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Khmelnik S.I. 

The Electromagnetic Wave in the Dielectric 
and Magnetic Circuit of Alternating Current 

 

Abstract 
A solution to the Maxwell equations for dielectric and 
magnetic circuit of alternating current is presented. The 
structure of currents and energy flow is examined. 
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Part 1. Dielectric Circuit 
1.1. Introduction 
An electromagnetic field in vacuum is considered in [1]. The 

evident solution obtained in [1] is extended to a nonconducting dielectric 
medium with certain dielectric and magnetic permeability ε and μ, 
respectively. Therefore, the electromagnetic field does also exist in a 
capacitor as well. However, a considerable difference of the capacitor is 
that its field has a non-zero electrical intensity along on of the 
coordinates induced by an external source. The electromagnetic field in 
vacuum was examined on the basis of an assumption that an external 
source was absent.  
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The same can be said about an alternating current dielectric circuit. 
The system of Maxwell equations is applied to such a circuit. It is shown 
that an electromagnetic wave is also formed in this circuit. An important 
difference between this wave and the wave in vacuum is that the former 
has a longitudinal electrical intensity induced by an external power 
source.  

Below are considered the Maxwell equations of the following form 
written in the CGS system (as in [1], but with ε and μ which are not equal 
to 1): 
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where EH ,  are the magnetic intensity and the electrical intensity, 

respectively.  
 

1.2. Maxwell Equations Solution 
Let us consider solution to the Maxwell equations (1.1-1.4). In the 

cylindrical coordinate system zr ,,  , these equations take the form: 
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where  

cv  ,       (9) 

cq  ,       (10) 

zr EEE ,,   are the electrical intensity components, 

zr HHH ,,   are the magnetic intensity components. 

A solution should be found for non-zero intensity component zE .  

To write the equations in a concise form, the following 
designations are used below:  

)cos( tzco   ,     (11) 

)sin( tzsi   ,     (12) 

where  ,,  are constants. Let us write the unknown functions in the 

following form: 

 corhH rr . ,      (13) 

sirhH )(.   ,      (14) 

sirhH zz )(.  ,      (15) 

 sireE rr . ,      (16) 

coreE )(.   ,      (17) 

coreE zz )(.  ,      (18) 

where )(),( rerh are function of the coordinate r .  

Direct substitution enables us to ascertain that functions (13-18) 
convert the system of equations (1-8) with four arguments tzr ,,,   in 

a system of equations with one argument r  and unknown functions 

)(),( rerh . 

Appendix 1 proves that such a solution does exist. It takes the 
following form: 
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where kh()  – is the function determined in Appendix 2, 
















2

2

c
q .      (26) 

Let us compare this solution with the solution for vacuum [1], see 
Table 1 in Section 2.2. A considerable difference between these solutions 
is evident.  

 

1.3. Field Intensity and Energy Flows 
As in [1], the energy Flow density along the coordinates is 

calculated by the formula 

 














































 
,

2

r

z

r

z

r

ddr

cosis

cosis

sis

S

S

S

S .   (1) 

where 

 
 

 rrz

zrrz

zzr

hehes

hehes

hehes













,      (2) 

 4c .       (3) 

0 0.05 0.1
0

0.5

1
x 10

-6

h
r

0 0.05 0.1
-10

-5

0

5
x 10

-7

h
f

0 0.05 0.1
-1

0

1

h
z

0 0.05 0.1
-5000

0

5000

e
r

0 0.05 0.1
0

1000

2000

e
f

0 0.05 0.1
0

1000

2000

e
z

Fig.1. (SSB6(3).m)

0 0.05 0.1
-2

0

2
x 10

-3

S
r

0 0.05 0.1
0

1

2
x 10

-3

S
f

0 0.05 0.1
-4

-2

0
x 10

-3

S
z

 



 

 5 

Let us consider functions (2) and )(),(),( rerere zr  , 

)(),(),( rhrhrh zr  . Fig. 1 shows, for example, these functions plotted 

for 300,50,2,1,5.5,1  A .  

 

1.4. Discussion 
Further conclusions are similar to those of [1]. Thus, an 

electromagnetic wave propagates via a dielectric circuit and, in particular, 
through a capacitor connected to an AC circuit, and the mathematical 
description of this wave is the solution of the Maxwell equations. In this 
case, the field intensity, the displacement current, and the energy Flow 
propagate in the dielectric along a spiral path.  

