m}^{\mu 0}=\frac{c}{\varepsilon} j_{m}^{\mu}=\beta \rho_{m} c^{2} u^{\mu}$ is not the $4 \mid 5$-vector and is usually called the momentum density of a particle. The moment $4 \mid 5$-vector of a particle $P^{\mu 0}=\frac{1}{c} \int T_{m}^{\mu 0} d^{3} x=m c u^{\mu}=p^{\mu} \quad$ is called the 4|5-momentum.

For the symmetric energy-momentum 4|5-tensor of a particle $T_{m}^{\mu \nu}=\left(T_{\text {base }}^{\mu \nu}, T_{\text {own }}^{\mu v}\right)$ the base part $T_{\text {base }}^{\mu v}=T_{m}^{\alpha \beta}=j_{m}^{\alpha} c u^{\beta}$ is the symmetric 4-tensor, the own part $T_{\mathrm{own}}^{\mu \nu}=\left(T_{m}^{\mu 5}, T_{m}^{5 \mu}\right)$ are two equal $4 \mid 5$-vectors.

By analogy with the $4 \mid 5$-vector x^{μ} for the $4 \mid 5$-vector $T_{m}^{\mu 5}=\left(T_{m}^{\alpha 5}, T_{m}^{55}\right)$ there are the invariant equalities: $\quad T_{\alpha 5} T^{\alpha 5}=T_{55}{ }^{2}, \quad T_{\mu 5} T^{\mu 5}=2 T_{55}{ }^{2}$.

Respectively, for the $4 \mid 5$-tensor $T_{m}^{\mu \nu}$ there are the invariant equalities:

$$
\begin{array}{ll}
T_{\alpha \beta} T^{\alpha \beta}=T_{\gamma 5} T^{\gamma 5}, & \alpha<\beta, \\
T_{\alpha v} T^{\alpha v}=2 T_{\gamma 5} T^{\gamma 5}, & \alpha<v .
\end{array}
$$

5. The charge current $4 \mid 5$-vector of a massive point particle

The charge current $4 \mid 5$-vector of a particle with the charge physical e and virtual mass m $j_{e}^{\mu}=\rho_{e} c u^{\mu}$ or $j_{e}^{\mu}=\frac{e}{m} j_{m}^{\mu}=\frac{e}{m c} T_{m}^{\mu 5}$, where the virtual charge density $\rho_{e}=\frac{e}{m} \rho_{m}$.

If we assume the positive direction of time τ and t, then the charge current $4 \mid 5$-vector of a particle $j^{\mu}=\rho c u^{\mu}=\left(j^{\alpha}, j^{5}\right)=(\beta / \mathbf{o}, \mathbf{j}, \rho c)$, where ρ is the virtual charge density, $\beta / 0=\frac{\rho}{\varepsilon}$ is the physical charge density, $\mathbf{j}=\rho c \mathbf{u}=\beta / \mathbf{v}$. Here, $j_{\alpha} j^{\alpha}=j_{5}{ }^{2}$ or $\quad \beta \not \rho c^{2}-\mathbf{j}^{2}=\rho^{2} c^{2}$.

The equation of current continuity $\partial_{\mu} j^{\mu}=\partial_{\alpha} j^{\alpha}=0$. That is, $\partial_{5} j^{5}=\frac{\partial \rho}{\partial \tau}=0$. Then the physical charge $Q=\int \beta \nLeftarrow l V=\int \rho d \mathrm{~V}, \quad d V=\varepsilon d \mathrm{~V}=d^{3} x$.

