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Abstract   The shape of a gravity body can play a critical role in affecting the movement of an 

object moving in its vicinity of close range.   If the shape is disregarded while the gravity body is 

regarded as a point mass regardless of the distance between the two bodies, the concept of dark 

matter may find its chance to surface up in theoretical treatment concerning gravity.      

 

Key words      on-axis effect, off-axis effect, dark matter, “normal” gravitational force, “normal” 

speed,  flat rotation 

 

Introduction   Through studying several special cases on the relationship between shape and 

gravitation, we will explore how the materials at a certain distance from the center of the Milky 

Way galaxy show up with speeds higher than “normal”.   The so called “normal” speed referred 

to in this article is the speed conventionally believed to be possessed by an object that is moving 

around a point mass in a large distance.  The speed so obtained is derived according to 

Newtonian gravitational law.     

Since the situation involving such conventional treatment repeats many times in this 

article, the term “normal” speed or “normal” force will be used here with the inseparable 

quotation marks.  Almost all cases presented here are hypothetically assumed in geometry, but 

they sure would lead us to have a peek at how the shape of a gravity body can lever the 

movement of some objects that appear in its vicinity of close range.   Being so levered, though, 

all these movements cannot get away from the governing of Newton’s gravitational law. Finally, 

we will see how theoretically impossible it is for the Magellanic Clouds to have ever possessed 

any satellite status about the Milky Way.   All this study is proposed without the involvement of 

dark matter. 

 

 

Case 1.   Gravity on the Axis of a Bar 

In Fig. 1, object A of mass m is on the 

axis of a homogeneous bar with a distance D 

from one end of this bar.  The bar of mass M  has 

a length of L(=2a) .  The gravitational force 
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between A and each differential mass element dm of the bar is 

𝑑𝑓 = 𝐺
𝑚 ∙ 𝑑𝑀

𝑥2
                        ( 𝐸𝑞.  1) 

where G is the universal gravitational constant. 

Since 𝑑𝑀 =
𝑀

𝐿
𝑑𝑥, we get  

𝑑𝑓 = 𝐺
𝑚𝑀

𝐿𝑥2
𝑑𝑥                        ( 𝐸𝑞.  2) 

Thus the total force F1-1 between A and the bar is  

𝐹1−1 = ∫ 𝐺
𝑚𝑀

𝐿𝑥2
𝑑𝑥                      

𝐷+2𝑎

𝐷

 

 

= 𝐺
𝑚𝑀

𝐷(𝐷 + 2𝑎)
 

 

= 𝐺
𝑚𝑀

𝐷2 + 2𝑎𝐷
               ( 𝐸𝑞.  3)    

 

The tangential speed v1-1 that is large enough for A to resist the bar’s gravitational pull 

will lead to:  

𝑚
𝑣1−1
2

𝐷 + 𝑎
= G

𝑚𝑀

𝐷2 + 2𝑎𝐷
          (𝐸𝑞.     4)         

And therefore,  

𝑣1−1
2 =

𝐺𝑀(𝐷 + 𝑎)

𝐷2 + 2𝑎𝐷
         (𝐸𝑞.       5)     

Had the bar become a point mass and stayed at where its original mass center is, the 

gravitational force F1-2 between it and A should be  

𝐹1−2 = 𝐺
𝑚𝑀

(𝐷 + 𝑎)2
             (𝐸𝑞.        6) 

The centrifugal force corresponding to F1-2 for A to resist the pull of the point mass is 

  

𝑣1−2
2 =

𝐺𝑀

𝐷 + 𝑎
         (𝐸𝑞.       7)                  
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The comparison between v1-1 and v1-2 would lead to  

    
𝑣1−1
2

𝑣2−2
2  =

𝐷2 + 2𝑎𝐷 + 𝑎2

𝐷2 + 2𝐷𝑎
           (𝐸𝑞.       8)     

In order to make v1-1  ≈ v1-2 , we need D >>a so that length a becomes trivial in Eq. 3 and 

the bar can then be regarded as a point mass. The smaller the distance D is, the higher the 

magnitude v1-1   needs to become if A is to survive the gravitational pull of the bar.  Once A 

survives the pull at this point, it will retain this higher than “normal” momentum forever until 

something else brakes on it.  

We use the term on-axis effect to name the effect that leads to 𝐹1−1 > 𝐹1−2  and thus also 

leads to 𝑣1−1 > 𝑣1−2, where 𝐹1−2 is the “normal” force and v1-2 is the “normal” speed.     

