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  Abstract 

    If we introduce a virtual proper time in the space-time metric, then any physical field is 

complemented by its own virtual field. This virtual field  has an energy-momentum and  a 

massive in the presence of field sources. In this article we consider the above phenomenon  

for  the electromagnetic (Maxwell`s) field  whose own virtual field is scalar-electric. This 

virtual scalar-electric field is massive in the presence of electric charges and currents. In the 

case of gravitational field its massive virtual field has an energy-momentum and manifests 

itself  in gravitational interactions. Such massive virtual field could explain the origin of   

dark matter and dark energy.  

Introduction 

    In Minkowski space  with the metric  2 2 2 2d c d ds t −= x    the  proper time τ   is  

determined  by the equality  2 2 2d c ds τ= . For a moving particle  the proper time τ  is 

measured  by the clock  which move  with this particle  and  at rest  relative to it  [1]. 

Therefore,  in a moving  inertial reference system  (further, i.r.s.)  the proper time τ   is  

not observable and not measured  directly by the clock of  time t . 

    We consider the system of  two expressions 2ds  given above for the invariant  interval s .  

Thereby,  we pass  from  Minkowski space  to the four-dimensional space-time  with the 

double metric. In this four-dimensional bimetric space-time  all variables depend not only  

on the physical coordinates t , x , y , z ,  but are  also dependent on virtual proper time τ .   
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    Now moving  i.r.s.  includes  the clock of  virtual proper time τ   that  is separated  from  

the clock of physical time t . The virtual proper time τ   is not observable time in a moving  

i.r.s.  We accept by definition that  the clock of  time τ  is synchronized  with  the clock of  

time t   in  i.r.s. at rest. 

    With inclusion of a virtual proper time  in the metric of  Minkowski space  the physical 

electromagnetic (Maxwell's) field is complemented by its virtual scalar-electric field. In the 

plane scalar-electromagnetic wave  the physical electromagnetic wave has a transverse 

polarization and the virtual scalar-electric wave has a longitudinal polarization. The virtual 

scalar-electric field is massive in the presence of electric charges and currents. Then the 

massless photons of electromagnetic field with spin 1 and  two projections ± 1  are becoming  

the massive photons of scalar-electromagnetic field with spin 1 and  three projections  0, ± 1.  

This result is physically equivalent to what we have in the case of spontaneous breaking of the 

gauge U(1) - symmetry for Abelian vector field [2,3,4]. The massive scalar-electromagnetic 

field may also explain the origin of the electron self-energy. 

    We use the following abbreviations: 

the  i.r.s. - the inertial reference system ,  

the t -clock  - the clock of  time t , 

SEM - scalar-electromagnetic, 

SE - scalar-electric. 

    We assume that the indices 

i , j , k   take on  the values  1, 2, 3; 

α ,β , γ   take on  the values  0, 1, 2, 3;       

μ , ν , λ   take on  the values  0, 1, 2, 3, 5.  
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I. 4-dimensional bimetric pseudo-euclidean space-time 4|5V   

1. 4-dimensional biometric  pseudo-euclidean space of  5-vectors 4|5V    

1)  Space 4V  

4V  - 4-dimensional  pseudo-euclidean  linear space  consisting of  4-vectors  ( )0α , ix x x=

with  the metric  ( ) ( ) ( )2 22 0
4V

id dx dxs = − . 

2)  Space 1V   

1V  - 1-dimensional  linear space  consisting of  1-vectors  (scalars) 5x  with  the metric 

( ) ( ) 22 5
1Vd dxs = .        

3)  Space 5V  

5V  - 5-dimensional  pseudo-euclidean  linear space  consisting of  5-vectors 

( ) ( )5 0 5μ α , , ,ix x x x x x= =     with  the metric   ( ) ( ) ( ) ( )2 2 22 0 5
5V

id dx dx dxs = − + .     

4)  Space 4|5V                                                                                                                                 

А)  4|5V  - 4-dimensional  linear space  consisting of  5-vectors  ( )5
5

μ α V,x x x ∈=   such 

that  ( )25α
αx x x=   and  that later  we will call  4|5–vectors. 

