# The relation of primitive root and cyclic deciminal 

T.Nakashima<br>E-mail address<br>tainakashima@mbr.nifty.com

July 22, 2016


#### Abstract

We prove Artin's conjecture.This paper consists 2 example and prove the conjecture.


## 1

We begin

$$
\frac{1}{7}=0.14285714857 \cdots
$$

$10=3+7$ is devided by 7 as 1 and the rest is 3.30 is devided by 7 as 4 and the rest is 2.20 is devided by 7 as 2 and the rest is 6 . This is correspond to $3 \rightarrow 2 \rightarrow 6$. So, that 3 is the primitive root of 7 equals to recurring decimal of $\frac{1}{7}$.General case is not so easy
$17+7=24$ case,we calculate 24 numeration. 24 is devided by 17 as 1 and the rest is $7.7 \times 24=168.168$ is devided by 7 as 9 and the rest is 15 .

$$
\begin{aligned}
7 \rightarrow 15 \rightarrow 3 & \rightarrow 4 \rightarrow 11 \rightarrow 9 \rightarrow 12 \rightarrow 16 \rightarrow 10 \rightarrow 2 \rightarrow 14 \rightarrow 13 \rightarrow 6 \\
& \rightarrow 8 \rightarrow 5 \rightarrow 1 \cdots
\end{aligned}
$$

In this case, 7 is primitive root of 17 .So recurring decimal in 24 numeration is repeat 16 .

## conjecture

$p$ is prime and more than 5.10 is primitive root of $p$ is equal to $\frac{1}{p}$ 's repeating decimal length is $p-1$
proof. We see next case.

$$
\frac{1}{17}=0.0588235294117647 \cdots
$$

$p=17$ case, 10 is the primitive root. First, $10-17=-7$.Usually, in this case degit is increase $1.100 / 17=5$ and the rest is $15 \equiv(-7)^{2}=49(\bmod 17)$ 。 $150 / 17=8$ and the rest $14 \equiv(-7)^{3}=-343(\bmod 17)$ We got the $p-1=16$ cycle.