 

Case 2   Gravity off the Axis of a Bar, Situation 1 

 

Step (a) 

The same two gravity bodies in Fig. 1 are rearranged so that A is located a distance of h 

away directly below the end point J of the bar. (Fig 2-a)   

In Fig 2a, q is the distance between the two mass centers, 

and thus  

𝑞2 = 𝑎2 + ℎ2                (𝐸𝑞.      9) 

Line p represents the distance between the mass center of A and 

the differential element dx of the bar.  Therefore, 

𝑝2 = 𝑥2 + ℎ2                         (𝐸𝑞.    10) 

The gravitational force df1 between dx and A is  

𝑑𝑓1 =
𝐺𝑚

𝑝2
𝑑𝑀 

=
𝐺𝑚

𝑥2 + ℎ2
𝑑𝑀 

=
𝐺𝑚

𝑥2 + ℎ2
  ∙
𝑀

2𝑎
𝑑𝑥             ( 𝐸𝑞.       11) 
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If df1 is projected on q, we get 

𝑑𝑓′
1
= 𝑑𝑓1𝑐𝑜𝑠𝜃 

=
𝐺𝑚

𝑥2 + ℎ2
  ∙
𝑀

2𝑎
𝑑𝑥 ∙

𝑝2 + 𝑞2 − (𝑎 − 𝑥)2

2𝑝𝑞
  

= 
𝐺𝑚

𝑥2 + ℎ2
  ∙
𝑀

2𝑎
𝑑𝑥 ∙

(𝑥2 + ℎ2) + (𝑎2 + ℎ2) − (𝑎 − 𝑥)2

2√𝑥2 + ℎ2 ∙ √𝑎2 + ℎ2
            (𝐸𝑞.      12)        

The total force between A and the segment JK of the bar is  

𝐹2−1 = ∫ 𝑑𝑓′
1

𝑎

0
 

= ∫
Gm

𝑥2 + ℎ2
  ∙
𝑀

2𝑎
 ∙
(𝑥2 + ℎ2) + (𝑎2 + ℎ2) − (𝑎 − 𝑥)2

2√𝑥2 + ℎ2 ∙ √𝑎2 + ℎ2

𝑎

0

 ∙ 𝑑𝑥 

=
𝐺𝑚𝑀

2ℎ√𝑎2 + ℎ2
                                                                                (𝐸𝑞.     13) 

 

 

 

Step (b) 

Fig. 2b is a duplicate of Fig 2a but point x=0 is located at K for calculation convenience.  

In Fig. 2b, s represents the distance between the 

mass center of A and the differential element dx on the bar.  

Therefore,  

𝑠2 = ℎ2 + (𝑎 + 𝑥)2          (𝐸𝑞. 14) 

The gravitational force df2 between dx and A  is  

𝑑𝑓2 =
𝐺𝑚

𝑠2
𝑑𝑀 

=
𝐺𝑚

(𝑎 + 𝑥)2 + ℎ2
𝑑𝑀 

=
𝐺𝑚

(𝑎 + 𝑥)2 + ℎ2
  ∙
𝑀

2𝑎
𝑑𝑥       (𝐸𝑞.     15)     

When df2 is projected on line q, we have 



5 
 

𝑑𝑓′
2
= 𝑑𝑓2𝑐𝑜𝑠∅ 

=
𝐺𝑚

(𝑎 + 𝑥)2 + ℎ2
  ∙
𝑀

2𝑎
𝑑𝑥 ∙

𝑠2 + 𝑞2 − 𝑥2

2𝑠𝑞
  

= 
𝐺𝑚

(𝑎 + 𝑥)2 + ℎ2
  ∙
𝑀

2𝑎
𝑑𝑥 ∙

ℎ2 + (𝑎 + 𝑥)2 + (𝑎2 + ℎ2) − 𝑥2

2√ℎ2 + (𝑎 + 𝑥)2 ∙ √𝑎2 + ℎ2
            (𝐸𝑞.      16)        

The total force between A and the segment KL of the bar is  

𝐹2−2 = ∫ 𝑑𝑓′
2

𝑎

0

 

= ∫
𝐺𝑚

(𝑎 + 𝑥)2 + ℎ2
  ∙
𝑀

2𝑎
 ∙
ℎ2 + (𝑎 + 𝑥)2 + (𝑎2 + ℎ2) − 𝑥2

2√ℎ2 + (𝑎 + 𝑥)2 ∙ √𝑎2 + ℎ2
  ∙ 𝑑𝑥

𝑎

0

 

 

=
𝐺𝑚𝑀

2√𝑎2 + ℎ2√4𝑎2 + ℎ2
                           (𝐸𝑞.      17) 

 

 

 

Step (c) 

The total force between A and the mass center of the bar is F2-3=F2-1+F2-2  and thus 

