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In the present paper we consider the massless fields described by two types of potentials with different 
space-time properties and different Lorentz transformations. In particular, we discuss the consequences 
of such approach in application to the electromagnetic field and weak gravity. The possible application 
for the description of dark matter and dark energy is discussed. 

1. Introduction 

There is some asymmetry between Lorentz transformations for potentials and field strengths in 
electrodynamics. The potentials are transformed as the components of four-vector while the field 
strengths as the component of four-tensor [1]. However, recently we proposed an alternative approach to 
describe the fields on the basis of sixteen component sedeonic potentials, which uses both types of 
Lorentz transformations [2]. In particular, it was shown that the fields having a massive photon can be 
described by sedeonic wave equation, which can be represented as a system of equations similar to the 
Maxwell's equations [3]. 

In the present paper we consider the description of massless fields on the basis of equations obtained 
as the limiting transition from the sedeonic equations for massive field.  

2. Algebra of apace-time sedeons 

The algebra of sedeons [2, 4] encloses four groups of values, which are differed with respect to spatial 
and time inversion.  
 Absolute scalars ( )V and absolute vectors ( )V


 are not transformed under spatial and time inversion.  

 Time scalars ( )Vt  and time vectors ( )Vt


 are changed (in sign) under time inversion and are not 

transformed under spatial inversion.  
 Space scalars ( )Vr  and space vectors ( )Vr


 are changed under spatial inversion and are not 

transformed under time inversion.  
 Space-time scalars ( )Vtr  and space-time vectors ( )Vtr


 are changed under spatial and time inversion. 

Here indexes t  and r  indicate the transformations ( t  for time inversion and r  for spatial inversion), 
which change the corresponding values. All introduced values can be integrated into one space-time 
sedeon V , which is defined by the following expression:  

V V V V V V V V       t t r r tr trV
   

 .    (2.1) 

Let us introduce a scalar-vector basis 0a , 1a
 , 2a

 , 3a
 , where the element 0a  is an absolute scalar unit 

( 10a ), and the values 1a
 , 2a

 , 3a
  are absolute unit vectors generating the right Cartesian basis. Further 

we will indicate the absolute unit vectors by symbols without arrows as 1a , 2a , 3a . We also introduce the 
four space-time units 0e , 1e , 2e , 3e , where 0e  is an absolute scalar unit ( 10e ); 1e  is a time scalar unit 
( 1 te e ); 2e  is a space scalar unit ( 2 re e ); 3e  is a space-time scalar unit ( 3 tre e ). Using space-time 
basis e  and scalar-vector basis a  (Greek indexes , 0,1, 2, 3  ), we can introduce unified sedeonic 
components V  in accordance with following relations: 



 2 

  00V V 0 0e a ,        
   01 02 03V V V V  0 1 2 3e a a a


,      
  10V Vt 1 0e a ,        

 11 12 13V V V V  t 1 1 2 3e a a a


,        (2.2) 
  20V Vr 2 0e a ,        
   21 22 23V V V V  r 2 1 2 3e a a a


,      
  30V Vtr 3 0e a ,        
   31 32 33V V V V  tr 3 1 2 3e a a a


.      

Then sedeon (2.1) can be written in the following expanded form: 

          00 01 02 03V V V V   0 0 1 2 3V e a a a a       
          10 11 12 13V V V V   1 0 1 2 3e a a a a      (2.3) 

              20 21 22 23V V V V   2 0 1 2 3e a a a a       
              30 31 32 33V V V V   3 0 1 2 3e a a a a .      

The sedeonic components V  are numbers (complex in general). Further we will omit units 0a  and 0e  for 
the simplicity. The important property of sedeons is that the equality of two sedeons means the equality of 
all sixteen components V .  

Let us consider the multiplication rules for the basis elements na  and ke  (Latin indexes n, k = 1, 2, 3). 
The unit vectors na  have the following multiplication and commutation rules: 

2 1 n n na a a ,              (2.4) 

 n k k na a a a (for n k ),             (2.5) 

i1 2 3a a a ,  i2 3 1a a a ,  i3 1 2a a a ,                  (2.6) 

while the space-time units ke  satisfy the following rules: 
2 1 k k ke e e ,              (2.7) 

 n k k ne e e e (for n k ),             (2.8) 

i1 2 3e e e ,  i2 3 1e e e ,  i3 1 2e e e .                  (2.9) 

Here and further the value i  is imaginary unit 2( 1)i   . The multiplication and commutation rules for 
sedeonic absolute unit vectors na  and space-time units ke  can be presented for obviousness as the tables 
1 and 2.  