II. The scalar-electromagnetic field in the space-time $\mathrm{V}_{4 \mid 5}$

1. 5-potential of the SEM-field

Let the scalar-electromagnetic potential $A^{\mu}\left(x^{v}\right)=\left(A^{\alpha}, A^{5}\right)=(\varphi, \mathbf{A}, \phi)$ is the 5-vector $x^{\lambda} \in \mathrm{V}_{5}, \quad \mathrm{~V}_{5}=\mathrm{V}_{4} \oplus \mathrm{~V}_{1}$, but not the $4 \mid 5$-vector $x^{v} \in \mathrm{~V}_{4 \mid 5}$. That is, the scalar potential ϕ is a virtual invariant, but the inequality $A^{\alpha} A_{\alpha} \neq A_{5}^{2}$ or $\varphi^{2}-\mathbf{A}^{2} \neq \phi^{2}$ takes place respect to the transformations of the Lorentz group (of boosts and spatial rotations). In the case of a massive SEM-field with sources the 4-potential $A^{\alpha}\left(x^{v}\right)$ clearly depends on the virtual proper time τ, i.e. $\partial_{5} A^{\alpha} \neq 0$. Thus, the massive SEM-field with the 5-potential $A^{\mu}\left(x^{v}\right)$ is considered in $\mathrm{V}_{4 \mid 5}$, where the $4 \mid 5$-vector $x^{\nu}=\left(x^{\alpha}, x^{5}\right)$.

In the case of a massless SEM-field without sources the 5-potential A^{μ} does not depend on the virtual proper time τ, that is, $\partial_{5} A^{\alpha}=0$. Thus, the massless SEM-field is considered actually in V_{4} and is given by the 5-potential $A^{\mu}\left(x^{\alpha}\right), x^{\alpha} \in \mathrm{V}_{4}$. The theory of a massless SEM-field is invariant respect to gauge transformations of the potential A_{μ} : $A_{\mu} \rightarrow A_{\mu}{ }^{\prime}=A_{\mu}-\partial_{\mu} f$, where $f: \partial_{\mu} \partial^{\mu} f=0$.

In what follows we will use mainly the Heaviside-Lorentz system of units, where
$e^{2}=4 \pi \alpha, \mathrm{~h}=c=1$.
2. 5-tensor of the SEM-field strengths
$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}=(\mathbf{E}, \mathbf{H}, \mathbf{C},-Э)=\left(\begin{array}{ccccc}0 & E_{x} & E_{y} & E_{z} & C \\ -E_{x} & 0 & -H_{z} & H_{y} & -Э_{x} \\ -E_{y} & H_{z} & 0 & -H_{x} & -Э_{y} \\ -E_{z} & -H_{y} & H_{x} & 0 & -Э_{z} \\ -C & Э_{x} & Э_{y} & Э_{z} & 0\end{array}\right)$, where the physical electric field $\mathbf{E}=-\operatorname{grad} \varphi-\frac{\partial \mathbf{A}}{\partial t}$, the physical magnetic field $\mathbf{H}=\operatorname{rot} \mathbf{A}$, the virtual electric field $\boldsymbol{Э}=-\operatorname{grad} \phi-\frac{\partial \mathbf{A}}{\partial \tau}$, the virtual scalar field $\mathbf{C}=\frac{\partial \phi}{\partial t}-\frac{\partial \varphi}{\partial \tau}$.

For the antisymmetric 5-tensor $F_{\mu \nu}=\left(F_{\mu \nu}^{\text {base }}, F_{\mu \nu}^{\text {own }}\right)$ the base part $F_{\mu \nu}^{\text {base }}=F_{\alpha \beta}=(\mathbf{E}, \mathbf{H})$ is the antisymmetric 4-tensor of the physical EM-field, the own part $F_{\mu \nu}^{\mathrm{own}}=\left(F_{\mu 5}, F_{5 \mu}\right)$, where $F_{\mu 5}=(\mathrm{C},-Э, 0)=-F_{5 \mu}$, are two opposite 5-vectors of the virtual SE-field which is not observable directly in a moving i.r.s.