B)  4|5V  - pseudo-euclidean space  with  the double metric (bimetric)  which  is the system 

( ) ( ) ( ) ( )2 22 0 2
4|5 4V V

id dx dx ds s= − =
 
,      

 

( ) ( ) ( )22 5 2
4|5 1V Vd dx ds s= =

 
,                      or

 

( ) ( ) ( ) ( ) ( )2 2 22 0 5 2
4|5 5V V

1 1

2 2
idx dx dxd ds s − + = =

 
,
 

( ) ( ) ( )22 5 2
4|5 1V Vd dx ds s= =

 
. 
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It is the latter form of  the double metric  we call  the canonical  form of  the metric  in 4|5V  

since 5V   includes  the space 4|5V  .    

                                                                Definition                                                                                                                                 

    For  the  4|5–vector ( )5μ α ,x x x=    the  4–vector  αx   is called  the base part  and  is 

denoted  α μ
basex x=  ,   the 1–vector  (scalar)  5x  is called  the own part   and  is denoted   

5 μ
ownx x= .  Thus,  the  4|5–vector  ( ) ( )5μ α μ μ

ownbase ,,x x x x x= = . 

2. 4-dimensional bimetric  pseudo-euclidean space-time 4|5V      

1)  The double metric in 4|5V  

    Let  the 4-vector ( ) ( )0
4

α V, ,ix x x c t ∈= = x  , where 4V  - 4-dimensional  basic space-

time  (Minkowski space)  with  the metric  2 2 2 2α
αd dx dx c d ds t −= = x .  At each point 

( ),A t x   we deal only with  the physical (observable) coordinates t  and x . 

    Let  the 1-vector (scalar) 5
1Vx cτ ∈=  ,  where τ  is the proper time. That is, the metric   

in 1V :  2 2 2d c ds τ= .  Then  the 5-vector  ( ) ( )5
5

μ α V, , ,x x x c ct τ ∈= = x  ,  where  

5 4 1V V V⊕=   - 5-dimensional space-time  with the metric  

( )2 2 2 2 2 2 2
5

μ
μV  2 dd d dx dx c d c ds s t τ− += = = x .  

Definition 

    4-dimensional  bimetric  pseudo-euclidean  space-time 4|5V   is  the linear space  consisting 

of  4|5-vectors μx ,  for which 

a)  the double metric  in the projective  

2 2 2 2α
αd dx dx c d ds t −= = x , 

2 5 2 2
5d dx dx c ds τ= =  ;    

 



  5     
 

    

b)  the double metric  in the canonical form   

2 2 2 2 2 2μ
μ2 dd dx dx c d c ds t τ+−= = x  ,  

2 5 2 2
5d dx dx c ds τ= =  .   

2)  Inertial reference system  in  the space-time 4|5V   

    In each  moving i.r.s.  there is  the clock of  virtual proper time τ  that  is separated  from  

the clock of  physical time t .  The rate  and  direction of  time  coincide  for  the τ -  and   

t -clocks  in each  i.r.s.  where  the t -clock  at rest.    

Corollaries 

α )  Since  the space-time 4|5V   is four-dimensional,  then  the virtual proper time τ  is not 

observable  in a moving i.r.s.. 

β )  5x cs τ±= = .  Here  and  elsewhere  the sign  ±   corresponds  to  the forward / 

backward  direction of  the virtual proper time τ .                                                                                                                          

γ )   If  0τ∆ ≠  ,  then  the interval  s∆   is always  timelike,  that is,  2 > 0s∆ . 

δ )  The event  in 4|5V  is defined  by  the point ( ), ,A t τx .  Thus, in the moving  i.r.s.  

 not  all components of ( ), ,A t τx   corresponding  to the event  are physical (observable). 

3)  Transformation group  in 4|5V  

    In the space-time 4|5V  isomorphic to Minkowski space 4V   as a continuous transformation 

group of  components  αx  of  the  4|5–vector ( )5μ α ,x x x=   we examine  the Poincare 

group  or,  in  a special case,  the  6-parametric  Lorentz group.  The component 5x cτ=    

is  Lorentz invariant. 
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Remarks 

α )  The last statement  about  transformation  of components  αx   remains valid  also  for  

any  4|5–vector  ( )5μ α ,a a a=  
 
such  that  2

5
α

αa a a= .  Here, the base part  μ α
basea a= ,  

the own part  5μ
owna a= .   