𝐹2−3 =
𝐺𝑚𝑀

2ℎ√𝑎2 + ℎ2
+

𝐺𝑚𝑀

2√𝑎2 + ℎ2√4𝑎2 + ℎ2
        (𝐸𝑞.       18)       

If A happens to move at speed v2-3 in a direction perpendicular to line q, the centrifugal 

force thus needed to resist the bar’s gravitational pull will lead to:  

𝑚
𝑣2−3
2

√𝑎2 + ℎ2
=

𝐺𝑚𝑀

2ℎ√𝑎2 + ℎ2
+

𝐺𝑚𝑀

2√𝑎2 + ℎ2√4𝑎2 + ℎ2
               (𝐸𝑞.       19) 

Had the bar become a point mass and stayed at where its original mass center is, the 

“normal” gravitational force between A and this point mass will be  

𝐹2−4 = 𝐺
𝑚𝑀

𝑎2 + ℎ2
             (𝐸𝑞.       20) 

The “normal” centrifugal force for A corresponding to F2-4 would lead to 

𝑚
𝑣2−4
2

√𝑎2 + ℎ2
=  𝐺

𝑚𝑀

𝑎2 + ℎ2
       (𝐸𝑞.       21)             
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Thus, we can have the comparison between v2-3 and v2-4 as   

𝑣2−3
2

𝑣2−4
2 =

√𝑎2 + ℎ2

2ℎ
+

√𝑎2 + ℎ2

2√4𝑎2 + ℎ2
        (𝐸𝑞.       22) 

 

Let h=na, where 𝑛 ≠ 0, Eq. 22 leads to  

𝑣2−3
2

𝑣2−4
2 =

√1 + 𝑛2

2𝑛
+
√1 + 𝑛2

2√4 + 𝑛2
          (Eq.     23)   

 

 If n=1, for example, we have 

𝑣2−3
2

𝑣2−4
2 = 1.8            (𝐸𝑄.      24) 

If n=3, however, we will have 

𝑣2−3
2

𝑣2−4
2 = 0.96        (𝐸𝑞.          25) 

If we must introduce dark matter to explain the phenomenon brought up by Eq 24, how do we 

explain the phenomenon brought up by Eq. 25?    

Of course, when 𝑛 → ∞, we no longer need to be concerned with dark matter, as Eq. 23 

would give us a value very close to 1, fitting our conventional concept that the bar can be viewed 

as a point mass. 

If F2-3 is to be resolved on the line connecting A and J, we have 𝐹2−5, where 

𝐹2−5 = 𝐹2−3 ∙
ℎ

√𝑎2 + ℎ2
 

=
𝐺𝑚𝑀

2(𝑎2 + ℎ2)
∙ (1 +

ℎ

√4𝑎2 + ℎ2
 )             (𝐸𝑞.  26) 
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Case 3a   Gravity off the Axis of a Bar, Situation 2 

In Fig. 3a, we duplicate the bar in Fig. 2a or Fig. 2b and “weld” it with the original bar 

end to end and thus form a new bar. 

On each side of the mass center of this longer homogeneous bar, the half bar has a length 

of 2a (therefore the total length is 4a).   

The gravitational force F3-1 between A and the full length new bar is two times of F2-5 

found in Eq.  26 and therefore  

𝐹3−1 = 2 ∙
𝐺𝑚𝑀

2(𝑎2 + ℎ2)
∙ (1 +

ℎ

√4𝑎2 + ℎ2
 )        

          =
𝐺𝑚𝑀

𝑎2 + ℎ2
∙ (1 +

ℎ

√4𝑎2 + ℎ2
 )                                (𝐸𝑞.      27)      

The tangential speed v3-1 that is large enough for A to resist the bar’s gravitational pull 

will lead to 

𝑚
𝑣3−1
2

ℎ
=
𝐺𝑚𝑀

𝑎2 + ℎ2
∙ (1 +

ℎ

√4𝑎2 + ℎ2
 )     (𝐸𝑞.       28) 

Had the bar become a point mass and stayed at where its mass center has been, the 

“normal” gravitational force F3-2 between A and the bar will be  

𝐹3−2 = G
𝑚(2𝑀)

ℎ2
             (𝐸𝑞.       29) 

The “normal” centrifugal force corresponding to  

𝐹3−2 would lead to 

𝑚
𝑣3−2
2

ℎ
=  G

𝑚(2𝑀)

ℎ2
       (𝐸𝑞.       30)             

Thus, we can have the comparison between 

v3-1  and v3-2  as   

𝑣3−1
2

𝑣3−2
2 =

ℎ2(ℎ + √4𝑎2 + ℎ2 )

2(𝑎2 + ℎ2)√4𝑎2 + ℎ2
     (𝐸𝑞.       31) 

Let h=na, where 𝑛 ≠ 0, we have  
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𝑣3−1
2

𝑣3−2
2 =

𝑛3

2(1 + 𝑛2)√4 + 𝑛2
+

𝑛2

2(1 + 𝑛2)  
          (Eq.     32)   

 

Each term on the right side of Eq. 32 is smaller than 0.5.  Therefore, v3-1  is forever smaller than 

v3-2 for any value of n.  Dark matter must fail in explaining phenomenon brought up by Eq. 32. 