By analogy with the $4 \mid 5$-vector A^{μ}, for the $4 \mid 5$-tensor $F_{\mu \nu}$ we have the inequalities:

$$
\begin{array}{ll}
F_{\alpha \beta} F^{\alpha \beta} \neq F_{\gamma 5} F^{\gamma 5}, & \alpha<\beta, \quad \text { i.e. } \quad \mathbf{H}^{2}-\mathbf{E}^{2} \neq \mathrm{C}^{2}-Э^{2}, \\
F_{\alpha v} F^{\alpha v} \neq 2 F_{\gamma 5} F^{\gamma 5}, & \alpha<v .
\end{array}
$$

In the general case, $F_{\gamma 5} F^{\gamma 5} \neq F_{55}{ }^{2}$, i.e. $\mathrm{C}^{2}-Э^{2} \neq 0$. The equality takes place in the special case for a plane SEM-wave.

3. Transformation of the virtual SE-field strengths

The physical EM- and virtual SE- fields transform independently under the Lorentz group. As a result of boosts the virtual SE-field transforms as the 4 -vector $F^{\alpha 5}=(\mathrm{C}, Э)$: $\mathbf{C}^{\prime}=\frac{1}{\varepsilon}(\mathbf{C}+\mathbf{V} Э), \quad Э^{\prime}=Э+\frac{\mathbf{V}}{\varepsilon}\left(\frac{\mathbf{V} \ni}{\varepsilon+1}+\mathrm{C}\right), \quad$ where $\quad \varepsilon=\sqrt{1-V^{2}}, \quad V=|\mathbf{V}|$.

4. The first union of the SEM-field equations

$\partial_{\mu} F_{v \lambda}+\partial_{v} F_{\lambda \mu}+\partial_{\lambda} F_{\mu \nu}=0, \quad$ i.e.
$\operatorname{rot} \mathbf{E}=-\frac{\partial \mathbf{H}}{\partial t}, \quad \operatorname{div} \mathbf{H}=0$,
$\operatorname{rot} \boldsymbol{Э}=-\frac{\partial \mathbf{H}}{\partial \tau}, \quad \operatorname{grad} \mathrm{C}=\frac{\partial \mathbf{E}}{\partial \tau}-\frac{\partial Э}{\partial t}$.

5. The charge current 5 -vector

$j^{\mu}=\left(j^{\alpha}, j^{5}\right)=(\beta \rho \mathbf{j}, \rho)$, where j^{α} is physical, $j^{5}=\rho$ is virtual, but $j^{\mu} \neq \rho u^{\mu}$.
Thus, j^{μ} is not the $4 \mid 5$-vector. From this, $j_{\alpha} j^{\alpha} \neq j_{5}{ }^{2}$ or $\beta 0-\mathbf{j}^{2} \neq \rho^{2}$.
6. Lagrangians of the massive SEM-field with sources

The full Lagrangian $L=L_{f}+L_{i n t}$, where

$$
\mathrm{L}_{\mathrm{f}}=\mathrm{L}_{\mathrm{SEE}}=-\frac{1}{4} F_{\mu \mathrm{HV}} F^{\mathrm{\mu V}}+\frac{1}{2} \mathcal{M}^{2} A_{\mu} A^{\mu}=\frac{1}{2}\left(\mathbf{E}^{2}-\mathbf{H}^{2}+\boldsymbol{Э}^{2}-\mathrm{C}^{2}\right)+\frac{1}{2} \mathcal{M}^{2}\left(\varphi^{2}-\mathbf{A}^{2}+\phi^{2}\right),
$$

