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Abstract

Squaring the Circle is a famous geometry problem going all the way back to the ancient Greeks. It is
the great quest of constructing a square with the same area as a circle using a compass and straightedge
in a finite number of steps. Since it was proven that ⇡ was a transcendental number in 1882, the task of
Squaring the Circle has been considered impossible. Here, we will show it is possible to Square the Circle
in space-time. It is not possible to Square the Circle in Euclidean space alone, but it is fully possible in
space-time, and after all we live in a world with not only space, but also time. By drawing the circle
from one reference frame and drawing the square from another reference frame, we can indeed Square
the Circle. By taking into account space-time rather than just space the Impossible is possible! However,
it is not enough simply to understand math in order to Square the Circle, one must understand some
“basic” space-time physics as well. As a bonus we have added a solution to the impossibility of Doubling
the Cube. As a double bonus we also have also Boxed the Sphere! As one will see, one can claim we
simply have bent the rules and moved a problem from one place to another. One of the main essences of
this paper is that we can move challenging space problems out from space and into time, and vice versa.

⇤Thanks to my illustrator Line Halsnes for taking a illustration draft into the most wonderful illustration, and thanks to Vic-
toria Terces for helping me editing this manuscript into a Golden thread. Also thanks to Tom Weston, Mandark Astronominov,
Daniel J. Du↵y and Stig Danielsen for useful comments, and also to frolloos at the Wilmott forum for asking me if I could Box
the Sphere, and Traden4Alpha to improve my Boxing of the Sphere solution.
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1 Introduction

Before Lindemann (1882) proved that ⇡ was a transcendental number1 there was a long series of attempts
to square the circle. Hobson (1913) did a thorough job in reviewing and describing the long and interesting
history of squaring the circle, and he concluded:

It has thus been proved that ⇡ is a transcendental number...the impossibility of “squaring the
circle” has been e↵ectively established. – Ernest Hobson

To get an idea of the impossibility of squaring the circle consider that we make a circle with radius r = 1,
then the area of the circle must be ⇡r2 = ⇡. To get a square with area ⇡ the length of each side must be

p
⇡.

To construct a square with sides exactly
p
⇡ is impossible with only a compass and a straightedge in a finite

number of steps.
In more recent times there have been a few claims of Squaring the Circle for certain non-Euclidean spaces

such as the hyperbolic plane, also known as Bolyai–Lobachevskian geometry, see Jagy (1995) and Greenberg
(2008). Still these “claims” have been overoptimistic. For example, there are no squares as such in the
hyperbolic plane.

One cannot square the circle in Euclidean space alone, however as we will prove: One can Square the
Circle in Space-Time (at least hypothetically), and we are clearly living in space-time and not only in space.
Once we take into account how observations of time and distance are a↵ected by motion then it surprisingly
becomes possible to square the circle.

Before the late 19th century no one had figured out that the length of an object or the distance traveled
or even time itself would be a↵ected by how fast we moved. Interestingly, just a few years after it was proven
that ⇡ was transcendental we got a breakthrough in understanding that distances and time were a↵ected
by motion. FitzGerald (1889) was the first to suggest that the null result of the Michelson–Morley speed of
light experiment possibly could be explained by assuming that the length of any material object (including
the earth itself) contracts along the direction in which it is moving through the ether, or as explained in his
own words:

I would suggest that almost the only hypothesis that can reconcile this opposition is that the
length of the material bodies changes according as they are moving through the ether or across it,
by an amount depending on the square of the ratio of their velocity to that of light. – FitzGerald,
May 1889

Lorentz (1892) mathematically formalizes length contraction, suggesting that objects and any type of

matter that travels against the ether has to contract by
q
1� v2

c2 , where v is the speed of the object against

the ether and c is the well-known experimentally tested speed of light.2

Larmor (1900) added time-dilation3 to the FitzGerald and Lorentz length contraction and was the first
to develop a mathematical theory that is fully consistent with the null result of the Michelson-Morley result.
Bear in mind that FitzGerald, Lorentz and Larmor all still assumed the ether existed and it was originally to
“save” the ether that they introduced length contraction and time dilation. Even the famous mathematician
and physicist Henry Poincaré believed in the presence of the ether. Still, in 1905 Poincaré concluded that it
would be impossible to ever detect the earth’s motion against the ether. Henry Poincaré therefore suggested to
synchronize clocks a distance apart using the “assumption” that the one-way speed of light for synchronization
purpose was the same as the well-tested round-trip speed of light. Einstein instead abandoned the ether and
assumed that the true one-way speed of light was the same as the round-trip speed of light and used this
assumption to synchronize his clocks.

Bear in mind that FitzGerald and original Lorentz length contraction is actually not mathematically the
same as Einstein (1905, 1916) length contraction, this even if it looks mathematically identical at first sight.
For example, Patheria (1974) points out correctly that there is a major di↵erence between FitzGerald and
Lorentz transformation on one side and Einstein length transformation on the other side:

It must be pointed out here that the contraction hypothesis, put forward by FitzGerald and
Lorentz, was of entirely di↵erent character and must not be confused with the e↵ect obtained here

1Hermite (1873) had just years before proved that e was a transcendental number.
2More precisely the well tested round-trip speed of light.
3Time dilation has been proven in a series of experiments, see for example Haefele (1970), Haefele and Keating (1971b,a)

and Bailey and et al. (1977).
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[Einstein length contraction]. That hypothesis did not refer to a mutually reciprocal e↵ect; it is
rather suggesting a contraction in the absolute sense, arising from the motion of an object with
respect to the aether or, so to say, from ‘absolute‘ motion. According to a relativistic standpoint,
neither absolute motion nor any e↵ect accruing therefrom has any physical meaning.4