β )  For  any 4-vector αa   there is  the couple  4|5-vectors  ( )5μ α ,a a a± ±=    such  that 

( ) 2
5

α
αa a a±=   and  conversely.  On physical reasons,  the signs  of  0a  and  5a  must be 

coincident.  Thus, there is  a one-to-one correspondence  between 
αa  and  ( )5μ α ,a a a= .   

3.  Invariant systems  for 4|5–vectors  in the space-time 4|5V     

    Respect  to transformations of  the Lorentz group  we have  the invariant expressions 

written  below  in the form of  systems:  

1)   the  4|5–vector   ( ) ( )5μ α , , ,x x x c ct τ= = x   

α
α invx x = ,  

5
5 invx x = ,        i.e.      2

5
μ

μ 2x x x=  ; 

2)   the  4|5–vector of  velocity  μu  (the  4|5-velocity) 

( )
μ

5μ α 1
, , , 1

ε ε
1 , ,dx d

ds d c
tu u u
τ

  
      

= = = ± = ± vu  .    Here,  

 5 εd dx c d c ds tτ± ±= = = ,   ( ) 2/1ε  c−= v ,   d
dt

= xv . 

Then  α
α 1u u =  ,   

5
5 1u u =  ,       i.e.      μ

μ 2u u = . 

Corollary 

    If   5 0a ≠ ,  then  5μ μa a u=   is  the  4|5–vector ( )5μ α ,a a a= ,  such that  2
5

α
αa a a=   

or  2
5

μ
μ 2a a a= . 
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3)  the momentum  4|5–vector  (the  4|5–momentum)  of  a massive  point particle 

( ) ( )5μ μ α , ,
ε ε

, mc mp mcu p p mc± = = ± = ± v  ,    

2 2α
αp p m c= ,    5 2 2

5p p m c= ,       i.e.      2 2μ
μ 2p p m c= .   

Here,  m   is the virtual mass of  a moving particle.  By value m  coincides  with the physical 

mass 0m  of  a particle at rest.   

4)  the energy-momentum  ( )2μ μ , ,Ep c mc u c± = = ± p E .    

Here,  21

ε
E mc= ,  

ε
m= vp ,  2mc=E ,  respectively:  the physical energy,  3-momentum,  

the  virtual self-energy of  a moving particle.  By value  the virtual self-energy 2mc=E  

coincides  with  the physical self-energy 2
0 0E m c=  of  a particle at rest.   

2 2 2 42 cE m c− =p ,      

2 2 4m c=E ,           i.e.    2 2 2 2 42 2cE m c− + =p E . 

Remark 

The  5-acceleration  ( )
μ

5μ α ,
du
ds

w w w= =  , 5 0w = ,   and  the 5-force

( )
μ

5μ α ,
dp
ds

f f f= =  , 5 0f = ,   are not  4|5-vectors,  since, in general case,  

α
α 0w w ≠    and   α

α 0f f ≠ .   

4.  The mass current 4|5-vector and the energy-momentum 4|5-tensor of a point particle   

in  the space-time 4|5V   

    The mass current  4|5-vector of  a moving point particle
 

( )( ) ( ) ( )4|5μ μ λ λ μρ δ εm mj cu m c x x u dϑ ϑ ϑ ϑ= = −∫  ,    where 
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( )( ) ( )( ) ( )( )4|5 4 5 5λ λ α αδ δ δx x x x x xϑ ϑ ϑ=− − −  ,  ( )( )4|5 λ λ α 1δ dx x xϑ− =∫ ,

( )( ) ( )( )ρ ε δ δm m t tτ τ= − −x x
 
 is  the physical mass density.   

    Let  the energy-momentum  4|5–tensor of  a massive  particle  μν μ ν
m mT j cu= .          

Trace of  μν
mT : 2

 
μ α
μ  α2 2ρmT T c= = .  ( ) 

5 5 55
  
μ α ,m m mT T T=

 
,   where  55 2

 ρm m mT L c−= = .  