\mathcal{M} this is the virtual mass of a quantum SE-field, $\mathrm{L}_{\mathrm{int}}=-A_{\mu} j^{\mu}$.
Since $L_{f}=L_{\text {own }}^{f}+L_{\text {base }}^{f}$, i.e. $L_{\text {sEm }}=L_{\text {SE }}+L_{E M}$, then the own part of Lagrangian L :
$\mathrm{L}_{\text {own }}=\mathrm{L}_{\text {own }}^{\mathrm{f}}+\mathrm{L}_{\mathrm{own}}^{\mathrm{int}}=-\frac{1}{2} F_{\mu 5} F^{\mu 5}+\frac{1}{2} M^{2} A_{\mu} A^{\mu}-A_{5} j^{5}=$
$=\frac{1}{2}\left(Э^{2}-\mathrm{C}^{2}\right)+\frac{1}{2} \mathcal{M}^{2}\left(\varphi^{2}-\mathbf{A}^{2}+\phi^{2}\right)-\rho \phi$, the base part of Lagrangian $\mathrm{L}:$
$\mathrm{L}_{\text {base }}=\mathrm{L} \underset{\text { base }}{\mathrm{f}}+\mathrm{L}_{\text {base }}^{\mathrm{int}}=-\frac{1}{4} F_{\alpha \beta} F^{\alpha \beta}-A_{\alpha} j^{\alpha}=\frac{1}{2}\left(\mathbf{E}^{2}-\mathbf{H}^{2}\right)-(\rho / \varphi-\mathbf{j} \mathbf{A})$.
Obviously, Lagrangian $L_{\text {base }}^{f}=L_{E M}$ is gauge invariant, but $L_{\text {own }}^{f}=L_{\text {SE }}$ is not.
7. The second union of equations of the massive SEM-field with sources. Elimination of the infrared divergences

Proca equations for the massive SEM-field with sources are obtained from the
Lagrangians L and $L_{\text {own }}$ as the system
$\partial_{v} F^{v \mu}+M^{2} A^{\mu}=j^{\mu}$,
$\partial_{5} F^{5 \alpha}+\mathcal{M}^{2} A^{\alpha}=0 . \quad$ From this, the equations:
$\operatorname{div} \mathbf{E}+\mathcal{M}^{2} \varphi=\beta \%+\frac{\partial \mathrm{C}}{\partial \tau}, \quad \operatorname{rot} \mathbf{H}+\mathcal{M}^{2} \mathbf{A}=\mathbf{j}+\frac{\partial \mathbf{E}}{\partial t}+\frac{\partial Э}{\partial \tau}$,
$\frac{\partial \mathrm{C}}{\partial \tau}=\mathcal{M}^{2} \varphi, \quad \frac{\partial Э}{\partial \tau}=\mathcal{M}^{2} \mathbf{A}$. In the difference of these equations we obtain :
$\partial_{\alpha} F^{\alpha \beta}=j^{\beta}$, that is, $\operatorname{div} \mathbf{E}=\beta, \operatorname{rot} \mathbf{H}=\mathbf{j}+\frac{\partial \mathbf{E}}{\partial t}$. Also, from the system we obtain the equation: $\partial_{\alpha} F^{\alpha 5}+M^{2} A^{5}=j^{5}$, that is, $\operatorname{div} Э+\mathcal{M}^{2} \Phi=\rho-\frac{\partial \mathrm{C}}{\partial t}$.

Corollary

As follows from the equations of the massive SEM-field, the virtual SE-field as the unobservable own part of SEM-field varies in time τ and, therefore, is massive in the presence of field sources. The small virtual mass M of quantum SE-field protects from the infrared catastrophe in QED [5]. The physical EM-field as the observable base part of SEMfield is massless and long-range.
8. Wave equations for a massive SEM-field with sources

Using the Stexekelberg Lagrangians with the interaction term

$$
\begin{aligned}
& \mathrm{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2}\left(\partial_{\mu} A^{\mu}\right)^{2}+\frac{1}{2} M^{2} A_{\mu} A^{\mu}-A_{\mu} j^{\mu}, \\
& \mathrm{L}_{\text {own }}=-\frac{1}{2} F_{\mu 5} F^{\mu 5}-\frac{1}{2}\left(\partial_{5} A^{5}\right)^{2}+\frac{1}{2} M^{2} A_{\mu} A^{\mu}-A_{5} j^{5},
\end{aligned}
$$

we obtain the system of SEM-field equations
$\partial_{v} F^{v \mu}+M^{2} A^{\mu}=j^{\mu}$,
$\partial_{5} F^{5 \alpha}+M^{2} A^{\alpha}=0, \quad$ with the condition $\quad \partial_{\mu} A^{\mu}=0$.