Table 1. Multiplication rules for absolute unit vectors na . 
 
 
 
 
 
 
 

Table 2. Multiplication rules for space-time units ke . 

 
 
 
 
 
 
 

 1e  2e  3e  

1e  1 i 3e  i 2e  

2e  i 3e  1 i 1e  

3e  i 2e  i 1e  1 
 

 1a  2a  3a  

1a  1 i 3a  i 2a  

2a  i 3a  1 i 1a  

3a  i 2a  i 1a  1 
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Note that units ke  commute with vectors na : 

n k k na e e a               (2.10) 
for any n  and k . 

In sedeonic algebra we assume the Clifford multiplication of vectors. The sedeonic product of two 
vectors A


 and B


 can be presented in the following form: 

 AB A B A B     
    

.         (2.11) 

Here we denote the sedeonic scalar multiplication of two vectors (internal product) by symbol “  ” and 
round brackets 

  1 1 2 2 3 3A B A B A B A B   
 

,        (2.12) 

and sedeonic vector multiplication (external product) by symbol “ ” and square brackets 

     2 3 3 2 3 1 1 3 1 2 2 1A B i A B A B i A B A B i A B A B        
 

.     (2.13) 

Note that in sedeonic algebra the expression for the vector product differs from analogous expression in 
Gibbs vector algebra. For the transition from sedeons to the common used Gibbs-Heaviside vector 
algebra the change 

i A A         
  

     (2.14) 

should be made in all vector expressions. 

3. Sedeonic equations for massive field 
To begin with we shortly recall the sedeonic equations for massive field [3]. Let us consider the massive 
field with mass of quantum 0m . We introduce the following operators 

0

1 ,

,

,

c t

x y z
m c

m


 


  

   
  



1 2 3a a a




      (3.1) 

where c  is speed of light,   is the Plank constant. Then the sedeonic second-order wave equation for 
massive field can be presented as [3]: 

  i i m i i m        t r tr t r tre e e e e e W J
 

  ,    (3.2) 

where W  is a sedeonic potential, J  is a phenomenological sedeonic source of massive field. Let us 
choose the potential as  

1 2 3 4 1 2 3 4ia ia a ia A A A iA       t r tr r t trW e e e e e e
   

 ,    (3.3) 

where components Sa  and SA


 are real functions of coordinates and time. Here and further the index 
S = 1, 2, 3, 4. Also we take the source in the following form:  

1 2 3 4 1 2 3 4= i i i j j j j i          t r tr r t trJ e e e e e e
   

 ,   (3.4) 

where S S4    ( k   is the volume density of charges) and S S

4j j
c
 

 
 ( Sj


 is volume density of currents). 

Let us introduce the scalar S  and vector SA


 field strengths according the following definitions: 
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1 1 1 4

2 2 2 3

3 3 3 2

4 4 4 1

1 1 1 2 4

2 2 2 1 3

3 3 3 4 2

4 4 4 3 1

,

,

,

,

,

,

,

.

a A ma

a A ma

a A ma

a A ma

E A a i A mA

E A a i A mA

E A a i A mA

E A a i A mA









     

     

     

     

       
       
       
       









    

    

    

    

    (3.5) 

Taking into account (3.5) we get that  

   1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 ,

i i m ia ia a ia A A A iA

i i i E iE E E   

          

        

t r tr t r tr r t tr

tr t r tr r t

e e e e e e e e e

e e e e e e

   

       (3.6) 

and the initial wave equation (3.2) is reduced to the following equation: 

  1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 .

i i m i i i E iE E E

i i i j j j j i

   

   

          

        

t r tr tr t r tr r t

t r tr r t tr

e e e e e e e e e

e e e e e e

    

       (3.7) 

Producing the action of the operator on the left side of equation (3.7) and separating the values with 
different space-time properties, we obtain a system of equations for the field strengths, similar to the 
system of Maxwell equations in electrodynamics: 

 
 
 
 

1 1 4 1

2 2 3 2

3 3 2 3

4 4 1 4

1 1 2 4 1

2 2 1 3 2

3 3 4 2 3

4 4 3 1 4

,

,

,

,

,

,

,

.