5 5μ μ μ
m m mT j cu j c= = ,   for which  the conservation equation  5μ

μ 0mT∂ =   and  5
5

μ 0mT∂ = .    

    The value  0 0 5 0μ μ μ
m m mT Tj cu u= =   or   0 2μ μ μ

ε
ρm m m

cT j c u= = %  
 
is not  the 4|5-vector  

and  is usually called  the momentum density of  a particle.  The moment 4|5-vector of  

 a particle  0 0μ μ 3 μ μ1
mc

P T d x mcu p= = =∫   
 is called  the 4|5-momentum. 

    For  the symmetric energy-momentum  4|5–tensor of  a particle  ( )   
μν μν μν

ownbase ,mT T T=    

 the base part  μν αβ α β
base m mT T j cu= =   is  the symmetric  4–tensor, 

the own part  ( )   
5 5μν μ μ

own ,m mT T T=
 
 are  two equal  4|5-vectors. 

    By analogy  with  the  4|5-vector μx   for  the 4|5-vector  ( ) 
5 5 55

  
μ α ,m m mT T T=

  
there are 

the invariant equalities:   5 2
5 55

α
αT T T= ,   5 2

5 55
μ

μ 2T T T= .  

Respectively,  for  the 4|5-tensor μν
mT   there are  the invariant equalities:  

5
5

αβ γ
γαβT T T T= ,          α β<  ,

 

5
5

αν γ
αν γ2T T T T= ,        α ν<  .  

5.  The charge current 4|5-vector of a massive point particle   

 The charge current  4|5-vector of a particle with the charge physical e   and virtual mass m       

μ μρe ej cu=   or  5μ μ μ
m me

e e
m mc

Tj j= = ,   where  the virtual charge density  ρ ρe m
e
m

=  .  
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    If  we assume  the positive direction of  time τ and  t ,  then  the charge current  4|5-vector  

of  a particle ( ) ( )5
 

μ μ α , , ,ρ ρ ρj cu j j c c= = = j% ,  where ρ   is  the virtual charge 

density,  ρ
ε

ρ =%    is  the physical charge density,  ρ ρс= =j u v% .   Here,  2
5

α
αj j j=     

or   2 2 2 2 2ρ ρc c− =j% .   

    The equation of  current continuity  μ α
μ α 0j j∂ ∂= = .  That is, 5

5
ρ 0j

τ

∂

∂
∂ = = .  

 Then  the physical charge  ρ ρ  Q Vd d= =∫ ∫% V ,   3εVd d d x= =V . 

II. The scalar-electromagnetic  field  in the space-time 4|5V
 

 

1.  5-potential of the SEM-field  

    Let  the scalar-electromagnetic potential  ( ) ( ) ( )5μ ν α , ,, фA A Ax = = Aφ    is  the  

5-vector  5
λ Vx ∈ ,  5 4 1V V V⊕=  ,   but not  the 4|5-vector  4|5

ν Vx ∈ .  That is,  the scalar 

potential ф   is a virtual invariant, but the inequality 2
5

α
αA A A≠   or  2 2 2ф− ≠Aφ   takes 

place  respect to  the transformations of  the Lorentz group  (of boosts and spatial rotations).    

In the case of  a massive  SEM-field  with sources  the 4-potential ( )α νA x  clearly depends  

on  the virtual proper time τ ,  i.е.  5
α 0A∂ ≠ .  Thus,  the massive SEM-field  with  the  

5-potential ( )μ νA x  is considered in 4|5V ,  where  the 4|5-vector ( )5ν α ,x x x=  .  

    In  the case of  a massless  SEM-field  without sources  the 5-potential μA   does not  

depend on the virtual proper time τ ,  that is,  5
α 0A∂ = .  Thus,  the massless  SEM-field   

is considered actually  in 4V  and  is given by  the 5-potential ( )μ αA x , 4
α Vx ∈ . The theory  

of  a massless  SEM-field  is invariant respect to gauge transformations of the potential μA : 

μ μ μ μA A A f→ ∂′ −= ,  where  μ
μ 0:f f∂ ∂ = . 

    In what follows  we will use mainly the Heaviside-Lorentz system of units,  where  
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2 4παe =  ,  1c= =h  . 