That is equivalent to the system of wave equations for the 5-potential A^{μ}
$\left(-M^{2}\right) A^{\mu}=-j^{\mu}$, where $=-\partial_{v} \partial^{v}$,
$\left(\partial_{5}^{2}+M^{2}\right) A^{\alpha}=0, \quad$ with the condition $\quad \partial_{5} A^{5}=0$.
Since $\partial_{v} \partial^{v}=\partial_{\gamma} \partial^{\gamma}+\partial_{5}{ }^{2}$, then from the system we get the equations:
$\mathrm{WA}^{\alpha}=-j^{\alpha}, \quad\left(\mathrm{W}-\mu^{2}\right) A^{5}=-j^{5}$, where $\mathrm{W}=-\partial_{\gamma} \partial^{\gamma}$.

Then the system of wave equations for the SEM-field strengths

$$
\begin{aligned}
& \left(-M^{2}\right) F^{\mu \nu}=-J^{\mu \nu}, \quad \text { where } J^{\mu \nu}=\partial^{\mu} j^{\nu}-\partial^{\nu} j^{\mu}, \\
& \left(\partial_{5}^{2}+M^{2}\right) F^{\alpha \beta}=0 .
\end{aligned}
$$

From here, the wave equations for EM-field strengths :
$W \boldsymbol{F}^{\alpha \beta}=-J^{\alpha \beta}, \quad\left(\partial_{5}{ }^{2}+M^{2}\right) F^{\alpha \beta}=0$.
The wave equations for SE-field strengths : $\left(-M^{2}\right) F^{\alpha 5}=-J^{\alpha 5}$.

That is, for the strengths $Э$ and C of the virtual massive SE-field:
$\left(-\mathcal{M}^{2}\right) \boldsymbol{Э}=\operatorname{grad} \rho+\frac{\partial \mathbf{j}}{\partial \tau}, \quad\left(-\mathcal{M}^{2}\right) \mathrm{C}=\frac{\partial \beta}{\partial \tau}-\frac{\partial \rho}{\partial t}$.
9. The equation of current continuity. Conserved charges

From the SEM-field equations it follows the equation of current continuity $\partial_{\mu} j^{\mu}=0$ together with the condition $\partial_{5} j^{5}=0$. Therefore, in $\mathrm{V}_{4 \mid 5}$ the physical charge $Q_{0}=\int j^{0}\left(x^{\lambda}\right) d^{3} x=\int \rho / d d^{3} x$, the virtual charge $Q_{5}=\int j^{5}\left(x^{\lambda}\right) d^{3} x=\int \rho d^{3} x$, where $\left|Q_{0}\right|>\left|Q_{5}\right|$, since $\beta / 0=\frac{\rho}{\varepsilon}$, are conserved in time: $\frac{d}{d t} Q_{0}=0, \frac{d}{d \tau} Q_{5}=0$.
10. The canonical energy-momentum tensor of the massive SEM-field

From the full Lagrangian L_{f} of the massive SEM-field we can obtain the energymomentum tensor $T^{\mu \nu}=\left(T_{\text {base }}^{\mu \nu}, T_{\text {own }}^{\mu \nu}\right)$, or in the matrix form
$T^{\mu \nu}=\left(\begin{array}{cc}T^{\alpha \beta} & T^{\alpha 5} \\ T^{5 \alpha} & T^{55}\end{array}\right)=\left(\begin{array}{ccc}\mathrm{w} & \mathbf{g} & \mathrm{v} \\ \mathbf{S} & -\hat{\sigma} & \mathbf{h} \\ \mathrm{v} & \mathbf{R} & \mathrm{u}\end{array}\right)$.
All equalities below are given with an accuracy to terms that disappear upon integration over $d^{3} x$ in $\mathrm{V}_{4 \mid 5}$.