After Lorentz became heavily influenced by the view of Poincarè he seems to have changed his own view
that motion against the ether likely not could be detected, so we should probably look at the speed v in the
Poincaré (1905) adjusted Lorentz transformation5 as the relative speed between frames rather than the speed
against the ether, even though Lorentz not is very clear on this point in 1904. With this in mind, it is not
incorrect to use the term Lorentz contraction in the Einstein theory for length contraction as many physicists
do today. Personally I like to distinguish between FitzGerald and the (original) Lorentz contraction: on the
one hand where the speed v represents the velocity against the ether, and on the other hand in the Einstein
theory, where v represents the relative velocity as measured with Einstein-Poincarè synchronized clocks. Even
if several di↵erent relativity theories exist we will concentrate on Squaring the Circle inside Einstein‘s special
relativity theory here, that is inside what we can call Euclidian Einstein space-time.

2 Squaring the Circle in Space-Time

We will show that we can draw a square with area ⇡ without relying directly on ⇡, but only indirectly on ⇡.
Assume a train platform (embankment) and a train. We first draw a circle on the embankment using only
a compass, see figure 1 upper panel. We can call the radius of the circle one, that is r = 1. It could be one
cm, one inch, one meter or whatever radius we prefer. Next we mark a straightedge with the compass so
we have a length equal to the radius of the square. Next we build a perfect square based on this length. In
other words, we have constructed a one by one square, also known as a unit square. This square should be
built in a solid material that we can transport.

Next we will move the square on board a train. This train is currently at rest relative to the embankment.
Then we accelerate this train to a very fast velocity relative to the embankment; we will get back to exactly
what velocity later. Naturally, we could just as well have constructed the square on the train while the train
was standing still relative to the embankment or later while the train was moving relative to the embankment.
What is important is that we build the unit square (side length equal to the radius of the circle) in and from
the frame it is at rest in.

So far we have “only” worked in space, now we also need to work a little in time. At each corner of
the square we mount a clock. Next we will synchronize these clocks using the Einstein clock synchronizing
procedure. That is to say we are synchronizing the clocks with light signals assuming that the one-way speed
of light is isotropic and the same as the well-tested round-trip speed of light.

Next we hang the square with the clocks out on the side of the train. At each clock we have connected a
laser. At a given point in time, each clock will simultaneously trigger the lasers. Bear in mind the lasers are
fired simultaneously as observed from the train. Einstein‘s relativity of simultaneity means that the lasers on
the train are not fired simultaneously as observed from the embankment. The embankment is covered with
photosensitive paper. The lasers (photons) will hit the embankment and make a mark for each corner. See
figure 1 middle and lower panels.

There is no length contraction in the transverse direction, so the distance between the two laser marks on
the embankment in the transverse direction on the embankment must be one (for example 1 meter). However
in the parallel direction we will have length contraction. The distance between the marks on the embankment
will appear contracted from the train. Remember we are going to try to Square the Circle that is to make
the area of the square equal to the circle. The area of the circle is ⇡. The transverse length of the square is
one. What is the speed of a train (second frame) that will give the sides of ⇡ in the embankment, but only
1 from the frame we draw the sides from (the train)? We must have a length contraction factor � equal to
1
⇡ to accomplish this since ⇡ ⇥ 1

⇡ = 1. This means we get the following equation to solve based on special
relativity theory:

1

⇡
=

r
1� v2

c2

4See Patheria (1974) page 41.
5Which is the one referred to when physicists today talk about the Lorentz transformation.
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Figure 1: Squaring the Circle.
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= 1� v2
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1� 1

⇡2
(1)

and we have

1 = ⇡

r
1� v2

c2

1 = ⇡ ⇥

vuut
1�

⇣
c
q
1� 1

⇡2

⌘2

c2

1 = ⇡
1

⇡
(2)

This means that when we have two frames traveling at a relative speed6 of v = c
q

1� 1
⇡2 we can indeed

Square the Circle. There is nothing wrong with drawing the square in one frame and then “transferring”
it to another frame. Some people might claim that this is bending the rules. This is partly true, but there
were no rules about how fast we could move the pen, or if we should calculate the area as observed from the
square itself, or from the moving pen (train) that is drawing it. We will return to some self-criticism a bit
later in this paper. And as we soon will see this solution contains two solutions, including a simpler solution
that we will discuss.

In Einstein’s special relativity theory, length contraction is reciprocal. So we could just as well have
drawn the circle on board the train and then we could draw the square7 in the train from the embankment.
The situation would be symmetrical. The velocity of the train relative to the embankment is the same as
the velocity of the embankment relative to the train as long as they are measured with Einstein-Poincarè
synchronized clocks.

3 Checking the area

Again the circle is drawn on the embankment (or on the train) and the square is drawn on the train and
then transferred to the embankment from the train, or visa versa. The circle is drawn with radius r = 1 as
observed from the embankment frame, and the square is initially drawn with sides 1 by 1 from the frame it
is at rest in.

The observer on the embankment sees a circle with radius one and a rectangle with sides 1 by ⇡, both at
rest on the embankment. The area of the circle is ⇡ and the area of the rectangle is ⇡. The observer on the
train can check the areas. The train observer sees a perfect square (a unit square) with area 1, the square
is at rest with respect to the train. The circle (that is at rest on the embankment) is observed as an ellipse
by the train observer. Figure 2 illustrates how the two di↵erent frames observe the circle (ellipse) and the
square (rectangle).