2.  5-tensor of the SEM-field strengths   

μν μ ν ν μF A A∂ ∂−= ( ), ,C,−= E H Э  

0

0

0

0

0

x y z

x z y x

y z x y

z y x z

x y z

E E E C

E H H Э

E H H Э

E H H Э

C Э Э Э

− − −

− − −

− − −

−

 
 
 
 
 
 
 
 
 

=

 

,  where

 

the physical electric field   grad 
t

∂

∂
− −= AE φ  ,   the physical magnetic field   rot=H A ,   

the virtual electric field   grad ф
τ

∂

∂
−= − AЭ  ,   the virtual scalar field   фC

t τ

∂ ∂

∂ ∂
−= φ .       

    For the antisymmetric  5-tensor  ( )base own
μν  μν  μν,F F F=   the base part  ( )base

 μν αβ ,F F= = E H   

is  the antisymmetric  4-tensor of  the physical  EM-field ,  the own part  ( )5 5
own

 μν μ μ, F F F= ,   

where ( )5 5μ μC, , 0F F= = −−Э ,   are two opposite  5-vectors of  the virtual  SE-field   

which  is not observable directly in a moving i.r.s.  

    By analogy  with  the 4|5-vector μA ,  for  the 4|5-tensor μνF
  
we have  the inequalities: 

5
5

αβ γ
γαβF F F F≠ ,           α β<  ,      i.e.   2 2 2 2C− −≠H E Э , 

5
5

αν γ
αν γ2F F F F≠ ,         α ν<  .   

    In the general case,  5 2
5 55

γ
γF F F≠ ,   i.е.  2 2С 0− ≠Э .  The equality takes place  in  

the special case  for a plane SEM-wave.        

3.  Transformation of the virtual SE-field strengths  

    The physical  EM-  and  virtual SE- fields  transform independently  under  the Lorentz 

group. As a result of  boosts  the virtual SE-field  transforms as  the 4-vector ( )5α C ,F = Э :  

( )1

ε
C С′ += VЭ

 
,   ( )1ε ε

С
+

′ + += V VЭЭ Э ,    where   21ε V−= ,   V = V . 
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4.  The first union of the SEM-field equations   

μ ν μννλ λμ λ 0F F F∂ ∂ ∂+ + = , 
    

i.е.    

rot
t

∂

∂
−= HE ,     0div =H ,   

 

 rot
τ

∂

∂
−= HЭ ,      grad С

tτ

∂ ∂

∂ ∂
−= E Э . 

5.  The charge current 5-vector
 

( ) ( )5μ α , , ,ρ ρj j j= = j% ,   where αj  is physical,  5 ρj =  is virtual,  but μ μρj u≠ .   

Thus,  μj  is not  the 4|5-vector.  From this ,  2
5

α
αj j j≠    or  2 2 2ρ ρ− ≠j% .      

6.  Lagrangians of  the massive SEM-field with sources  

     The full Lagrangian  f i n t+=L L L  ,   where   

 2
 SEM

μν μ
μν μf

1 1

4 2
F F A Aм= = +−L L ( ) ( )2 2 2 2 2 2 2 21 1

2 2
C фм −− + − += +E H Э Aφ  ,   

м   this is the virtual mass of a quantum SE-field,   μ
μi n t jA−=L .  

Since  f f
ownf base+=L L L  ,  i.e.   SEM  SE  EM+=L L L ,  then  the own part of  Lagrangian L :  

5 2 5
5 5

f i n t μ μ
own own own μ μ

1 1

2 2
jF F A A Aм −+= = + =−L L L  

( ) ( )2 2 2 2 2 21 1

2 2
C ρффм − −− += +Э Aφ  ,   the base part of  Lagrangian L  :   

f i n t
base base base+=L L L  

αβ α
ααβ

1

4
F F jA−= −

 
( ) ( )2 21

2
ρ− −−= jΕ H A%φ .   

Obviously,  Lagrangian  EM
f
base =L L   is gauge invariant,  but   SE

f
own =L L  is not.  