The base part of the energy-momentum tensor $T_{\text {base }}^{\mu \nu}=T^{\alpha \beta}$ has the physical components: the energy density ($c=1$)
$\mathrm{w}=T^{00}=\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{H}^{2}-Э^{2}-\mathrm{C}^{2}\right)-\frac{1}{2} \mathcal{M}^{2}\left(\varphi^{2}-\mathbf{A}^{2}+\phi^{2}\right)=T_{\mathrm{EM}}^{00}-T_{\mathrm{SE}}^{00}$,
\mathbf{g} - the momentum density 3-vector, $c \mathbf{g}=\left\{T^{0 i}\right\}=[\mathbf{E} \mathbf{H}]-\mathrm{C} Э=\left\{T^{0 i}\right\}_{\mathrm{EM}}-\left\{T^{0 i}\right\}_{\mathrm{SE}}$,
\mathbf{S} - the energy flux density 3-vector (the Poynting vector), $\frac{1}{c} \mathbf{S}=\left\{T^{i 0}\right\}=[\mathbf{E H}]-\mathbf{C} \ni$, the stress 3-tensor $-\hat{\sigma}=\left\{T^{i j}\right\}$.

The own part of the energy-momentum tensor $T_{\text {own }}^{\mu \nu}=\left(T^{\mu 5}, T^{5 \mu}\right)$ has the components:
$\mathrm{u}=T^{55}=-\frac{1}{2}\left(\mathbf{E}^{2}-\mathbf{H}^{2}-Э^{2}+\mathrm{C}^{2}\right)+\frac{1}{2} \mathcal{M}^{2}\left(\varphi^{2}-\mathbf{A}^{2}+\phi^{2}\right)=\mathrm{L}_{\mathrm{SE}}-\mathrm{L}_{\mathrm{EM}}$, virtual: $\mathrm{v}=T^{05}=Э \mathbf{E}, c \mathbf{h}=\left\{T^{i 5}\right\}=[Э \mathbf{H}]+\mathbf{C} \mathbf{E}, \frac{1}{c} \mathbf{R}=\left\{T^{5 i}\right\}=[Э \mathbf{H}]+\mathbf{C} \mathbf{E}$.

Trace of the energy-momentum tensor of the massive SEM-field

$$
T_{\mu}^{\mu}=T_{\alpha}^{\alpha}+T_{5}^{5}=-\frac{1}{2}\left(\mathbf{E}^{2}-\mathbf{H}^{2}+Э^{2}-\mathrm{C}^{2}\right)-\frac{1}{2} \mathcal{M}^{2}\left(\varphi^{2}-\mathbf{A}^{2}+\phi^{2}\right)=-\mathrm{L}_{\mathrm{SEM}}
$$

Corollary
The virtual SE-field brings in the negative contribution to the energy-momentum of the SEM-field. Thus, for hydrogen atom in an external field the virtual SE-field shifts the energy levels and this leads to two additional amendments.