 

Case 3b   Off-axis Effect 

 

In Fig. 3b, we are going to compare 

the dynamic status of A between location E 

and F.  

At location E, Eq. 3 gives us the 

gravitational force received by A as 

𝐹3𝑏−1 = 𝐺
𝑚𝑄

(𝑘 − 𝑑)2 + 2𝑎(𝑘 − 𝑑)
      (𝐸𝑎.       33)                

The speed v3b-1 matching the corresponding centrifugal force for A to survive the pull from the 

bar leads to 

𝑣3𝑏−1
2 =

𝐺𝑄𝑘

(𝑘 − 𝑑)2 + 2𝑑(𝑘 − 𝑑)
         (𝐸𝑞.       34)     

 

At location F, Eq. 27 gives us the gravitational force received by A as 
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𝐹3𝑏−2 =
𝐺𝑚(

𝑄
2)

(
𝑑
2)
2 + 𝑘2

∙

(

 1 +
𝑘

√4(
𝑑
2)
2 + 𝑘2

 

)

                                 (𝐸𝑞.      35)   

The speed v3b-2 matching the corresponding centrifugal force for A to survive the pull from the 

bar at F leads to 

𝑣3𝑏−2
2 =

𝐺 (
𝑄
2)𝑘

(
𝑑
2)
2 + 𝑘2

∙

(

 1 +
𝑘

√4(
𝑑
2)
2 + 𝑘2

 

)

      (𝐸𝑞.       36) 

Therefore we can further have  

𝑣3𝑏−1
2

𝑣3𝑏−2
2 =

(𝑑2 + 4𝑘2)√𝑑2 + 𝑘2

2[𝑘2 − 𝑑2](√𝑑2 + 𝑘2 + 𝑘)
            (𝐸𝑞.     37) 

Letting 𝑘 = 𝑛𝑑, where 𝑛 ≠ 0, we have 

𝑣3𝑏−1
2

𝑣3𝑏−2
2 =

(1 + 4𝑛2)√1 + 𝑛2

2(𝑛2 − 1)(𝑛 + √1 + 𝑛2)
          (𝐸𝑞.      38)        

If  𝑛 + 𝑒 > 1, but with 𝑒 → 0,   Eq. 38, easily leads us to have high value for the ratio of the two 

speeds.   

So, if we must regard the bar as a point mass in explaining the speed of A, then, at 

location E we must face inexplicable reason for A’s higher than “normal” speed.  When A moves 

to area near location F, we may perplex even more, because, carrying the momentum equipped at 

E, A now is encountered weaker and weaker than “normal” gravitational pull at F. Indeed, we 

can expect that A is going to fly away from the bar.  For example, if n=2, the ratio in Eq. 38 is 

1.49, or 𝑣3𝑏−1 = 1.22𝑣3𝑏−2.  The bar definitely can no longer bind A with gravitation at F.  

From the behavior of A at location F, should we conclude that some apparent mass from the bar 

has lost its gravity? 

We use the term off-axis effect to name the effect that leads A to receive weaker than 

“normal” gravitational force 𝐹3𝑏−2 at F.    Eq. 38 tells us that the off-axis effect will diminish as  

𝑛 → ∞ and the bar can be regarded as a point mass at remote distance.    
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Case 4   Gravity in the Vicinity of a Cross 

 

In Fig 4, two bars of length 2a and 

mass M each are placed perpendicularly 

crossing each other at their dead centers.  Body 

A is a distance  a   from each bar, and 

therefore it is a distance q away from the mass 

center of the cross, where  𝑞 = √2𝑎 .  Taking 

advantage of the analysis shown with Fig. 2a 

and 2b, replacing h in Eq. 18 with a, we can 

have the gravitational force F4-1 between A and 

the mass center of the cross as  

𝐹4−1 = 2(
𝐺𝑚𝑀

2𝑎√𝑎2 + 𝑎2
+

𝐺𝑚𝑀

2√𝑎2 + 𝑎2√4𝑎2 + 𝑎2
 ) 

      = 𝐺𝑚𝑀(
√5 + 1

𝑎2√10
 )                                                        (𝐸𝑞.       39)    

The tangential speed v4-1  that is large enough for A to resist the cross’s gravitational pull 

will lead to:  