E m

E m

E m

E m

E i E mE j

E i E mE j

E i E mE j

E i E mE j

  

  

  

  









     

    

     

    

        
        
        
        

 

 

 

 

     

     

     

     

    (3.8) 

All these equations are coupled by the mass terms. From the system of equations (3.8) we can get some 
relations for the energy and momentum of the massive field. First the Pointing theorem is written as  

    
       

2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4 1 1 2 2 3 3 4 4 1 2 3 4

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

1
2

.

E E E E E E E E i E E i E E

E j E j E j E j

       

       

                      

           

            

      
 (3.9) 

Here the volume density of energy is 

 2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1
8

w E E E E   


       
   

,    (3.10) 

and the volume density of energy flux is 

 1 1 2 2 3 3 4 4 1 2 3 44
cp E E E E i E E i E E   


             
        .   (3.11) 

Corresponding expression for the energy gradient is  
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2 4 1 3

1 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 2 2 1 2 1 1 2

3 4 3 3 4

4 2 2w im E E im E E

i E E E E E E

E E E E E E E E

i E i E i E i E

i E E E E



   

   

 

          
            

         

                     
        

    

     

           

       

   

       
4 3 3 4 4

3 3 4 4 3 3 4 4

3 4 4 3 4 3 3 4

1 1 2 2 1 1 2 2 2 1 1 2

3 3 4 4 3 3 4 4 4 3

E E

E E E E E E E E

i E i E i E i E

E E j j i E j i E j

E E j j i E j

 

   

   

   

   

       

                     
              
        

 

           

       

      

    
3 4 .i E j  
 

   (3.12) 

Note that this expression contains two terms with masses. 

4. Two types of Lorentz transformations 

In the frames of sedeonic algebra the transformation of values from one inertial coordinate system to 
another are carried out with the following sedeons [3]: 

*

cosh sinh ,

cosh sinh ,

n

n

 

 

 

 
tr

tr

L e

L e




      (4.1) 

where  tanh 2 /v c  ; v  is velocity of motion along the vector n . The transformed sedeonic potential 
can be presented as  

* W L W L    .      (4.2) 

In the transition from one inertial system to another the components of potential are transformed in 
different ways. The components of the first group (Group I), which comprises 1 2 1 2, , ,a a A A

 
 transformed as 

follows: 

     

     

      

      

1 1 1

2 2 2

1 1 1 1

2 2 2 2

cosh 2 sinh 2 ,

cosh 2 sinh 2 ,

cosh 2 1 sinh 2 ,

cosh 2 1 sinh 2 .

a a n A

a a n A

A A n A n a n

A A n A n a n

 

 

 

 

   

   

     

     





    

    

,   (4.3) 

If we take the x  axis directed along the vector n , then we get 

   

   

   

   

1 1

1 1

2 2

2 2

1 1 12 2

2 2 22 2

1 1 12 2

2 1 22 2

,

,
,
,

1 / ,
1 / 1 /

1 / ,
1 / 1 /

1 / ,
1 / 1 /

1 / .
1 / 1 /

y y

z z

y y

z z

x

x

x x

x x

A A
A A
A A
A A

v ca a A
v c v c

v ca a A
v c v c

v cA A a
v c v c

v cA A a
v c v c

 

 
 

 

  
 

  
 

  
 

  
 

    (4.4) 



 6 

where /v c  . The components of the second group (Group II), which comprises 3 4 3 4, , ,a a A A
 

 
transformed as follows: 

        

        

3 3

4 4

3 3 3 4

4 4 4 3

,
,

cosh 2 cosh 2 1 sinh 2 ,

cosh 2 cosh 2 1 sinh 2 .

a a
a a

A A n A n i n A

A A n A n i n A

  

  

 
 

        
        

     

     

  (4.5) 

For the x  axis directed along the vector n  we get  

   

   

   

   

3 3

4 4

3 3

4 4

3 3 42 2

3 3 42 2

4 4 32 2

4 4 32 2

,
,

,
,

1 / ,
1 / 1 /

1 / ,
1 / 1 /

1 / ,
1 / 1 /

1 / .
1 / 1 /

x x

x x

y y z

z z y

y y z

z z y

a a
a a
A A
A A

v cA A A
v c v c

v cA A A
v c v c

v cA A A
v c v c

v cA A A
v c v c

 
 
 
 

  
 

  
 

  
 

  
 

    (4.6) 

Thus, these two groups are differed by their space-time properties and by Lorentz transformations. 
Similarly, еру field sources are also divided into two groups differing by Lorentz transformations: 

     
     

      

      