As there is no length contraction in the transverse direction, the ellipse semi-major as observed from the
train is the same as the radius of the circle as observed from the embankment, that is r. The semi-minor
axis on the ellipse is contracted as observed from the train and must be

r

vuut
1�

⇣
c
q
1� 1

⇡2

⌘2

c2
= r

1

⇡
. (3)

And if we have chosen radius r = 1 this gives a semi-minor axis of 1
⇡ . The area of an ellipse is given by

Aellipse = ⇡ab, where a and b are the semi-major and the semi-minor axes respectively. This gives us an area
of the ellipse of Aellipse = ⇡ ⇥ 1 ⇥ 1

⇡ = 1. This is the same as the area of the square on board the train as
observed from the train.

6As measured with Einstein-Poincaré synchronized clocks.
7Or at least the side lines for the square.
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Figure 2: Comparison between embankment frame and the train frame.

Bear in mind that in the solution as observed from the train, we do not need to have any clocks mounted
to the square to make marks on the embankment. Here we simply draw a unit circle on the embankment
(in one frame) as observed from the embankment and then we draw a unit square on board the train from
the train, for example on the floor of the train. The square can be drawn on board the train while we are
standing still relative to the embankment, or later while we are moving relative to the embankment. Now
we simply observe the circle on the embankment from the train. The circle will appear as an ellipse and the
area of the ellipse and the square are the same: they are one. A drawn unit circle has the same area as a
drawn unit square, quite remarkable indeed.

Both the train observer and the embankment observer can agree that the area of the circle and the square
are identical. However, the embankment observer will claim that the square is a rectangle and the train
observer will claim that the circle is an ellipse. Still, the circle was drawn and observed as a circle by the
drawer and the square was drawn and observed as a square by the drawer. We have indeed Squared the
Circle! And this seems to be the “only“ way to square a circle in Euclidian Einstein space-time.

4 How can this be?

Einstein‘s special relativity theory predicts reciprocal length contraction. Assume two identical meter sticks
are made in the same reference frame L = 1. Next one of the meter sticks is carried on board the train. The

train is accelerated to a speed of c
q
1� 1

⇡2 . Now from the train the meter stick at rest on the embankment

will be observed to have length contracted and have a length of: 1 ⇥

r

1�
�
c
p

1� 1
⇡2

�2

c2 ⇡ 0.3183. At the
same time the meter stick at rest in the train will be observed to have length ⇡ 0.3183 as observed from
the embankment. In Einstein‘s special relativity theory, length contraction is reciprocal. Still, in the section
above we claimed that the laser signals sent out simultaneously (simultaneously as observed from the train)
will make marks on the embankment that have a distance between them of ⇡ meters. How can a one
meter stick in the train that is observed to be contracted from the embankment actually make marks on the
embankment that are ⇡ meters apart?

The signals sent out simultaneously from each end of the rod (the rods making up the unit square) at
rest in the train will not be observed to be sent out simultaneously from the embankment. Events happening
simultaneously on the train as observed with Einstein synchronized clocks will from the embankment have
an observed time di↵erence of
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Lv

c2
q

1� v2

c2

. (4)

This is well-known from Einstein‘s theory as the relativity of simultaneity.8 Where L is the length of the
rod as observed from the frame it is at rest in, for example 1 meter, the distance between the marks on the
embankment from the lasers sent out from the two ends of rod simultaneously as measured from the train
will make marks at the embankment with the following distance apart as measured from the embankment

L

r
1� v2

c2
+

Lv

c2
q

1� v2

c2

v =
Lq

1� v2

c2

(5)

and since v = c
q
1� 1

⇡2 we get

Lq
1� c2(1� 1

⇡2 )
c2

= L⇡ (6)

and if L = 1 meter then the length between the two marks on the embankment between the square sides
parallel to the railroad will be ⇡ meters. This is just another way to check that our results in the previous
section are correct and consistent with Einstein‘s special relativity theory. That we can Square the Circle
in Euclidian Einstein space-time is also strongly related to how clocks are synchronized in special relativity
theory: the clocks are Einstein (Poincarè) synchronized. We could also have found this directly from the
Lorentz transformation:

x̂ =
x� vtq
1� v2

c2

.

In the train frame the lasers (actually 4 if one includes each corner) are fired simultaneously as observed
from Einstein synchronized clocks in the frame where the lasers-clocks are at rest relative to each other. This
means the time between the clocks fired as observed from this frame must be t = 0. When the relative speed

between the two frames as measured with Einstein synchronized clocks is v = c
q

1� 1
⇡2 we get the following

length transformation:

x̂ =
x� c

q
1� 1

⇡2 ⇥ 0
r

1�
�
c
p

1� 1
⇡2

�2

c2

= x⇡ (7)

where x is the distance between two events in the rest frame, in this case the distance between the lasers
on the straightedge on the train, that is x = L. Further x̂ is the distance between these points plus the
distance the train traveled in the time di↵erence between these two lasers firing as measured from the other
frame. The length transformation takes into account length contraction and relativity of simultaneity.

We could also have Squared the Circle using other relativity theories, such as the ether theory of Joseph
Larmor from 1900. One of the main di↵erences would be that the Squaring of the Circle would not be
reciprocal between the frames then, see Haug (2014) for detailed discussion on this topic. In this article we
will limit ourselves to squaring the circle under Einstein‘s special relativity theory, which involves Einstein
synchronization of clocks. However, this is more than just a theory; when using Einstein synchronized clocks
these predictions are actually aligned with how we would observe the world in relation to squaring the circle.