𝑚
𝑣4−1
2

√2𝑎
= 𝐺𝑚𝑀(

√5 + 1

𝑎2√10
 )                                      (𝐸𝑞.        40 )      

Had the cross become a point mass and stayed at where its mass center has been, the 

“normal” gravitational force F4-2  between A and the cross will be   

𝐹4−2 = 𝐺
𝑚(2𝑀)

(√2𝑎)
2 = 

𝐺𝑚𝑀

𝑎2
           (𝐸𝑞.      41) 

The “normal” centrifugal force for A corresponding to F4-2 thus leads to a “normal” tangential speed v4-2 

as shown below 

 

𝑚
𝑣4−2
2

√2𝑎
=  G

𝑚(2𝑀)

2𝑎2
       (𝐸𝑞.       42) 

Thus, we can have the comparison between v4-1 and v4-2 as 
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𝑣4−1
2

𝑣4−2
2 =

√5 + 1

𝑎2√10
     

1
𝑎2

≈ 1.023                     (𝐸𝑞.       43) 

  

Eq. 43 thus shows that, at the location as shown in Fig. 4, the tangential velocity for A to 

survive the pull will not change much whether the gravitational influence is from a cross or a 

point mass of the same mass.  

 

 

Case 5a   Gravity at the Edge of a Cross 

 

In Fig. 5, the gravitational force F5-1 between A and the vertical bar can be calculated 

according to Eq. 3.  In so doing, D in Eq. 3 is 

replaced with  𝐷 = 𝑞 − 𝑎 .  Therefore, we have 

 

 𝐹5−1 = G
𝑚𝑀

(𝑞 − 𝑎)2 + 2𝑎(𝑞 − 𝑎)
 

            =
𝐺𝑚𝑀

 𝑞2 − 𝑎2
                                            ( 𝐸𝑞.  44) 

 

 

 

 

 

 

The gravitational force F5-2 between A 

and the horizontal bar can be calculated 

according to Eq. 27.  In doing so, M in Eq. 27 is 

replaced with M/2, a is replaced with a/2, h is 

replaced with q.  Then,   
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𝐹5−2 =
𝐺𝑚(

𝑀
2 )

(
𝑎
2)
2 + (√2𝑎)2

∙

(

 1 +
√2𝑎

√4(
𝑎
2)
2 + (√2𝑎)

2
 

)

  ≅ 0.403
𝐺𝑚𝑀

𝑎2
               (𝐸𝑞.      45)   

 

The total gravitational force F5-3 between A and both bars together is then 

   𝐹5−3 = 𝐹5−1 + 𝐹5−2 = 1.403(
𝐺𝑚𝑀

𝑎2
) = 1.403 𝐹4−2              (Eq.      46) 

 

where  𝐹4−2 is the gravitational force that A would have received if the cross had been a point mass at the 

mass center of the cross  (See Eq. 41).    

The tangential speed v5-3 that can equip A with enough centrifugal force against the 

cross’s gravitational pull will lead to:   

𝑚
𝑣5−3
2

√2𝑎
= 1.403 (

𝐺𝑚𝑀

𝑎2
)                                          (𝐸𝑞.        47 )      

Applying Eq. 41 in comparing the centrifugal force displayed in Eq. 47, we have   

𝑣5−3
2

𝑣4−2
2 = 1.403,     𝑜𝑟 

      𝑣5−3 = 1.184𝑣4−2                  (𝐸𝑞.      48)                                    

 

Eq. 48 means that, if a point mass becomes a cross shown in our picture, body A needs its 

tangential speed to be 0.184 times higher than 𝑣4−2, the “normal” speed.  If not so, A will be 

gravitationally sucked toward the cross.    However, as A leaves Z but moves toward location W, 

the speed that A carries will enable it to fly with extra momentum.  Bound by a weaker 

gravitational force now, body A may tend to fly away from the cross.   However soon the on-axis 

effect of the next arm will come in to arrest it and stabilize its orbit about the cross again.     

In Fig. 6, let’s imagine that the tangential momentum of each of objects A, B, and C has 

enabled them to survive the gravitational pull of the cross.    
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To any object in a situation similar to that of A, B, and C, the 

general expression for the gravitational force F5-4 it receives from the 

cross can be written as (Refer to Eq. 27 and 34, with proper 

replacement of corresponding quantities) 

𝐹5−4 = 𝐹𝑜𝑟𝑐𝑒 𝑓𝑟𝑜𝑚 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑎𝑟 + 𝑓𝑜𝑟𝑐𝑒 𝑓𝑟𝑜𝑚 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑏𝑎𝑟 

          =
𝐺𝑚𝑀

𝑞2 − 𝑎2
+
𝐺𝑚(

𝑀
2)