7.  The second union of equations of the massive SEM-field with sources. Elimination  

of  the infrared divergences   

    Proca equations  for  the massive SEM-field  with sources  are obtained  from the 

Lagrangians  L   and  own L   as  the system   
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2νμ μ μ
νF Aм j∂ + =  ,      

 5 2
5

α α 0F Aм∂ + =  .         From this,  the equations:   

2 Cdiv ρм
τ

∂

∂
+ = +E %φ  ,   2rot

t
м

τ

∂ ∂

∂ ∂
+ = + +E ЭH A j  ,   

2C м
τ

∂

∂
= φ ,  

 
2м

τ

∂

∂
=Э A .   In the difference of these equations  we obtain :   

 αβ β
αF j∂ = ,   that is,  div ρ=E % ,   rot

t
∂

∂
= + EH j .  Also,  from the system we obtain   

the equation:  5 2 5 5α
αF Aм j∂ + = ,   that is,  2 Cdiv ф ρ

t
м ∂

∂
+ = −Э

 
.       

Corollary 

    As follows  from the equations of  the massive SEM-field,  the virtual SE-field as  the 

unobservable own part of  SEM-field  varies in time τ  and,  therefore,  is massive in the 

presence of  field sources . The small virtual mass м   of quantum SE-field protects from the 

infrared catastrophe in QED [5]. The physical EM-field  as the observable base part of  SEM-

field is massless  and  long-range.   

8.  Wave equations for a massive SEM-field with sources  

    Using  the Stuckelberg&&  Lagrangians  with the interaction term 

( )2 2μν μ μ μ
μν μ μ μ

1 1 1

4 2 2
A A AF F Aм j∂ −= +− −L , 

( )25 5 2 5
5 5 5

μ μ
own μ μ 

1 1 1

2 2 2
jF F A A A Aм∂ −= − − +L  , 

we obtain  the system of  SEM-field  equations 
 

2νμ μ μ
νF Aм j∂ + = ,  

5 2
5

α α 0F Aм∂ + = ,     with the condition    μ
μ 0A∂ = . 
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That is equivalent to the system of wave equations for the 5-potential μA

( )2 μ μAм j= −−I  ,     where   ν
ν∂ ∂= −I , 

( )2 2
5

α 0Aм∂ + =  
,       with the condition   5

5 0A∂ = . 

Since   2
5

ν γ
ν γ∂ ∂ ∂ ∂ ∂= + ,   then from the system  we get the equations : 

α αA j= −W ,   ( )2 5 5Aм j= −−W ,    where  γ
γ ∂ ∂= −W .

 

    Then  the system of wave equations for the SEM-field strengths  

( )2 μν μνF Jм −− =I ,        where   μν μ ν ν μJ j j∂ ∂= − ,   

( )2 2
5

αβ 0Fм∂ + =  .                   

From here,  the wave equations for EM-field strengths :   

αβ αβ F J−=W ,   ( )2 2
5

αβ 0Fм∂ + = . 

The wave equations for SE-field strengths :  ( )2 5 5α α F Jм −− =I . 

That is,  for the strengths  Э  and  С  of  the virtual massive SE-field:   

( )2 grad ρм
τ

∂

∂
= +− jЭI

 
 ,    ( )2 ρ ρС

t
м

τ

∂ ∂

∂ ∂
= −− %

I  . 

9.  The equation of current continuity. Conserved charges  

    From the SEM-field equations  it follows  the equation of current continuity  μ
μ 0j∂ =   

together with the condition  5
5 0j∂ = .  Therefore, in 4|5V  the physical charge 

 

( )0 3 3
0

λ ρQ j d dx x x= =∫ ∫ % ,   the virtual charge 
 ( )5 3 3

5
λ ρQ j d dx x x= =∫ ∫ ,  where  

0 5| | | |Q Q> ,  since  ρ
ε

ρ =%  ,  are conserved in time:   0 0d
Q

dt
=

 
,  5 0d

Q
dτ

= . 

10.  The canonical energy-momentum tensor of  the massive SEM-field  

    From  the full Lagrangian  fL   of  the massive  SEM-field  we can obtain  the energy-

momentum  tensor  ( )   
μν μν μν

ownbase ,T T T=  ,  or in the matrix form  
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5

5 55

αβ α
μν

α

w v
σ̂

v u

T TT
T T

−
 

   
      

 

= =
g

S h
R

 .  

