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Abstract

The motion of the mathematical extra-terrestrial pendulum is considered in the spherical
gravitational field. The potential energy of the pendulum bob is approximated by the linear
term mgh and additional quadratical term in h, where h is height of the pendulum bob over
the reference point. The nonlinear equation of motion of pendulum is solved by the Landau-
Migdal method to obtain the frequency of motion and the swing amplitude. While the
Foucault pendulum bob moves over the sand surface, our pendulum bob moves in ionosphere.
It is not excluded that the pendulum project will be the integral part of the NASA cosmical
physics.

Key words. Mathematical pendulum, Newton gravity potential, nonlinear equation,
Landau-Migdal iteration method.

The cosmical pendulum is the extra-terrestrial mathematical pendulum, the pendant
of which moves along a geostationary orbit, where the geostationary Earth orbit or
geosynchronous equatorial orbit (GEO) is a circular orbit 35,786 kilometres above the
Earth equator and following the direction of the Earth rotation. An object in such an
orbit has an orbital period equal to the Earth rotational period.

The length of the (carbon tube) fibre of the pendulum is considered sufficiently long
to detect the sphericity of the globe gravity.

The mathematics of pendulums are in general quite complicated problem. However,
there are some simplifying assumptions, which allows the equations of motion to be solved
analytically for small-angle oscillations. We consider here the pendulum bob motion in the
nonuniform gravity field expressed by the Newton gravitational formula. The parameters
of pendulum is as follows: the swing fibre is massless, inextensible and always remains of
the constant length, the moving bob with mass m is a point mass, motion occurs only
in two dimensions, i.e. the bob trajectory is an arc, the motion does not lose energy to
friction or air resistance, and finally, the pendant point does not move (the pendant point
is on the geo-stationary satellite).
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In order to get the differential equation of motion, we first derive the gravitational
potential energy generated by the point with mass M and with the mass of the bob m.

The force acting on the point mass in such gravity field is

F = −κ
Mm

r3
r. (1)

The performed work by this force is defined by the following formula

W = −
∫ r2

r1
F · dr = κMm

∫ r2

r1

r · dr
r3

, (2)

where the sign (-) in front of integral formula denotes the negative work performed by the
gravitational field. Using r · dr = |r||dr| cosα = rdr, we get

W = κMm
∫ r2

r1

rdr

r3
= −κMm

(
1

r2
− 1

r1

)
. (3)

Now, let us introduce the general point r by r2 → r and reference point R by , r1 → R
then the potential energy is of the form

Ep = −κMm
(
1

r
− 1

R

)
. (4)

The potential energy of a point m at the vicinity of the reference point R, i.e. at point
R + h, where h ≪ R is then

Ep(R + h) = −κMm

R

(
1

1 + h/R
− 1

)
≈ κMmh

R2
(1− h/R) . (5)

With regard to the fact that the local acceleration at point R is

g =
κM

R2
, (6)

we write the potential energy in the simple form:

Ep = mgh

(
1− h

R

)
= mgh− mg

R
h2, (7)

which is the suitable formula of energy with spherical gravity correction in order to
construct the differential equation for motion of pendulum.

Let us consider the pendulum with the equilibrium z-coordinate at point z = R and
the support coordinate (the pendant point) is at z = R + l, where l is the length of our
pendulum. Then, the standard expression for the h-coordinate is

h = 2l sin2(φ/2) ≈ l

2
φ2;φ → 0, (8)

where φ is the standard deflection angle of the swing with regard to the z-coordinate.
The total energy of the pendulum is

E =
1

2
mv2 +mgh− mg

R
h2. (9)

We obtain for small φ that limφ→0(dh/dt) ≈ lφ(dφ/dt) and from equation dE/dt = 0,
we get following equation
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φ̈+
g

l
φ− gl

R
φ3 = 0, (10)

or,

φ̈+ ω2
0φ = λφ3; ω2

0 = g/l; λ = gl/R. (11)

The next step is to solve the last differential equation (11) by the appropriate
approximate method.