(
𝑎
2)
2

+ 𝑞2
∙

(

 1 +
𝑞

√4 (
𝑎
2
)
2

+ 𝑞2
 

)

  

           = 𝐺𝑚𝑀 [
1

𝑞2 − 𝑎2
+

2√𝑞2 + 𝑎2 + 2𝑞

(4𝑞2 + 𝑎2)√𝑞2 + 𝑎2
]       (𝐸𝑞.      49)     

 

 The tangential speed 𝑣5−4   corresponding to 𝐹5−4  would show 

𝑣5−4
2 = 𝐺𝑀𝑞 [

1

𝑞2 − 𝑎2
+

2√𝑞2 + 𝑎2 + 2𝑞

(4𝑞2 + 𝑎2)√𝑞2 + 𝑎2
]         (𝐸𝑞.        50)     

Let 𝑞 = 𝑛𝑎, where 𝑛 ≠ 0, correspondingly, Eq. 49 and Eq. 50 will become  

  𝐹5−4 =
𝐺𝑚𝑀

𝑎2
[
1

𝑛2 − 1
+

2√𝑛2 + 1 + 2𝑛

(4𝑛2 + 1)√𝑛2 + 1
]        (𝐸𝑞.     51)      

and 

𝑣5−4
2 = 𝐺𝑀𝑎 ∙ 𝑛 [

1

𝑛2 − 1
+

2√𝑛2 + 1 + 2𝑛

(4𝑛2 + 1)√𝑛2 + 1
]         (𝐸𝑞.        50)     

 

Below is a chart showing how 𝐹5−4 and the ratio 𝑣5−4/𝑣4−2 change in accordance with 

n=1.05,   n=1.1,   n=1.2,   n=1.3,   n=1.4,   n=2, and n=5.  

Note 1: The so called F“normal” in the chart is the gravitational force that a moving object 

receives from the cross but the cross has been shrunk into a point mass of the same mass quantity 

at its mass center.  

Note 2:  a is the arm length of the cross, q is the distance between the moving object and 

the mass center of the cross. 
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Data from the chart suggest that moving objects at the edge of the cross can have speed 

that is 240% as high as its “normal” speed, which is acquired without the consideration of the 

shape of the cross, but instead, only the cross’s total mass as a point mass is considered.  

Subsequently, this chart will lead us to visualize that, with respect to the center of the cross, 

object C in Fig. 6 will move faster than B, which in turn moves faster than A.   

    

 

Case 5b   On the Gravity of a Softened Cross and on the Rotation Arms of the Milky Way.    

 

 

 If the lower arm of the cross is: (1) a rotating body with 

respect to the mass center of the entire cross and (2) composed of 

loose materials, all the materials in this arm must display the 

same movement pattern as what A, B, and C are showing in Fig. 

7a.   

 

The same reasoning must equally apply to other arms of 

the cross, if all other arms also possess the same nature as that of 

the lower arm. (Fig. 7b)     
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However, as our inspection moves closer and closer to the center of the cross, we must 

notice that the arm length of the cross is getting shorter and shorter.   The ever shortened arms of 

the cross must lead two things to happen: (1) The contrast between the on-axis effect and off-axis 

effect gradually diminishes; (2) movement of the objects about the mass center should show 

more and more obviously a pattern that is gravitationally governed by a point mass.  When this 

happening is in progress, we cannot ignore one fact, which is that the angular velocity of the 

moving objects near the center is higher than that of those farther away from the center.  The 

higher and higher angular velocities of the materials toward the center gradually blur out any 

distinctive feature of a cross.   Instead, they just come together and present a rapidly spinning 

cloud.  (Fig. 7c)  

The problem is that, unless the cloud is absolutely homogeneous, given enough time, the 

spinning cloud will sooner or later evolve into a rotating bar.   The reason for the appearance of 

such a bar, ironically, is exactly because the gravity in this range is more and more dominantly 

governed by a point mass.  This point mass must be an extremely compacted and massive one if 

it is to stabilize the movement of so many objects traveling in orbits of short radius around it.     
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Let’s suppose that some objects of more 

prominent mass inside a spinning and 

inhomogeneous cloud happen to have concentrated 

along a certain radial direction with respect to the 

mass center of the cloud, such as those shown 

along line OJ and OK in Fig. 7d.  Having so joined 

by a random chance, these groups would act 

together like a bar shown in Fig. 1 to a certain 

extend.  So the newly formed bar, although a 

broken one, would exert their gravitational 

influence through the on–axis effect onto those 

materials flying near the end of such the bar.  