1 1 1

2 2 2

1 1 1 1

2 2 2 2

cosh 2 sinh 2 ,

cosh 2 sinh 2 ,

cosh 2 1 sinh 2 ,

cosh 2 1 sinh 2 ,

n j

n j

j j n j n n

j j n j n n

   

   

  

  

   

   

     

     





    

    

,   (4.7) 

and 

        
        

3 3

4 4

3 3 3 4

4 4 4 3

,
,

cosh 2 cosh 2 1 sinh 2 ,

cosh 2 cosh 2 1 sinh 2 .

j j n j n i n j

j j n j n i n j

 
 

  

  

 
 

        
        

     

     

 (4.8) 

Also we have the following Lorentz transformations for the field strengths: 

       

       

1 1

2 2

1 1 1 2

2 2 2 1

,
,

cosh 2 cosh 2 1 sinh 2 ,

cosh 2 cosh 2 1 sinh 2 ,

E E m E m i m E

E E m E m i m E

 
 

  

  

 
 

        
        

     

     

 (4.9) 

and 
     

     

     

     

3 3 3

4 4 4

3 3 3 3

4 4 4 4

cosh 2 sinh 2 ,

cosh 2 sinh 2 ,

cosh 2 1 sinh 2 ,

cosh 2 1 sinh 2 .

m E

m E

E E m E m m

E E m E m m

   

   

  

  

   

   

     

     





    

    

   (4.10) 
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If we take the x  axis directed along the vector n , then we get following Lorentz transformations for the 
components of the field strengths:  

   

   

   

   

1 1

2 2

1 1

2 2

1 1 22 2

1 1 22 2

2 2 12 2

2 2 12 2

,
,

,
,

1 / ,
1 / 1 /

1 / ,
1 / 1 /

1 / ,
1 / 1 /

1 / ,
1 / 1 /

x x

x x

y y z

z z y

y y z

z z y

E E
E E

v cE E E
v c v c

v cE E E
v c v c

v cE E E
v c v c

v cE E E
v c v c

 
 
 
 
 
 

  
 

  
 

  
 

  
 

    (4.11) 

and 

   

   

   

   

3 3

3 3

4 4

4 4

4 4 42 2

3 3 32 2

3 3 32 2

4 4 42 2

,

,
,

,
1 / ,

1 / 1 /

1 / ,
1 / 1 /

1 / ,
1 / 1 /

1 / .
1 / 1 /

y y

z z

y y

z z

x

x

x x

x x

E E
E E
E E
E E

v cE
v c v c

v cE
v c v c

v cE E
v c v c

v cE E
v c v c

 

 





 

 
 

 

  
 

  
 

  
 

  
 

,    (4.12) 

5. Sedeonic equations for massless electromagnetic fields 

If the mass of field quantum 0m  is zero, then the equation (3.2) describes the massless field. In this case 
we have 

   .i i      t r t re e e e W J
 

        (5.1) 

The sedeonic potential W  and field source J  have the same space-time structure (3.3)-(3.4) and the same 
Lorentz transformations (4.3)-(4.6). In massless case we can define two groups of field strengths 

 
 

1 1 1

2 2 2

1 1 1 2

2 2 2 1

,

,

,

,

a A

a A

E A a i A

E A a i A





    

    

      
      





   

   

     (5.2) 

and 
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3 3 3

4 4 4

3 3 3 4

4 4 4 3

,

,

,

,

a A

a A

E A a i A

E A a i A





    

    

      
      





   

   

     (5.3) 

which are satisfy the two independent systems of Maxwell equations: 

 
 

1 1 1

2 2 2

1 1 2 1

2 2 1 2 ,

,

,

,

E

E

E i E j

E i E j

 

 





   

   

       
       

 

 

    

    

     (5.4) 

and 
 
 

3 3 3

4 4 4

3 3 4 3

4 4 3 4

,

,

,

.

E

E

E i E j

E i E j

 

 





    

   

       
       

 

 

    

    

     (5.5) 

For simplicity let us consider the equations without magnetic charges and magnetic currents 
( 2 2 4 40, 0, 0, 0j j    

 
). Taking into account the Lorentz gauge  

 
 
 
 

1 1 1

2 2 2

3 3 3

4 4 4

0,

0,

0,

0,

a A

a A

a A

a A









     

    

    

    









      (5.6) 

the equations (5.4) and (5.5) can be rewritten as 

 
 

1 1

2

1 2 1

2 1 ,

,

0,

,

0

E

E

E i E j

E i E

  

  

      
     

 

 

   

  

      (5.7) 

and 
 
 

3 3

4

3 4 3

4 3

,

0,

,

0.