5 Summary of procedure

In this section we shortly summarize the procedure for Squaring the Circle:

8Equation 4 is well known from the literature, see for example Comstock (1910), Carmichael (1913), Dingle (1940), Bohem
(1965) and Krane (2012). The formula follows directly from the Lorentz transformation.
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Solution one:

1. We are drawing a unit circle on the embankment (reference frame one) with a compass.

2. Without changing the compass, we construct a square where each side has a radius equal to the radius
of the circle. The square could be drawn on the floor of the train. The train is currently at rest relative
to the embankment.

3. Accelerate the train to a speed relative to the embankment of v = c
q

1� 1
⇡2 as measured from both the

embankment and the train.9 The relative speed between the reference frames is reciprocal in Einstein‘s
special relativity theory.

4. The circle on the embankment will now be observed as an ellipse with the same area as the square from
the train. In this case, both the ellipse (that was drawn as a circle) and the square would have area 1
(rather than ⇡) as observed from the train. In other words we have squared the circle.

Solution two:

1. Draw a circle on the embankment (reference frame one) with a compass. Choose any radius and call
this radius one (one meter, one foot, one cm or any other length). The radius is the distance between
the two points of the compass.

2. Without changing the compass, construct a square where each side has a radius equal to the radius of
the circle. The square should be made of a robust material so we can move the square.

3. Move the square on board a train that is currently at rest relative to the embankment; alternatively we
could have constructed the square directly on board the train while the train is standing still or while
it is moving.

4. Accelerate the train to a velocity relative to the embankment of v = c
q
1� 1

⇡2 as measured from both

the embankment and the train.10 The relative speed between the reference frames is in Einstein‘s
special relativity theory reciprocal.

5. Mount a clock to each corner of the square. Synchronize these clocks using Einstein-Poincaré synchro-

nization while the train is moving at velocity v = c
q

1� 1
⇡2 relative to the embankment.

6. Simultaneously, as measured by the clocks in each corner of the perfect square on the train, fire the
lasers. These laser signals will burn four dots on the ground. These dots will mark the corners of
a rectangle as observed from the embankment. The length of the sides of the rectangle parallel to
the railroad will be related to length transformation rather then length contraction. If the signals
arrived simultaneously as observed from the embankment, then it would be length contraction rather
than length transformation. The square on the train is indeed observed as length-contracted from the
embankment, but not the transferred square (rectangle)

7. Measure the area of the circle and the square and they will have the same area. From the train the
circle is observed to have an elliptical shape and the square is a unit square. From the embankment
the circle is a circle and the square is a rectangle. The areas of the circle and the square, both as
observed from the train, are the same, namely one. The area of the circle and the transferred square
(the rectangle on the embankment) have area ⇡ as observed from the embankment. In other words we
have squared the circle.

Solution two also contains solution one. Solution one is the simplest as it does not need the clocks and
the lasers in each corner of the square. We could also have done this the other way around. That is to draw
the unit circle onboard the train and to draw the unit square on the embankment. The result would be the
same as above.

9This speed is as measured with Einstein synchronized clocks.
10This speed is as measured with Einstein synchronized clocks.
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6 More general solution

The solution above only holds between a unit circle and a unit square. Here we will see if there is a more
general solution. Again assume that we have drawn a unit circle, then what is the limitation we have on
the length of the sides of the square and what is the velocity we need to travel at when transferring this
square to the other frame? By transferring I mean when using the square that we move to fire the lasers
simultaneously to mark the embankment. We get the following equation to solve,

L2

⇡
=

r
1� v2

c2

L4

⇡2
= 1� v2

c2

v = c

r
1� L4

⇡2
(8)

Further in equation 8 we must have L4

⇡2 < 1. Solved with respect to L this gives us

L4

⇡2
< 1

L4 < ⇡2

L <
p
⇡ (9)

when L =
p
⇡ then v = 0 and then it is not possible to square the circle, as we already know. In other

words it is not possible to square the circle from only one reference frame, we need to use two reference
frames to square the circle. The general solution is that we can draw any square with sides shorter thanp
⇡. I assume all lengths 0 > L <

p
⇡ that are not transcendental can be used to square a unit circle. A

square with length L is constructed on the ground or in the train and then moved onto the train. Then the

train is accelerated to the following velocity: v = c
q

1� L4

⇡2 . Or we could have accelerated the train first

and then constructed the square on the train while it was moving relative to the embankment, this makes no
di↵erence. Next accurate clocks in each corner of the square are synchronized while traveling and the lasers
are fired simultaneously as observed from the train to mark the embankment. The area of the square as
measured from the embankment or the train will have the same area as the circle. Again the square on the
embankment drawn from the train will be observed as a rectangle from the embankment, but it was initially
drawn as a square.

As the general solution holds for any velocity between 0 > v < c we do not need a super-fast futuristic
train or space-rocket to square the circle. When the sides of the square are very close to

p
⇡, we do not need

all the digits of ⇡ in the sides of the square, as long as v > 0. For example, we could theoretically construct
a printer where the printer head moves at speed v relative to the paper. The printer head consist of a square
with each sides lengths very close to

p
⇡ as observed from the printer head. Simply think of the paper as the

embankment and the printer head as the train in the example above. The printer head is a perfect square
with sides L as observed from the printer head. In each corner of the printer head is a clock that is Einstein
synchronized while the printer head moves at velocity v relative to the paper. The corners of the square
are simultaneously firing a laser as measured from the printer head clocks. The laser marks on the paper as
observed from the paper will not be a perfect square, but a rectangle. The circle is drawn to be a perfect
circle as observed from the rest frame of the paper. Again this is just a parallel to the train example, which
is much more realistic in the way that the printer head just needs to move at a speed v > 0 and not at a
speed close to that of light. Still we like the first non-general solution the best from a mathematical point
of view. It is almost like magic to draw a unit circle and a unit square that both end up having area 1, or
alternatively ⇡ from the embankment.
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7 Additional Solution