 

Part 2. Magnetic Circuit 
2.1. Introduction 
Part 1 deals with the electromagnetic field in an AC dielectric 

circuit. The electromagnetic filed in an AC magnetic circuit can be 
examined using the same approach. The simplest example of such a 
circuit is an AC solenoid. However, if the dielectric circuit has a 
longitudinal electrical field intensity component induced by an external 
power source, the magnetic circuit features a longitudinal magnetic field 
component induced by an external power source and transmitted to 
circuit with the solenoid coil.  

In this case, the Maxwell equations outlined in Part 1, are also used 
- see (1.1.1-1.1.4). 

 

2.2. Maxwell Equations Solution 
Part 1 demonstrates that in the cylindrical coordinate system 

zr ,,   these equations take the form (1.2.1-1.2.18). Their solution 

should be found for non-zero field intensity zH . Here, the functions 

)(),( rerh  are of different form. Similar to the above-mentioned, it can 

be demonstrated that the solution does also exist in this case. Its form is 
as follows: 
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Let us compare this solution with the solution obtained in Part 1, 
see Table 1. The similarity of these solutions is evident.  
 

Table 1. 

 Vacuum Dielectric сircuit Magnetic сircuit 
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2.3. Field Intensity and Energy Flows 
As it is done in Part 1, the density of energy flows along the 

coordinate axes are calculated by the formulae (1.3.1 – 1.3.3). Let us 

consider functions (1.3.2) and )(),(),( rerere zr  , )(),(),( rhrhrh zr  . 

Fig. 1 shows these functions for 300,50,2,1,5.5,1  A . 

These variables are chosen identical to those used in Part 1 for 
comparison of the obtained results.  

 

4. Discussion 
Further conclusions are similar to the conclusions of Part 1. Thus, 

an electromagnetic wave propagates in an AC magnetic circuit, and the 
mathematical description of this wave is a solution to the Maxwell 
equations. In this case, the field intensity and the energy Flow follow a 
spiral trajectory in the considered circuit.  
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Appendices 
Appendix 1. 
A solution to equations (2.1-2.8) is considered to be in the form of 

functions (2.13-2.18). Derivatives with respect to r will be denoted with 
primes. Let us re-write equations (2.1-2.8) considering (2.11, 2.12) in the 
form 
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The correspondence between the formula numbers in Part 2 and in this 
Appendix is as follows: 

Part 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 

App. 1 1 5 6 7 8 6 7 8 

 
Formulae (1 – 8) will be transformed below. In doing so, the 

formula numbering will be retained after transformation (to make easier 
to follow the sequence of transformations), and only new formulae will 
take the next number.   

Assume that  
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Let us compare (1, 8): 
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From (6, 7) it follows that (1, 8) are identical. Then (8) can be 
deleted. Then compare (4) with (5): 
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From (6, 7) it follows (4) and (5) are identical. Hence, equation (5) 
can be deleted. The remaining equations are as follows:  
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Substitute (6, 7) in (2, 3): 
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The remaining equations are as follows: 

0)(
)(

)(
)(

 re
r

re
re

r

re
zr

r 


,   (1) 



















1
)()(

cc
rere

r
z

    (2) 

  














1
)(

cc
rere rz

    (3) 

 
,0)(

)(
 



r

re
re

r

re
r     (4) 

 





1
)( re

c
rh r ,     (6) 

   





1
re

c
rhr  .     (7) 

Let us denote: 
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From (1, 2, 11) it can be found that: 
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From (4) it can be found that: 
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From (12-14) it can be found that: 
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For the solution and analysis of this equation, see Appendix 2. This 
solution cannot be presented as an analytical expression. Let us call this 
solution as a function  
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and its derivative as a function 
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With the known functions (16, 17), the remaining functions can 
also be found. Thus, all the functions can be determined from the 
following equations: 
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For the accuracy of the obtained solution, see Appendix 3.  

 
Appendix 2.  
Let us consider equation (15) from Appendix 1: 
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Equation (2) has not an analytical solution. But the following 
functions can be calculated numerically 
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 rre ,,kh2)(        (5) 

For an example, Fig. 2 shows these functions for 

 50,5.5    at a radius of 1.0R . 
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Appendix 3.  
Substitution of the functions found in Appendix 1 in equations (1-

8) enables us to determine a RMS residual error of these equations. Fig. 3 

shows this residual error for  50,5.5    at a radius of 1.0R .  

A RMS residual error of these equations can be found as a function 
of one or other variable. Fig. 4 shows the residual error as a function of 

  for 50  at a radius of 1.0R . Here, the upper window presents 

the residual error value, and lower window the residual error logarithm.  
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