Each system is Hamiltonian, and it is quantizable. Quantum systems are classical systems

Abstract
I prove that the classical trajectories are a projection of an Hamiltonian trajectory of higher dimension.

Hamiltonian System

Each trajectory in a \mathcal{N}-dimensional space can be written:

$$
\left\{\begin{array}{l}
y^{1}=f^{1}(t) \tag{1}\\
\vdots \\
y^{\mathcal{N}}=f^{\mathcal{N}}(t)
\end{array}\right.
$$

each coordinates motion is the solution of a linear differential equation (there is ever a high order linear differential equation that have the solution f^{s}, because the differential equation have solution a sum of Taylor, Fourier and Laplace series, and a non-linear differential equation is a best approximation); so:

$$
\begin{gather*}
0=\mathcal{F}^{c}\left(f^{c}, \dot{f}^{c}, \ddot{f}^{c}, \cdots\right)=a_{10 \ldots}^{c}+a_{010 \ldots}^{c} f^{c}+a_{0010 \cdots}^{c} \dot{f}^{c}+\cdots+a_{0101 \ldots}^{c} f^{c} \ddot{f}^{c}+\cdots \tag{2}\\
0=\mathcal{F}^{c}\left(f^{c}, \dot{f}^{c}, \ddot{f}^{c}, \cdots\right)=\sum_{i_{0}, \cdots, i_{n}} a_{i_{0}, \cdots, i_{n}}^{c} \frac{d^{i_{0}} f^{c}}{d t^{i_{0}}} \cdots \frac{d^{i_{n}} f^{c}}{d t^{i_{n}}} \tag{3}
\end{gather*}
$$

the derive of the differential equation is linear in the higher derivative:

$$
\begin{gather*}
0=\frac{d \mathcal{F}^{c}\left(f^{c}, \dot{f}^{c}, \ddot{f}^{c}, \cdots\right)}{d t}=\frac{d}{d t} \sum_{i_{0}, \cdots, i_{n}} a_{i_{0}, \cdots, i_{n}}^{c} \prod_{s=1}^{n}\left(\frac{d^{s} f^{c}}{d t^{s}}\right)^{i_{s}} \tag{4}\\
0=\sum_{k, i_{0}, \cdots, i_{n}} a_{i_{0}, \cdots, i_{n}} \prod_{s=1}^{n} i_{k}\left(\frac{d^{s} f^{c}}{d t^{s}}\right)^{i_{s}-\delta_{s k}} \frac{d^{k+1} f^{c}}{d t^{k+1}} \tag{5}\\
\frac{d^{\mathcal{N}} f^{c}}{d t^{\mathcal{N}}}=\mathcal{G}^{c}\left(f^{c}, \frac{d f^{c}}{d t}, \ldots, \frac{d^{N-1} f^{c}}{d t^{N-1}}\right) \tag{6}\\
\frac{d^{\mathcal{N}} y^{c}}{d t^{\mathcal{N}}}=\mathcal{G}^{c}\left(y^{c}, \frac{d y^{c}}{d t}, \ldots, \frac{d^{\mathcal{N}-1} y^{c}}{d t^{\mathcal{N}-1}}\right) \tag{7}
\end{gather*}
$$

so that each polynomial differential equation can be write linearly in the maximum derivative; so that:

$$
\left\{\begin{array}{l}
y^{c}=y_{0}^{c} \tag{8}\\
\frac{d y_{0}^{c}}{d t}=y_{1}^{c} \\
\vdots \\
\frac{d y_{s-1}^{c}}{d t}=y_{s}^{c} \\
\vdots \\
\frac{d y_{\mathcal{N}-2}^{c}}{d t}=y_{\mathcal{N}-1}^{c} \\
\frac{d y_{\mathcal{N}-1}}{d t}=\mathcal{G}^{c}\left(y_{0}^{p}, \cdots, y_{\mathcal{N}-2}^{c}\right)=y_{\mathcal{N}}^{c}
\end{array}\right.
$$

this system is the half of an Hamiltonian system \mathcal{H}, that have \mathcal{N} new momenta:

$$
\begin{align*}
& \mathcal{H}=\sum_{c} \sum_{i=0}^{\mathcal{N}-1} p_{i}^{c}\left\{y_{i+1}^{c}+\delta_{i, \mathcal{N}-1}\left[-y_{i+1}^{c}+\mathcal{G}^{c}\right]\right\}=\sum_{c}\left(\sum_{i=0}^{\mathcal{N}-2} p_{i}^{c} y_{i+1}^{c}+p_{\mathcal{N}-1}^{c} \mathcal{G}^{c}\right) \\
& \left\{\begin{array}{l}
\frac{d y_{j \neq \mathcal{N}-1}^{c}}{d t}=\frac{\partial \mathcal{H}}{\partial p_{j}^{c}}=y_{j+1}^{c} \\
\frac{d y_{\mathcal{N}-1}^{c}}{d t}=\frac{\partial \mathcal{H}}{\partial p_{\mathcal{N}-1}^{c}}=\mathcal{G}^{c} \\
\frac{d p_{j \neq \mathcal{N}-1}^{c}}{d t}=-\frac{\partial \mathcal{H}}{\partial y_{j}^{c}}=-p_{\mathcal{N}}^{c} \frac{\partial \mathcal{G}^{c}}{\partial y_{j}^{c}}-p_{j-1}^{c} \\
\frac{d p_{\mathcal{N}-1}^{c}}{d t}=-\frac{\partial \mathcal{H}}{\partial y_{\mathcal{N}-1}^{c}}=-p_{\mathcal{N}-2}^{c}
\end{array}\right.
\end{align*}
$$

the volume of the phase space is an invariant and the sum of the areas is invariant, because of there is a momenta compensation.

The quantum system is obtained using the correspondence principle:

$$
\begin{align*}
& \mathcal{H}=\sum_{c i} p_{i}^{c} y_{i}^{c} \\
& i \hbar \frac{\partial \psi}{\partial t}=-i \hbar \sum_{i c} y_{i}^{c} \frac{\partial \psi}{\partial y_{i}^{c}} \tag{10}\\
& 0=\frac{\partial \psi}{\partial t}+\sum_{i c} y_{i}^{c} \frac{\partial \psi}{\partial y_{i}^{c}}
\end{align*}
$$

The Hamilton-Jacobi equation, that give the classical solution of the Hamiltonian, is:

$$
\begin{gather*}
\mathcal{H}=\sum_{i c} p_{i}^{c} y_{i}^{c} \\
\frac{\partial \psi}{\partial t}+H\left(p_{i}^{c}=\frac{\partial \psi}{\partial y_{i}^{c}}, y_{i}^{c}\right)=0 \tag{11}\\
0=\frac{\partial \psi}{\partial t}+\sum_{i c} y_{i}^{c} \frac{\partial \psi}{\partial y_{i}^{c}}
\end{gather*}
$$

in this case the function ψ permit to calculate the momenta values like a gradient of the ψ function. Also in this case the classical solution, and the quantum solution, coincide; and the equation for the amplitude, or the probability, are equal because of the linearity of the equation.