Here we mention an additional solution.11 Assume a train travels at velocity of v = c
q
1� 1

⇡ relative to

the embankment. The train has a unit rod hanging out on the side. On each end of the rod we mount a

clock with a laser. The clocks are Einstein synchronized while traveling at velocity v = c
q
1� 1

⇡ . At a given

point in time both of the lasers are fired simultaneously down towards the ground. That is simultaneously as
observed from the train. The distance between the laser marks on the embankment we get from the Lorentz
length contraction, and it must be:

x̂ =
x� c

q
1� 1

⇡ ⇥ 0
r

1�
�
c
p

1� 1
⇡

�2

c2

= x
p
⇡

Again x = L and if we gave L = 1 then we have a length on the ground equal to
p
⇡. We make a

straightedge out of this and construct a square. Next we draw a circle with area ⇡ on the embankment
using a compass. We now have a perfect circle and a perfect square both with area ⇡ on the embankment
as observed from the embankment. This is also reciprocal when using Einstein synchronized clocks. We
could just as well have started out with the rod on the embankment and made the marks on the train. This
solution is very nice since we then have a perfect circle and a perfect square in the same reference frame both
with area ⇡.

8 Doubling the Cube

Doubling the cube is another geometrical problem closely connected to Squaring the Circle. The quest of
Doubling the Cube consists of making a cube with double the volume of another cube simply by using a
compass and straightedge. The impossibility of doubling the cube in Euclidean space was proven by Wantzel
in 1837. For example, if we have a unit cube with volume one then we need a line segment of L = 3

p
2.

The impossibility of doubling the cube is equivalent to the fact that 3
p
2 is not a constructible figure using

just a compass and straightedge. Still, this impossibility only holds in Euclidean space; in space-time we can
Double the Cube using a compass and straightedge and Einstein synchronized clocks. We get the following
equation to solve,

1 = 3
p
2

r
1� v2

c2

1
3
p
2

=

r
1� v2

c2

1

( 3
p
2)2

= 1� v2

c2

v = c

s
1� 1

( 3
p
2)2

(10)

and we have

1 = 3
p
2�

1 = 3
p
2⇥

vuuut
1�

✓
c
q
1� 1

( 3p2)2

◆2

c2

1 = 3
p
2

1
3
p
2

(11)

11This solution was suggested by Mandark Astronominov on Twitter after I put a link to this paper there.
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So to Double the Cube we make a unit rod. We then make a unit cube with this rod. We next bring a

unit rod to a train at rest relative to the embankment. We accelerate the train to velocity v = c
q
1� 1

( 3p2)2
.

Next we mount a clock with a time-release laser at each end of each rod. The clocks are Einstein synchornized
while the train is traveling. We hang the rod out on the side of the train parallel to the embankment. Next
we fire both lasers simultaneously as observed from the train. This gives two marks on the embankment with
distance 3

p
2 apart. We can use this to make another rod and then construct a new cubes with side length

3
p
2 and volume ( 3

p
2)3 = 2. We have Doubled the Cube.

9 Boxing the Sphere

The volume of a sphere is V = 4
3⇡r

3. If we set the radius to r = 1 we have a unit sphere. The volume of a
unit sphere is V = 4

3⇡. To make a cube with the same volume as the sphere (boxing the sphere), we would

need a cube with side length 3

q
4⇡
3 . We cannot construct such a cube (just in space) with just a compass and

a straightedge in a finite number of steps. However, we can box the sphere in space-time.
At the embankment one first rotate the compass to construct a circle, then one rotates that circle to

construct the sphere. A sphere can in this way be seen as meta-construction by a compass.12 At the
embankment we will use the compass to make a rod with a length equal to the radius of the circle. Next we
bring this rod on board of a train. We mount a clock on each side if the rod. Each clock has a time-release
laser. Next we accelerate the train to a velocity of

v = c

vuut1� 1

( 3

q
4⇡
3 )2

(12)

While we are traveling at this velocity, we are Einstein synchronizing the clocks. The rod with the clocks is
hanging out of the train in the parallel direction to the train track. Next we fire both the lasers simultaneously
as observed from the train. This will make two marks on the embankment; from the embankment they will

be 3

q
4⇡
3 apart. We will use this distance to make a new rod. This rod we will use to make a cube. The

volume of the cube (box) is
⇣

3

q
4⇡
3

⌘3

= 4
3⇡. We have Boxed the Sphere! We could also have extended this

solution to hold for any sphere.

9.1 Platonic Solids and the Sphere

We have already Boxed the Sphere and the box that forms the cube is one of the five Platonic Solids. Here
we will provide the solutions for the other Platonic Solids in relation to the Sphere.

Tetrahedron the Sphere

The next Platonic Solid is the Tetrahedron. The volume of a Tetrahedron is V = a3

6
p
2
. To Tetrahedron the

Sphere, we need to have a =
3
p
⇡8

p
2 and we need to travel at a velocity of

v = c

vuut1� 1
⇣

3
p

⇡8
p
2
⌘2 (13)

After this, we will follow the same procedures as we did for Boxing the Sphere. We have Tetrahedroned
the Sphere.