Highly potentially, the flying objects are recruited 

by the bar.  Once so recruited, the newly joining 

material would contribute to beef up the gravity 

strength of the materials gathering of the bar and 

further escalated the bar’s on-axis gravitational strength.    Those material groups like L and R, 

they are located at the area that the off-axis effect of the bar is more obvious.  Depending on the 

angular velocity they already possess, they may slowly drift (with rotation movement about the 

cloud’s center) either toward the center or away from the center.  To those drifting toward the 

center, their ever shortened rotation radius may accelerate them to plunge into the bar.  To those 

drifting away from the center, their ever lengthening rotating radius and thus decreasing angular 

velocity may just make them sooner or later be arrested by the bar’s sweeping.  Either way, the 

bar is an unstoppable gravitational predator once so formed.  As to the bars OJ and OK, once 

they stabilize their predator position, the centrifugal 

force and their own on-axis effect exerted on each 

other will line them up on one straight line across the 

cloud’s center.   

When materials of a huge quantity were 

tossed together in the remotely old days, no one can 

ever expect that a solid gravity body with a shape of 

high regularity could have formed itself like what is 

presented as the cross in this article. When the 

materials of various sizes were so randomly thrown at 

each other, the momentum between them is 

impossible to be exactly canceling each other out.     

The vector sum of all the off-center residual 

momentum contributed by each material chunk then 

forces the entire gathering to rotate about the center 

of the overall material formation.   
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The same randomness must also prevent the appearance of absolute homogeneity of 

material distribution across the entire formation. At areas where more materials have come 

together, the seed of a future rotation arm is planted.  As shown in Fig. 8, blobs E, F, and G can 

all lure the formation of some rotation arms inside the big rotating formation.    

From a state shown in Fig. 8 to a state shown in Fig. 9a for the nowadays galaxy of 

Milky Way, there is a long history of transition similar to what is illustrated in Fig. 7c (for the 

overall formation of the entire cloud of the future galaxy) and Fig. 7d (for the formation of a 

central bar that is part of the entire rotating formation). In a more strict sense, we can say that the 

Milky Way has two types of rotation arms:  the straight arms, such as what is shown as the 

Galactic Bar at the galaxy center, and the spiral arms, such as what are shown in areas outside 

where the Bar is sweeping.  It takes more time for the straight Bar to come into shape than the 

spiral arms.  Those get recruited as one of the members in the Bar may move with all kinds of 

orbit in different shape with respect to the dead center of the Bar, from lanky ellipses to near 

perfect circles.  Their orbital plane may even form any angle with the ecliptic, from lying 

perfectly within it to being perpendicular to it.       
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The analysis of Fig. 5 would easily suggest to us that the spiral rotation arms may not be 

an unchanged establishment over time.   Somewhere there may be some material chunk that 

finds itself having entered a region with speed higher than necessary to balance the gravity field 

there and thus advanced to join the next arm.  On the contrary, some may find itself not with 

enough angular momentum to keep up with the peers around it and gradually lag behind and 

eventually fall into the arm that is coming after.  However, given the movement stability of the 

formation that has been established today, all these migrations can only happen in an extremely 

slow process.   It is this slow process that has introduced the formation of some minor spiral 

rotation arms in the Milky Way’s rotation disk found in Fig. 9a.   

Fig. 9a, shows two major spiral arms for the entire Milky Way, one flowing out from 

each end of the rotating bar.  Although two bars are identified in the photo, the close proximity 

between them allows us to consider them working as one.   It seems common among rotating 

galaxies that fundamentally two spiral arms are found for the entire galaxy, with one spiral to be 

dragged following each end of the rotation bar.  (Fig. 9b, 9c, 9d, 9e) 
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If we consider the on-axis effect, the phenomenon that one major spiral arm follows at 

each end of the rotation bar should appear highly natural.  As the bar rotates, somewhere along 

its axis there must appear certain location at which materials chunks, such as object A in Fig. 9f, 

cannot have enough angular momentum to catch up with the bar’s angular advancement.  The 

centrifugal force disengages it a little from the bar.  As this happens, its angular movement must 

somewhat lag behind the bar’s.     However, the strong “extra” gravitational force because of the 

on-axis effect must continue to bind object A in a “controllable” distance. In some sense, A 

taking its position is just as natural as some celestial body taking the Lagrangian point in some 

other gravitational system, although the cause is different.    Staying away from the bar with the 

same reason like A’s, object B lags behind even more.  The more being away from the region of 

the on-axis effect for B means the more for it to be in the region where off-axis effect is 

pronounced.  However, the gravitational pull from A will 

not let go of B freely.   Object A and B would also work 

together to drag C along while C has been even further 

away from the end of the rotation bar.  This reaction 

continues so that a ribbon of materials are joining together 

to form a spiral formation following at the end of the bar.  