E

E

E i E j

E i E

  

  

      
     

 

 

   

  

      (5.8) 

Then the relation for the gradient of volume density of energy (3.12) takes the following form:  

 
       
       

2 2 2 2
1 2 3 4 1 2 3 4

1 1 2 2 1 1 2 2

3 3 4 4 3 3 4 4

1 1 2 1 3 3 4 3

1
2

.

E E E E i E E i E E

E E E E E E E E

E E E E E E E E

E i E j E i E j 

               

       

        

            

        

           

           

    

    (5.9) 
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It can be clearly seen that in this expression the field strengths and charges of first group are not mixed 
with the field strengths and charges of second group. So the expressions for the Lorentz forces have the 
following form: 

eI 1 1 2 1F E i E j     
   

,     (5.10) 

eII 3 3 4 3F E i E j     
   

.     (5.11) 

6. Sedeonic equations for weak gravitational fields 

The weak gravitational field can be described by the following sedeonic equation [5]:  

  i i       t r t re e e e V I
 

  ,      (6.1) 

where V  is a sedeonic potential, I  is a phenomenological sedeonic source of gravitational field. Let us 
choose the potential as  

1 2 3 4 1 2 3 4ib ib b ib B B B iB       t r tr r t trV e e e e e e
   

 ,    (6.2) 

where components Sb  and SB


 are real functions of coordinates and time (index S = 1, 2, 3, 4). Also we 
take the source in the following form:  

1 2 3 4 1 2 3 4= i i i l l l l i          t r tr r t trI e e e e e e
   

 ,   (6.3) 

where S S4    ( k   is the volume density of gravitational charges) and S S

4l l
c
 

 
 ( Sl 


 is volume density 

of gravitational currents). The sedeonic potential V  and field source I  have the same space-time 
structure (3.3)-(3.4) and the same Lorentz transformations (4.3)-(4.8). Let us introduce two groups of 
scalar Sg  and vector SG


 field strengths according to the following definitions: 

 
 

1 1 1

2 2 2

1 1 1 2

2 2 2 1

,

,

,

,

g b B

g b B

G B b i B

G B b i B

    

    

      
      

 

 

    

    

     (6.4) 

and 

 
 

3 3 3

4 4 4

3 3 3 4

4 4 4 3

,

,

,

.

g b B

g b B

G B b i B

G B b i B

    

    

      
      

 

 

    

    

     (6.5) 

These field strengths satisfy the two independent systems of Maxwell equations: 

 
 

1 1 1

2 2 2

1 1 2 1

2 2 1 2 ,

,

,

,

g G

g G

G g i G l

G g i G l





    

    

      
      





  

  

     (6.6) 

and 
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3 3 3

4 4 4

3 3 4 3

4 4 3 4

,

,

,

.

g G

g G

G g i G l

G g i G l





     

    

      
      





  

  

     (6.7) 

For simplicity let us consider the equations without gravitomagnetic charges and currents 
( 2 2 4 40, 0, 0, 0l l    

 
). Taking into account the Lorentz gauge  

 
 
 
 

1 1 1

2 2 2

3 3 3

4 4 4

0,

0,

0,

0,

g b B

g b B

g b B

g b B

     

     

     

     

 

 

 

 

      (6.8) 

the equations (6.6) and (6.7) can be rewritten as 

 
 

1 1

2

1 2 1

2 1 ,

,

0,

,

0

G

G

G i G l

G i G

   

  

     
     





 

 

      (6.9) 

and 
 
 

3 3

4

3 4 3

4 3

,

0,

,

0.

G

G

G i G l

G i G

   

  

     
     





 

 

      (6.10) 

Then the gradient of gravitational energy is  

 
       
       

2 2 2 2
1 2 3 4 1 2 3 4

1 1 2 2 1 1 2 2

3 3 4 4 3 3 4 4

1 1 2 1 3 3 4 3

1
2

.