Octahedron the Sphere

The volume of a Octahedron is V =
p
2
3 a3. To Octahedron the Sphere, we need to have a = 3

q
4⇡p
2
and need

to travel between the two frames at a velocity of

12Thanks to Traden4Alpha at the www.wilmott.com forum for pointing out to me how to make a sphere with just a compass.
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v = c

vuut1� 1
⇣

3

q
4⇡p
2

⌘2 (14)

Once again, we will follow the same procedures as we did for Boxing the Sphere. We have Octahedroned
the Sphere.

Icosahedron the Sphere

The volume of an Icosahedron is V = 5
12 (3 +

p
5)a3. To Icosahedron the Sphere, we need the side length of

the Icosahedron to be a = 3

q
16⇡

5(3+
p
5)

and we need to travel at a velocity of

v = c

vuuut
1� 1

✓
3

q
16⇡

5(3+
p
5)

◆2 (15)

Then we follow the same procedures as for Boxing the Sphere. We have Icosahedroned the Sphere.

Dodecahedron the Sphere

The volume of a Dodecahedron is V = 1
4 (15+ 7

p
5)a3. To Dodecahedron the Sphere we need the side length

in the Dodecahedron to be a = 3

q
16⇡

3(15+7
p
5)

and we need to travel at a velocity of

v = c

vuuut
1� 1

✓
3

q
16⇡

3(15+7
p
5)

◆2 (16)

However, this time we cannot send the signals from the rod simultaneously as measured from the train.
Instead, we will need a length a shorter than the unit rod. We need to rely on length contraction rather than
length transformation to construct it. To get length contraction, we have to send the signal simultaneously
from the train as measured from the embankment. We can do this by Einstein synchronizing the two clocks
on each end of the unit rod while the train is still at rest relative to the embankment. Next we move the
rod with the clocks on board the train and accelerate the train to the velocity given in equation 16. Then
both of the lasers on the train will fire simultaneously, but this will be simultaneously as observed from
the embankment, not simultaneously as observed from the train. The mark between the two lasers on the
embankment will be related to the length contraction of the rod l. The unit rod L = 1 has turned into a
length of

L� = L

r
1� v2

c2
= L

vuuuuuut
1�

0

B@c
s
1� 1⇣

3
p

16⇡
3(15+7

p
5)

⌘2

1

CA

2

c2
=

L

3

q
16⇡

3(15+7
p
5)

. (17)

From this new rod on the embankment, we will build a Dodecahedron. We have Dodecahedroned the
Sphere.

10 Equilateral Triangle the Circle

The area of a unit circle is A = ⇡r2 = ⇡. The area of an Equilateral Triangle is A =
p
3
4 a2, where a is

the length of the side of the triangle. To make an Equilateral Triangle with the same area as the circle

(Equilateral Triangle the Circle), we would need a circle with side length a =
q

4⇡p
3
. We cannot construct

such an Equilateral Triangle in space alone with only a compass and a straightedge in a finite number of
steps. However, we can construct such a triangle in space-time.

At the embankment one first rotates the compass to construct a circle. Staying at the embankment, we
will use the compass to make a rod with a length equal to the radius of the circle. Next we will bring this
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rod on board the train. We mount a clock on each side of the rod. Each clock has a time-release laser. Next
we will accelerate the train to a velocity of

v = c

s

1�
p
3

4⇡
(18)

While we are traveling at this velocity, we will Einstein synchronize the clocks. Then we will hang the
rod with the clocks out of the train in the direction parallel to the train track. Then we fire both of the
lasers simultaneously as observed from the train. This will make two marks on the embankment; from the

embankment they will be
q

4⇡p
3
apart. We will take this distance to make a new rod that we will use to

construct the Equilateral Triangle. The area of the triangle is A =
p
3
4

⇣q
4⇡p
3

⌘2
= ⇡ . We have Equilateral

Triangled the Circle!

11 Table summary of solutions and further discussion

Below are two tables summarizing the solutions we have provided:

Table 1: This table shows the length of the sides needed to Platonic Solid the Sphere and the relative velocity
needed to do that.

Various solutions: Length needed a v

Squaring the Circle solution 1 ⇡ c
q
1� 1

⇡2

Squaring the Circle solution 2
p
⇡ c

q
1� 1

⇡

Triangle the Sphere
q

4⇡p
3

c
q

1�
p
3

4⇡

Doubling the Cube 3
p
2 c

q
1� 1

( 3p2)2

Table 2: This table shows the length of the sides needed to Platonic Solid the Sphere and the relative velocity
needed to do that.

Platonic Solids Volume Length needed a v

Boxing the Sphere a3 3

q
4⇡
3 c

q
1� 1

( 3
p

4⇡
3 )2

Tetrahedron the Sphere a3

6
p
2

3
p

⇡8
p
2 c

s
1� 1⇣

3
p

⇡8
p
2

⌘2

Octahedron the Sphere
p
2
3 a3 3

q
4⇡p
2

c
r
1� 1�

3
p

4⇡p
2

�2

Dodecahedron the Sphere 1
4 (15 + 7

p
5)a3 3

q
16⇡

3(15+7
p
5)

c
s
1� 1⇣

3
p

16⇡
3(15+7

p
5)

⌘2

Icosahedron the Sphere 5
12 (3 +

p
5)a3 3

q
16⇡

5(3+
p
5)

c
s
1� 1⇣

3
p

16⇡
5(3+

p
5)

⌘2

So we actually have two very general solutions. If we need to utilize length transformation to create the
length a, then we have the following general solution for the velocity

v = c

r
1� 1

a2
(19)

If we need a rod longer than our unit rod (the inital rod) then we need to mount two clocks on this rod
and synchronize the clocks on board of the train.