The same also happens at the other end of the bar.  To the 

material chunks happening not at a close vicinity of the bar 

end, they would move away, waiting to be caught by the 

upcoming but extensively long spiral arms that is led by 

the other end of the bar, or just directly absorbed by the bar 

if its angular momentum is really so weak.  Therefore, we 

cannot expect to have a spiral arms flowing out at the middle of the bar.   The Far 3kpc Arm and 
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the Near 3kkpc Arm in Fig. 9a are produced by materials not 

having enough angular momentum but entering the off-axis 

effect region prematurely.  Object d shown in Fig. 9f is an 

example for such premature entry. Clearly shown in the 

picture, both the 3kpc Arms do not stem from the middle of 

the Bar.    On the other hand, Fig. 9a does show that the on-

axis effect having captured higher concentration of materials 

at each end of the Bar.   

 

Case 5c 

The blue curve in Fig. 9b shows the observed speed 

distribution of materials in the Milky Way.   At distance up 

to about 3 kpcs from the galactic center, the curve shows that 

the material movements obey what the gravity generated by 

a point mass would command.  However, beginning from the 

s kpcs point, such a point mass domination is abruptly 

interrupted.  This is because, beginning from this point, the 

on-axis and off-axis effect begin to dominate, and the so 

called flat rotation begins to be prominent.  One of the 

reasons for the flat rotation to occupy such an extensively 

large area (from 3 kpcs to 17 kpcs in radius) out of the entire Milky Way is like this:  Materials 

rotating about a center would receive stronger gravitational influence from those in the inner 

circles closer to the center than those from the outer circle.     

 

Case 6   The Theoretical Impossibility 

for the Magellanic Clouds to Move on 

a Close Orbit about the Milky Way.  

Had the Magellanic Clouds ever 

been some satellites of the Milky Way, 

their current location and movement 

would only indicate that they have now 

been far away from the point called 

Periapsis, which is the point on the 

Clouds’ supposed elliptical orbit but 

closest to the mass center of the Milky 

Way.   
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The Milky Way disk can be considered 

as being composed of many bars like what is 

shown in Fig. 10. When a massive body, 

called A, moves near the bars, it must receive 

certain on-axis effect of gravity from each bar.   

If A ever moves along an elliptical orbit about 

one bar, and the axis of the bar lies in the 

orbital plane, we have several situations as 

shown in Fig. 11a, 11b, and 11c.   

Comparison between Fig. 11a, 11b, 

and 11c, should lead us to visualize that Fig 

11a is the most probable situation to happen.   

In Fig 11a, body A will receive the 

strongest gravitational force around the 

bar because of the on-axis effect when it 

migrates crossing the bar’s axis, or at the 

point of periapsis.   Subsequently, A has 

the highest speed here in the entire orbit.   

The problem is that, when A 

leaves the periapsis, it would enter a 

region where the off-axis is getting more 

and more prominent, thus the 

gravitational pull from the bar reduces 

more and more.  However, the angular 

momentum with which A survives the 

gravitational pull at the periapsis remains 

the same.  In other words, body A has 

more and more excessive momentum in responding to the gravitational pull of the bar after it 

leaves the periapsis.  Any excessive momentum thus resulted must derail A from the supposed 

close orbit; any moving object considered to be a satellite of something else must have a close 

orbit.   

The Milky Way as an entirety can be regarded as a collection of bars laid side by side but 

within the ecliptic.   The on-axis effect of gravitational influence from each bar on the 

Magellanic Clouds is fundamentally the same, although the farther away a bar is from the galaxy 

center, the less prominent the on-axis effect would be.   As the Magellanic Clouds move to a 

location like what position F indicates in Fig. 10, the off-axis effect between it and each bar 

would have been quite pronounced, or the gravitational pull from the Milky Way would have 

been quite weak.   Then the only destination for the Clouds is to fly away from the Milky Way.  
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 Therefore, we can claim with 

confidence that the Magellanic Clouds are 

visitors to the Milky Way only once in 

the Milky Way’s life time, and in the 

Clouds’ life time as well.  Given that the 

current speed of the Large Magellenic 

Cloud is 378km/sec and the speed of the 

Small Cloud is 302 km/sec, if the 

universe has an age of 13.5 billion years, 

their birth place should have been no 

more than 17 million light years away 

from the current position, and about 100 

times of the current distance between 

them and the Milky Way, provided that 

nothing has ever altered their movement during their entire journey, and that their journey is a 

straight line.     

Reference:  

http://phys.org/news/2007-01-magellanic-clouds.html 

http://phys.org/news/2007-01-magellanic-clouds.html#jCp 

Milky Way, http://Wikipedia.org 
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