11. Equations of the virtual SE-waves. The plane SEM-wave

We can obtain the equations of the SEM-waves from the equations for a massive SEMfield, when $j^{\mu}=\mu=0$. In particular, the equations of the virtual SE-waves:
$\operatorname{div} Э=-\frac{\partial \mathrm{C}}{\partial t}, \quad \operatorname{rot} Э=\mathbf{0}, \quad \operatorname{grad} \mathrm{C}=-\frac{\partial Э}{\partial t}$.
Here below the dot above denotes the differentiation with respect to time t.
Let the propagation direction of the plane SEM-wave $\mathbf{n} / / O x$. We can find i.r.s.
in which $A^{0}=\varphi=$ const $\neq 0$. Then $\mathbf{E}=-\mathbf{X}, \mathbf{H}=\operatorname{rot} \mathbf{A}$.
Thus, $\mathbf{E}=[\mathbf{H} \mathbf{n}], \mathbf{H}=[\mathbf{n E}],|\mathbf{E}|=|\mathbf{H}|, \mathbf{n} \mathbf{E}=0, \mathbf{n} \mathbf{H}=0, \mathbf{E} \mathbf{H}=0$.
That is, the physical EM-waves are transverse. Further, $Э=-\operatorname{grad} \phi=\mathbf{n} \&, C=\notin$.
Thus, $Э=\mathbf{n C}, \mathbf{C}=\mathbf{n} Э, Э / / \mathbf{n},|\mathbf{C}|=|Э|, Э \mathbf{E}=0, Э \mathbf{H}=0$.
That is, the virtual SE-waves are longitudinal.
Since $\mathbf{H}^{2}=\mathbf{E}^{2}, \mathbf{C}^{2}=\boldsymbol{Э}^{2}$, then $T_{55}=0$ and the energy density of the plane SEM-wave $T_{00}=\mathbf{E}^{2}-Э^{2}$. The Poynting vector $\mathbf{S}=[\mathbf{E} \mathbf{H}]-\mathbf{C Э}=\mathbf{S}_{\mathrm{EM}}-\mathbf{S}_{\mathrm{SE}}=\mathbf{n}\left(\mathbf{E}^{2}-Э^{2}\right)=\mathbf{n} T_{00}$. That is, $T_{00}=\mathbf{n S}$.
12. The equation of motion of the charged point particle in an external massive SEM-field $f_{\mathrm{i}}^{\mu}=j_{v} F^{\mu \nu}-\mathcal{M}^{2} \partial^{\mu}\left(A_{v} A^{v}\right)$, where j^{ν} - the charge current 5-vector, $f_{\mathrm{i}}{ }^{\mu}$ - the 5-force acting on the particle with the physical charge e and virtual mass m.

This point particle moves in an external massive SEM-field in the forward direction of time τ and time t. Other hand, $f_{\mathrm{i}}^{\mu}=\frac{d}{d s} T_{m}^{\mu s}=\rho_{m} \frac{d u^{\mu}}{d s}$, where ρ_{m} - the physical mass density of a particle (see I.4) and $T_{m}^{\mu 5}$ - the momentum density $4 \mid 5$-vector of a particle.

$$
\text { Hence, } f_{\mathrm{i}}^{0}=\mathbf{j} \mathbf{E}+\rho \mathrm{C}-\mathcal{M}^{2} \partial^{0}\left(A_{v} A^{v}\right), \quad \mathbf{f}_{\mathrm{i}}=\beta \mathbf{L}-\rho \ni+[\mathbf{j} \mathbf{H}]-\mathcal{M}^{2} \stackrel{\mathbf{L}}{\nabla}\left(A_{\mathrm{v}} A^{v}\right),
$$

$f_{\mathrm{i}}^{5}=\mathbf{j} Э-\beta \subset \subset-\mathcal{M}^{2} \partial^{5}\left(A_{\mathrm{v}} A^{v}\right)$. However, $f_{\mathrm{i}}^{5}=\rho_{m} \frac{d u^{5}}{d s}=0$. Therefore,
$0=j_{v} F^{5 v}-\mathcal{M}^{2} \partial^{5}\left(A_{v} A^{v}\right)$. We can see that $\partial_{5}\left(A_{v} A^{v}\right)=0$. Then, $j_{v} F^{5 v}=\mathbf{j} \ni-\beta / \subset=0$, i.e. $\beta \subset=\mathbf{j} \ni$ or $\mathrm{C}=\mathbf{v} Э$.

On the other hand, the 5 -force acting on a moving charge from an external massive SEM-field with the energy-momentum tensor $T^{\mu \nu}$, is equal $f_{\mathrm{f}}{ }^{\mu}=\partial_{v} T^{\mu \nu}$. From the equality $f_{\mathrm{f}}^{\mu}=f_{\mathrm{i}}^{\mu}$ follows that $f_{\mathrm{f}}^{5}=f_{\mathrm{i}}^{5}=0$. That is, $\partial_{\mathrm{v}} T^{5 v}=0$.