On the other hand, if we need to utilize length contraction13 to created the needed length a and then we
have the following general solution for the velocity

13Among our solutions only the Dodecahedron needs this solution; this is because we need an a < L.
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v = c
p
1� a2 (20)

If we need length contraction we need to Einstein synchronize the two clocks while the rod (train) is at
rest relative to the embankment. So if we need a length a, we must first find out if this length is shorter or
longer than our unit rod. If it is longer than the rod, then we need to utilize length transformation and if it is
shorter, then we need to utilize length contraction. We can move any troublesome constants out of space and
into the velocity, and use the velocity to make our needed troublesome length in the other reference frame.
As we soon will explain, when the troublesome constant first is moved into the velocity we can decide if we
want to move it into time or space.

12 A critical look at the solution

Have I really squared the circle? It is not the first time someone has claimed to have squared the circle. One
of the longest and most intense intellectual disputes of all time was between philosopher Thomas Hobbes
who claimed that he had squared the circle and the mathematician John Wallis who claimed Hobbes not had
squared the circle, see Jesseph (2008). The conclusion was that Hobbes not had squared the circle.

One could claim the solution to squaring the circle in this paper simply has moved the problem into the
velocity between the two reference frames. The velocity needed to square the circle is indeed a function of
⇡. Still there was never mentioned any restriction on the velocity of the observer in the quest for squaring
the circle. One could also argue that I am bending the rules by using clocks in addition to compass and a
straightedge. Even in solution one, where we simply draw a circle in one frame and a square in another frame,
we would need two Einstein-Poincaré synchronized clocks to measure the one-way velocity of the train. So
any solution requires clocks, as we are working in space-time rather than just space, that is we take into
account motion. Or one could naturally try to argue that we simply by coincidence could be traveling at

velocity v = c
q

1� L4

⇡2 or v = c
q
1� 1

⇡ and therefore not would need clocks to find this velocity.

There are indeed several reasons to claim I have bent the rules of squaring the circle slightly. Still one
could just as well argue that the claimed impossibility of squaring the circle is rooted historically in that
the quest premises were outlined before we had developed good space-time theories. In my defense, one has
to keep track of time when working in space-time, and again we do not only live in space, we live in space
and time. Previous solution attempts have not taken time into account, nor have they considered that time
and space are a↵ected by motion. Furthermore, previous solution attempts have not been clear on from
what reference frame the circle and square are drawn from and what reference frame they are observed from.
It is indeed possible to square the circle if one takes into account space and time and how space and time
measurements are a↵ected by motion.

In practice it would be close to impossible to get a velocity of exactly v = c
q

1� L4

⇡2 or v = c
q
1� 1

⇡ . Or

at least this would require infinite precision in our measuring devices. However, this is more of a measuring
problem than a Squaring the Circle quest problem. One could argue that Squaring the Circle in space-time
is a question of clock accuracy. The more accurate the clocks the more precisely we can measure the velocity.
Ultimately we would need continuous time clocks to Square the Circle in space-time.

13 Moving problems from space to time

One of the main results (and possibly the very essence of the paper) is that we can move the necessary space

measurements related to challenging constants like ⇡, 3
p
2 and 3

q
4⇡
3 out from space and into time or out from

time and back into space.
To illustrate how we can move the challenge from space to time completely, let’s revisit our initial squaring

of the circle solution. To square the circle in our first solution, we needed an exact velocity of v = c
q
1� 1

⇡2 .

This velocity contains ⇡ and some people may argue that we have simply moved the problem of squaring the
circle into the velocity between the frames. This is true. However, velocity consists of a measure or given
distance divided by the measured time interval it took to travel that distance. Because of this structure, we
can decide if we want to move ⇡ into its distance component (space measurement) or into its time component
(time measurement).
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In the quest to square the circle, the standard length unit we decided to use was the radius of the circle
that we first drew with the compass on the embankment. This radius is what we used to make a rod and the
rod became our unit length. This is our fixed measure unit in space; it is known, and it is simply the rod in
its rest frame. We did not need to know anything about ⇡ to construct this rod.

Next we brought the rod on board the train. Next we mount a laser receiver clock on each end of the
rod. Assume further that we would have a light source on the embankment going in the transverse direction
of the train track towards the train. To get the velocity needed to square the circle, we need to measure the
time interval it takes for the rod on board the train to pass the light source on the ground. This time interval
we must get exactly to

t =
L

c
q
1� 1

⇡2

(21)

Since this time interval contains ⇡, we would need clocks with infinite precision, as well as an infinite
number of measurements and adjustments in the velocity, to reach this velocity exactly. Further, the two
clocks on the rod must be Einstein synchronized every time we change the velocity of the train. Indeed, it
would require, an infinite number of time measurements to get to the time interval in equation 21. So this
means that we have basically moved the problem from space (measurements) to time (measurements).

So certainly one can claim that we have not Squared the Circle. However, our method has changed the
quest completely. The original Square the Circle quest is about the impossibility of constructing certain
measurements like

p
⇡ in space, while we have moved the quest into the measurement of a time interval

that is connected to ⇡. This is in our view quite remarkable. Challenges in space measurements and spatial
constructions can be transformed into challenges in time measurements.

We have not seen the possibility of moving troublesome constants from a space framework to a time
framework discussed in this way in the literature before. With an optimistic view, this can potentially open
up new possibilities in geometry and other scientific fields, at least from an interpretation standpoint. The
challenge of measuring something in space can be shifted to a challenge of measuring something in time and
vice versa. We can swap space challenges with time challenges and see where that leads us, particularly with
regard to some classic “impossible” problems.