    All equalities below are given with  an accuracy  to terms  that disappear  upon  

integration over 3d x   in 4|5V . 

    The base part of  the energy-momentum tensor   
μν αβ
baseT T=    has  the physical 

components:   the energy  density  ( 1c = )  

( ) ( )00 2 2 2 2 2 2 2 2 00 00
 EM  SE

1 1

2 2
Cw фT T Tм −+ − − + −= = − =E H Э Aφ

 
, 

g  - the momentum density 3-vector,   { } [ ] { } { }0 0 0

EM SE
Ci i iT T Tc − −= = =g E H Э , 

S - the energy flux density 3-vector  (the Poynting vector) ,  { } [ ]01 Ci

c
T −= =S E H Э

 
,   

the stress 3-tensor   { }σ̂ i jT− = .     

The own part of  the energy-momentum tensor  ( )55
 
μν μ
own

μ,T T T=  
 
 has the components: 

( ) ( )55 2 2 2 2 2 2 2 2
SE EM

1 1

2 2
Cu фT м= = − − − + − + = −+E H Э A L Lφ  ,    

virtual:  05v T= = ЭE
 
,   { } [ ]5 Cic T= +=h ЭH E  ,  { } [ ]51 Ci

c
T += =R ЭH E .   

    Trace of  the energy-momentum tensor of  the massive  SEM-field 

( ) ( )5 2 2 2 2 2 2 2 2
5 SEM    

μ α
μ α

1 1

2 2
C фT T T м −− + − += + = − − = −E H Э A Lφ  .

                                           

Corollary 

    The virtual SE-field brings in the negative contribution to the energy-momentum of   

the SEM-field. Thus, for hydrogen atom in an external field  the virtual SE-field  shifts   

the energy levels  and  this leads  to two additional amendments.   
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11. Equations of  the virtual SE-waves. The plane SEM-wave  

    We can obtain the equations of the SEM-waves from the equations for a massive SEM- 

field,  when  μ 0j м= = .  In particular,  the equations of  the virtual SE-waves:    

Cdiv 
t

∂

∂
= −Э  ,    rot =Э 0 ,    grad С

t
∂

∂
= − Э  .   

Here below  the dot above  denotes  the differentiation with respect  to time t . 

    Let  the propagation direction of  the plane SEM-wave  / / Oxn .  We can find  i.r.s.   

in which   0 const 0A = ≠φ = .  Then   −=E A& ,  rot=H A .  

Thus,   [ ]=E Hn ,  [ ]=H En ,  =E H ,  0=En ,  0=Hn ,  0=E H .  

That is,  the physical EM-waves are transverse.  Further,  gradф ф= − =Э n & ,  C ф= & .     

Thus,  C=Э n ,  С = Эn ,  / /Э n ,  C = Э ,  0=ЭE ,  0=ЭH .    

That is,  the virtual SE-waves are longitudinal.    

Since  2 2=H E ,  2 2C = Э ,  then  55 0T =   and  the energy density of  the plane SEM-wave  

2 2
00 T −= E Э .  The Poynting vector  [ ] ( )2 2

EM SE 00 C T− −= = − = =S E H Э S S E Эn n  . 

That is, 00 T = Sn .  

12. The equation of motion of the charged point particle in an external massive SEM-field                               

( )2μ μν μ ν
ν νi F A Af мj ∂= −  ,   where νj  - the charge current 5-vector, 

μ
if  - the 5-force  

acting on the particle  with the physical charge e   and virtual mass m .   

    This point particle  moves in an external massive SEM-field  in the forward direction of  

time τ  and  time t .  Other hand,
 
  5

μ
μ μ

i ρm m
d d

d d

u
s s

Tf = =
 
,  where  ρm  - the physical mass 

density of  a particle (see I.4)  and  5μ
mT  -  the momentum density  4|5-vector of  a particle.    

    Hence,  ( )0 2 0 ν
νi C ρ A Af м ∂= + −Ej  ,    [ ] ( )2 ν

νi ρ ρ A Aм ∇= − + −E Э Hjf
ur

%  ,   
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( )5 2 5 ν
νi Cρ A Af м ∂= − −Эj % .   However,  

5
5

i 0ρm
d

ds
uf == .