13. The field origin of the electron virtual mass

The consideration of only the physical EM-field cannot explain the origin of mass, selfenergy and momentum of an electron. The stability of an electron cannot be achieved only through physical electromagnetic forces [6,7]. It should also take into account the virtual massive SE-field.

In the space-time $V_{4 \mid 5}$ the virtual mass m of a moving electron (see I.3) has the origin of a massive SEM-field and is explained by the presence of the virtual self-SEM-field of an electron. The latter corresponds to the nonzero base part of the energy-momentum 5-vector of the massive SEM-field, i.e., $T_{\text {base }}^{\mu 5}=T^{\alpha 5} \neq 0$.

Since the momentum density of the virtual self-SEM-field of an electron $\mathbf{h}=\frac{1}{c}\left\{T^{i 5}\right\}=\frac{1}{c}([Э \mathbf{H}]+\mathbf{C E})$, where $c=1$, then the 3-momentum $\mathbf{\Lambda}=\int \mathbf{h} d^{3} x=\frac{1}{c} \int([Э \mathbf{H}]+\mathbf{C}) d^{3} x$.

In i.r.s., where the electron at rest, $\mathbf{C}^{\prime}=0, \mathbf{H}^{\prime}=\mathbf{0}$. From the transformation of the SEM-field strengths (see II.3) it follows that $\mathrm{C}=\frac{1}{c} \mathbf{V} \ni, \mathbf{H}=\frac{1}{c}[\mathbf{V E}]$.

Then, $\quad \mathbf{U}=\frac{1}{c^{2}} \mathbf{V} \int Э \mathbf{E} d^{3} x=m \mathbf{V}$, where the virtual mass of an electron $m=\frac{1}{c^{2}} \int Э \mathbf{E} d^{3} x, T^{05}=Э \mathbf{E}$. Thus, the virtual self-energy $m c^{2}=\int Э \mathbf{E} d^{3} x$. Also, we have proved the equality $\frac{1}{c} \int T^{\alpha 5} d^{3} x=\int j_{m}^{\alpha} d^{3} x$, where j_{m}^{α} - the virtual mass current 4 -vector (see I.4).

Remark

By value the virtual self-energy of a moving electron $\mathrm{E}=m c^{2}=\int \boldsymbol{Э} \mathbf{E} d^{3} x$ coincides with the physical self-energy of an electron at rest $E_{0}=m_{0} c^{2}=\int \mathbf{E}^{2} d^{3} x$, i.e. with the energy of the electrostatic field $[8,9]$.

References

1. Landau L. D., Lifshitz E. M.: Course of Theoretical Physics, Pergamon, Oxford, 1975, Vol. 2: The Classical Theory of Fields, Ch.1.
2. Chang T.-P., Li L.-F.: Gauge Theory of Elementary Particle Physics, Oxford, 2000, Ch.8.
3. Ryder L. H.: Quantum Field Theory, Cambridge University Press, Cambridge, 1985,Ch.8.
4. Kane G.: Modern Elementary Particle Physics, Addison Wesley, 1987, Ch.8.
5. Itzykson C., Zuber J-B.: Quantum Field Theory , McGraw Hill, New York, 1980, Ch.3.
6. Feynman R. P., Leighton R. B., Sands M.: The Feynman Lectures on Physics, Addison Wesley, 1964 , Vol. 2, Ch. 28.
7. Eddington A.S.: The Mathematical Theory of Relativity, Cambridge University Press, Cambridge, 1924, Ch. 6 .
8. Jackson J.D.: Classical Electrodynamics, Wiley, New York, 1962, Ch.17.
9. Tamm I.E.: Fundamentals of the Theory of Electricity, Mir Publish, Moscow, 1979, Ch.1.