G G G G i G G i G G

G G G G G G G G

G G G G G G G G

G i G j G i G j 

               

         

       

           

       

          

          

    

   (6.11) 

It is clearly seen that in this expression the fields and charges of first group are not mixed with the fields 
and charges of second group. So the expressions for the Lorentz forces have the form: 

gI 1 1 2 1F G i G l     
 

,      (6.12) 

gII 3 3 4 3F G i G l     
 

.      (6.13) 

7. Two types of photino and gravitino 

The neutrino field has two component connected with electromagnetic field (photino) and gravitational 
field (gravitino). The free photino and gravitino are described by the sedeonic first-order equations [5]: 

  0i    t re e W


 ,       (7.1) 

  0i    t re e V


 ,      (7.2) 
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which are equivalent to the following systems: 

 
 

1 1

2 2

1 1 2

2 2 1

0,

,

0,

0,

a A

a A

A a i A

A a i A

    

   

      
      





  

  

     (7.3) 

 
 

3 3

4 4

3 3 4

4 4 3

0,

0,

0,

0,

a A

a A

A a i A

A a i A

    

   

      
      





  

  

     (7.4) 

 
 

1 1

2 2

1 1 2

2 2 1

0,

0,

0,

0,

b B

b B

B b i B

B b i B

    

    

      
      

 

 

   

   

     (7.5) 

 
 

3 3

4 4

3 3 4

4 4 3

0,

0,

0,

0.

b B

b B

B b i B

B b i B

    

   

      
      

 

 

   

   

     (7.6) 

As seen there are two types of photinos and two types of gravitinos, which are differed in Lorentz 
transformations.  

8. Dark energy and dark matter 

We can suppose the existence of two types of electrical charges 1 3,   (and corresponding currents 1 3,j j
 

) 
and two types of gravitational charges 1 3,   (and corresponding currents 1 3,l l

 
). The electrical charges 1  

and 3  do not interact neither by electrostatic Coulomb forces nor by means of electromagnetic waves 
exchanging. Similarly, the gravitational charges 1  and 3  do not interact neither by gravitational forces 
nor by means of gravitational waves exchanging. Thus, we can suppose the existence of four types of 
substances with different sets of electrical and gravitational charges  

I -  1 1,  ; II -  1 3,  ; III -  3 1,  ; IV -  3 3,  . 

Assuming for definiteness that the first set  1 1,   is realized for the matter in terrestrial conditions, we 
can expect that there are few more types of substances.  

1. The matter  1 3,   interacts with Earth matter by means of electromagnetic fields but does not 
interact by gravitational fields. This matter is visible and levitates in the Earth gravitational field.  

2. The matter  3 1,   interacts with Earth matter by means of gravitational fields but does not interact 
by electromagnetic fields. This matter is gravitationally attracted to the Earth and is invisible.  

3. The matter  3 3,   does not interact with Earth matter neither by means of electromagnetic fields, 
nor by gravitational fields. This substance is invisible and indifferent to the Earth gravitational field.  

To explain the astronomically observed effects associated with dark matter [6, 7] we can accept that in 
the universe there is the  3 1,   substance. The dark energy can be considered as the electromagnetic 
energy connected with 3E


 and 4E


 fields and corresponding neutrinos. 
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7. Conclusion 

Thus, we have shown that in the frames of sedeonic approach the massless fields can be described by two 
types of potentials with different space-time properties and different Lorentz transformations. It allows us 
to suppose the existence of four types of hypothetic matter with different electromagnetic and 
gravitational properties. In particular, this model can be applied to the explanation of the dark matter and 
dark energy properties. 

Acknowledgements 

The authors are very thankful to Galina Mironova for help and moral support. 

References 

1. L.D. Landau, E.M. Lifschitz, The classical theory of fields, Pergamon Press, Oxford, 1987. 
2. V.L. Mironov, S.V. Mironov, Reformulation of relativistic quantum mechanics equations with non-

commutative sedeons, Applied Mathematics, 4(10C), 53-60 (2013). 
3. S.V. Mironov, V.L. Mironov, Sedeonic equations of massive fields, International Journal of 

Theoretical Physics, 54(1), 153-168 (2015). 
4. V.L. Mironov, S.V. Mironov, "Space-Time Sedeons and Their Application in Relativistic Quantum 

Mechanics and Field Theory", Institute for physics of microstructures RAS, Nizhny Novgorod, 2014. 
Available at http://vixra.org/abs/1407.0068 

5. V.L. Mironov, S.V. Mironov, Sedeonic equations of gravitoelectromagnetism, Journal of Modern 
Physics, 5(10), 917-927 (2014). 

6. V. Trimble, Existence and nature of dark matter in the universe, Annual Review of Astronomy and 
Astrophysics, 25, 425–472 (1987). 

7. K. Freese, M. Lisanti, C. Savage, Colloquium: Annual modulation of dark matter, Reviews of Modern 
Physics, 85, 1561-1581 (2013). 

 