We will solve the eq. (11) by iteration. In order to avoid the resonance solution, we
use the method described for instance in the Migdal special book on special mathematical
methods in quantum mechanics (Migdal, 1975). This method was also used by author at
solwing the Gross-Pitaevskii equation for the superfluid medium (Pardy, 1989) with the
goal to detect the gravity waves by the superfluid system (instead of LIGO and eLISA).

The first step is that we rewrite eq. (11) as follows:

φ̈+ ω2φ = λφ3 + (ω2 − ω2
0)φ; ω2

0 = g/l; λ = gl/R, (12)

where the fundamental solution of the left side is φ0 = C sinωt, where constant C must
be determined from the initial conditions. Then, the equation for the first iteration is as
follows

φ̈1 + ω2φ1 =
1

4
λC3(3 sinωt− sin 3ωt) + C(ω2 − ω2

0) sinωt. (13)

The mathematical consistency demands the coefficient with sinωt, must be zero from
which follows that

ω =
(
ω2
0 −

3

4
λC2

)1/2

; ω2
0 = g/l; λ = gl/R. (14)

Now, we must solve the equation

φ̈1 + ω2φ1 = −λ

4
C3(sin 3ωt). (15)

The partial solution of eq. (15) is φp = A sin 3ωt, which gives after insertion this
function in eq. (15), that

A =
λ

32

1

ω2
C3 (16)

and it means that the first iteration solution of eq. (12) is

φ1 = C sinωt+

(
λ

32

1

ω2
C3

)
sin 3ωt; ω =

(
ω2
0 −

3

4
λC2

)1/2

. (17)

We have seen how to solve, in approximation, the mathematical pendulum moving in
the spherical gravity field. We considered here the large extra-terrestrial pendulum with
the long fibre. The pendant point is considered on the geo-stationary satellite. While the
bob of the Foucalt pendulum moves in sand, our pendulum bob moves in ionosphere.

The problem of the cosmical pendulum can be generalized to the situation where Earth
is rotated. If we use the Minkowski element

ds2 = −c2dt′
2
+ dx′2 + dy′

2
+ dz′

2
(18)
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and the nonrelativistic transformation to the rotation system (Landau et al., 2005)

x′ = x cosΩt− y sinΩt, y′ = x sinΩt+ y cosΩt, z = z′, (19)

then we get in general ds2 = gµνdx
µdxν , or in our case,

ds2 = [−c2 + Ω2(x2 + y2)]dt2 + dx2 + dy2 + dz2 − 2Ωydxdt+ 2Ωxdydt, (20)

which is not relativistically invariant.
In this situation we are forced to replace the original electromagnetic Lorentz equation

mc
dvµ

ds
=

e

c
F µνvν , (21)

where F µν is the electromagnetic tensor, by the general-relativistic equation, where the
standard derivative are replaced by the covariant in order to get the general relativistic
equation for the motion of a massive particle moving in the rotating system and gravity
(Landau et al., 2005):

mc

(
dvµ

ds
+ Γµ

αβv
αvβ

)
=

e

c
Gµνvν , (22)

where the Christofel symbols Γµ
αβ are defined by the formula

Γµ
αβ =

1

2
gµλ

(
∂gλα
∂xβ

+
∂gλβ
∂xα

− ∂gαβ
∂xλ

)
(23)

and symbol Gµν is the tensor force, which corresponds to the general-relativistic tensor
forces acting on the pendulum. To our knowledge, this (Nobel) problem was not solved
in the scintific journals and monographs.

Our large pendulum can also be used for the detection of the gravitational waves if
we generalize the tensor Gµν by one, involving the forces due to gravitational waves. It
is not excluded that such detection of gravitational waves can form the new deal of the
future NASA gravity physics and general relativity.

Let us remark that our pendulum can be applied at the commercial area where the
pendulum bob will form the non-magnetic sphere fulfilled by the scientific instruments of
all world laboratories (Bell laboratories, Oxford instruments, CERN laboratories and so
on). The extra-terrestrial pendulum project is cheaper than the laser project by Hawking
and Milner, or LIGO, or eLISA.
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