Squaring the circle, and doubling the cube have parallels to the Gordian Knot. The Gordian Knot is an
‘impossible‘ knot that can only be solved by thinking outside the box (I mean outside the sphere). An oracle
prophesied that the one who untied the Gordian Knot would become the king of Asia. According to one
fable, Alexander the Great sliced the knot with a sword stroke and thereby ‘solved” the problem. Possibly
some would claim that I have not Squared the Circle, but using the sword of time I have sliced the Squaring
of the Circle, the Doubling of the Cube, the Boxing of the Sphere, and the Equilateral Triangling of the
Circle.

If the prophecy is true, then I should become the King of the Circle!

14 Is length contraction for real?

A question that often comes up when someone mentions length contraction is if length contraction is for real.
This is an important question that we not will resolve here, but that we will mention briefly. We have to
be very careful with what we mean about “real”. We will claim that Einstein length contraction is real in
the sense that this is what we will observe with Einstein synchronized clocks. Both length contraction and
length transformation require a minimum of two clocks in the cases discussed here.

We need two clocks as we also need to know the relative speed between the frames. Part of the length
contraction and length transformation has to do with the synchronization of clocks and relativity of simul-
taneity. After studying the subject carefully for years, we are convinced that our conclusion above holds as
long as we use Einstein synchronized clocks and special relativity theory is based on Einstein synchronized
clocks.

One should think this question was fully resolved, and possibly it is, but reading through a series of
university text books covering special relativity theory one can at least see there are still slightly di↵erent
views among physicists on whether length contraction is real or not. For example Shadowitz (1969) claims

If the measurements are optical then, to avoid an incorrect result, the light photons must leave
the two points at the same time, as measured by the observers: they must leave simultaneously. It
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is clear that the process of length measurement is di↵erent from the process of seeing. Amazingly,
this distinction was not noticed until 1959, when it was first pointed out by James Terrell.14

Further Lawden (1975) claims

The contraction is not to be thought of as the physical reaction of the rod to its motion and as
belonging to the same category of physical e↵ects as the contraction of a metal rod when cooled.
It is due to changed relationship between the rod and the instruments measuring its length.15

While for example Rindler (2001) claims

This length contraction is no illusion, no mere accident of measurement or convention. It is
real in every sense. A moving rod is really short! It could really be pushed into a hole at rest in
the lab into which it would not fit if it were moving and shrunk.16

and Freedman and Young (2016) claims

Length contraction is real! This is not an optical illusion! The ruler really is shorter in the
reference frame S than it is in S‘.17

and Harris (2008) claims

It is a grave mistake to dismiss length contraction as an optical illusion caused by delays in
light traveling to the observer from a moving object. This e↵ect is real.18

On the other hand Krane (2012) seems to partly claim something di↵erent

Length contraction suggests that the objects in motion are measured to have shorter length
than they do at rest. The objects do not actually shrink; there is merely a di↵erence in the length
measured by di↵erent observers. For example, to observers on Earth a high-speed rocket ship
would appear to be contracted along its direction of motion, but to an observer on the ship it is
the passing Earth that appears to be contracted.19

Einstein length contraction will be observed as described also in this paper as long as we use Einstein syn-
chronized clocks. Einstein length contraction is reciprocal between frames, while for example the FitzGerald
and Larmor use of length contraction is not reciprocal, because in ether theories one has a preferred reference
frame. In special relativity theory any frame watching an object in another frame it will appear contracted.
A frame making marks in the other frame will, on the other hand, seem expanded. However this length
expansion is due to length transformation as well as length contraction. Length contraction and length
transformations are linked, but they are not the same.20

In our case we are actually making a circle in the rest frame of the circle so here there should be no
disputes. The square we are first making on the train, but we are transferring it to the embankment by
lasers in solution two. These laser pens are fired simultaneously as observed from the pen. The pen is

the train or even a printer head that travels at speed c
q
1� L4

⇡2 relative to the paper. The lasers are not

fired simultaneously as observed from the embankment and this is the reason that we get a rectangle on
the embankment. Our theory is fully consistent with Einstein’s special relativity theory, and could at least
hypothetically be performed in practice with the expected result we have described above.

14See Shadowitz (1969) page 61.
15See Lawden (1975) page 12.
16See Rindler (2001) page 62.
17Freedman and Young (2016) page 1229.
18Harris (2008) page 11.
19Krane (2012) page 35.
20See also Haug (2014).



17

15 Conclusion

It is possible to Square the Circle by constructing the circle and the square from two di↵erent reference frames

traveling at speed v = c
q
1� L4

⇡2 or v = c
q
1� 1

⇡ relative to each other.21 More precisely it is not possible to

Square the Circle in Euclidean space using only a compass and straightedge, but it is possible to Square the
Circle in space-time using compass, straightedge and Einstein synchronized clocks. We could argue that this
is bending the rules and moving the problem of transcendental ⇡ into a transcendental velocity between the
reference frames rather than directly into the construction of the Circle and the Square. Still, one could just
as well argue that the previous attempts to square the circle have not taken into account that observations
of space and time are a↵ected by motion and that space and time are closely connected.

Have I really Squared the Circle? Have I made the Impossible Possible? Only space-time can tell if this
paper leads to celebration, silence, death, or an intellectual War similar to that between Hobbes and Wallis.
Before you shoot the messenger make sure you have studied length contraction, length transformation and
relativity of simultaneity rigorously.

More important than if we have Squared the Circle or not is that we have shown that any troublesome
constant like ⇡,

p
⇡,

p
2 can be moved from the space dimension and into the time dimension. The very

essence of the paper is that space challenges can be replaced by time challenges or vice versa.
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