  
Therefore,  

( )5 2 5ν ν
ν ν0 A AFj м ∂= − . We can see that  ( )ν

ν5 0A A∂ = . Then, 5ν
ν C 0ρFj = =−Эj % ,    

i.e.   Cρ = Эj%    or   С = Эv .                                                             
 

    On the other hand,  the 5-force acting on  a moving charge from an external massive   

SEM-field  with the energy-momentum tensor μνT ,  is equal  μ μν
νf Tf ∂= .  From the 

equality  μ μ
f if f=    follows  that  5 5

f i 0f f= = .  That is,  5ν
ν 0T∂ = .  

13.  The field origin of the electron virtual mass   

  The consideration of only  the physical EM-field  cannot explain  the origin of mass,  self-

energy  and  momentum of an electron.  The stability of an electron cannot be achieved  only  

through  physical electromagnetic forces [6,7].  It should also take  into account  the virtual 

massive SE-field.   

    In the space-time 4|5V   the virtual mass m  of a moving electron (see I.3)  has the origin of  

a massive SEM-field  and  is explained  by the presence of  the virtual self-SEM-field of an 

electron.  The latter corresponds to the nonzero base part of the energy-momentum 5–vector 

of the massive SEM-field,  i.e., 5 5
 
μ α
base 0T T= ≠ .                                                                                                             

    Since  the momentum density of the virtual self-SEM-field of an electron 

{ } [ ]( )51 1 Ci

c c
T= = +h ЭH E

 
,  where  1c =  ,  then  the 3-momentum 

[ ]( )3 31 C
c

d x d x+= =∫ ∫И ЭH Eh .    

    In  i.r.s., where  the electron at rest,  C 0′ = , ′ =H 0 .  From the transformation of   

the SEM-field strengths (see II.3)  it follows  that  1С
c

= VЭ ,  [ ]1

c
=H V E .        



  17     
 

    

Then,  2
31

c
d x m= =∫И V ЭE V  ,  where  the virtual mass of an electron  

2
31

c
m d x= ∫ ЭE ,  05T = ЭE  .  Thus, the virtual self-energy  2 3m c d x= ∫ ЭE  .    

Also,  we have proved  the equality   5 3 3α α1
mc

T d x j d x=∫ ∫ ,  where  α
mj  -  the virtual 

mass current 4-vector (see I.4).   

Remark 

By value  the virtual self-energy of a moving electron  2 3mc d x= = ∫ ЭEE  coincides  

with  the physical self-energy of an electron at rest  2 2 3
0 0E m c d x= = ∫ E ,  i.e. with  

the energy of  the electrostatic field [8,9]. 

References 

1.  Landau L. D., Lifshitz E. M.: Course of  Theoretical Physics, Pergamon, Oxford, 1975,   

    Vol. 2: The Classical  Theory of Fields, Ch.1. 

2.  Chang T.-P., Li L.-F.: Gauge Theory of Elementary Particle Physics, Oxford, 2000, Ch.8. 

3.  Ryder L. H.: Quantum Field Theory, Cambridge University Press, Cambridge, 1985,Ch.8. 

4.  Kane G.: Modern Elementary Particle Physics, Addison Wesley, 1987, Ch.8. 

5.  Itzykson C., Zuber J-B.: Quantum Field Theory , McGraw Hill, New York, 1980, Ch.3.      

6.  Feynman R. P., Leighton R. B., Sands M.: The Feynman Lectures on Physics, Addison            

    Wesley, 1964 , Vol. 2, Ch.28. 

7.  Eddington A.S.: The Mathematical Theory of Relativity, Cambridge University Press,   

    Cambridge, 1924, Ch.6.      

8.  Jackson J.D.: Classical Electrodynamics, Wiley, New York, 1962, Ch.17. 

9.  Tamm I.E.: Fundamentals of the Theory of Electricity, Mir Publish, Moscow, 1979, Ch.1. 

   

 



  18     
 

    

 

 

 

 

 

 

 

 
 
 


