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Abstract. An algorithm for recursively generating the sequence of solutions

of a prime constellation is described. The algorithm is based on a polynomial
equation formed from the first n elements of the constellation. A root of this
equation is the next element of the sequence.

1. Introduction

Hypothesis H is one of the few mathematics conjectures that is distinguished
by having its own Wikipedia page. The hypothesis, proposed independently by
Schinzel-Sierpinski [1] and Bateman-Horn [2], describes a pattern of integers and
then hypothesizes that there is an instance of the pattern such that all the integers
in the pattern are prime numbers. It is a small step to conjecture that there are an
infinite number of such occurrences.

The twin prime pattern, n, n+ 2, is one of the forms characterized Hypothesis H
but the hypothesis also subsumes the conjectures of de Polignac [3], Bunyakovskii
[4], Hardy-Littlewood [5], Dickson [6], Shanks [7], and many others regarding the
infinitude and density of patterns of primes.

Hypothesis H. Let m be a positive integer and let F = {f1(x), f2(x), . . . , fm(x)}
be a set of irreducible polynomials with integral coefficients and positive leading
coefficients such that there is not a prime p which divides the product

f1(n) · f2(n) · . . . · fi(n) =
m∏
i=1

fi(n) (1)

for every integer n. Then there exists an integer q such that f1(q), f2(q), . . . , fm(q)
are all prime numbers.

A sequence of functions F which satisfies Hypothesis H is traditionally called a
prime constellation. A value q such that f1(q), f2(q), . . . , fm(q) are all prime num-
bers is called a solution of F while F is said to be solved by q. Table 1 lists some
familiar examples of prime constellations.
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Familiar Name Pattern

Twin Primes {x, x+ 2}
Sophie Germain Primes {x, 2x+ 1}
Shanks Primes {x4 + a}
Hardy-Littlewood Primes {ax2 + bx+ c}
Dickson Chains {aix+ bi}
Cunningham Chains {2i−1x+ (2i−1 − 1)}

Table 1. Examples of Prime Constellations

Given the first n solutions of a prime constellation we describe a polynomial one of
whose roots is the next solution in this sequence. The polynomial can be regarded
as a generalization of Rowland [8] which is, in turn, based on the formula for
generating the next prime of Gandhi [9]. See also Golomb [10] and [11], Vanden
Eynden [12], and Ellis [13]. An interpretation of the recursion is that the first n
solutions of an instance of Hypothesis H algebraically encode the (n+1)st solution.

2. Generation of Prime Constellations

The recursion for prime constellation generation is based on the following primality
test:

Lemma 1. Let

Qd(x) =
d−1∑
k=1

gcd (x, x− k)− 1 =
d−1∑
i=1

gcd (i, x− i)− 1. (2)

p is prime if and only if Qp(p) = 0.

Let F = {f1(x), f2(x), . . . , fm(x)} be a prime constellation and let p be a solution
of F . Set

QF,p(x) =

m∑
i=1

Qfi(p)(fi(x)). (3)

As an example of a QF,p(x), take F = {x, x+2, x+6}. This prime constellation is
solved by n = 5, viz., (5, 7, 11). In this case,

QF,5(x) = Q5(x) +Q7(x+ 2) +Q11(x+ 6).
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Recursion. Let p be solution of the prime constellation F so that

QF,p(p) = 0.

If q is the next integer greater than p such that QF,p(q) = 0, then q is a solution of
the prime constellation F .

Example. The sequence of prime numbers

If F = {x}, then
QF,p(x) = Qp(x).

According to the above recursion, if p is the ith prime and q is the next larger root
of Qp(x) beyond p, then q is the i+ 1st prime.

It is straight-forward to show that this recursion yields the sequence of primes using
Bertrand’s Postulate ([14], [15], [16], [17]) that guarantees there is always a prime
between n and 2n.

Example. The sequence of twin primes

If F = {x, x+ 2}, then
QF,p(x) = Qp(x) +Qp+2(x+ 2).

According to the above conjecture, if (p, p + 2) is a twin prime and q is the next
larger root of QF,p(x) beyond p, then (q, q + 2) is a twin prime.

3. Continuations

A continuous rendering of QF,p(x) permits existing equation-solving methods to be
used in finding its roots.

As one possibility, take

Pd(x) =
∏

1≤n<d
n-d

sin2
(
π(x− n)

d

)
.

Then, Pd(x) is zero if and only if gcd(x, d) = 1. If we set

Q̃d(x) =
d−1∑
k=1

Pk(x),

then Q̃d(x) is zero if and only if Qd(x) is zero so Q̃d(x) can be used in Equation 3 as

well as Qd(x). Since Q̃d(x) is continuous and periodic a next larger is guaranteed
to exist.

As a second possibility, Slavin [18] has shown that for odd n

gcd(n,m) = log2

n−1∏
k=0

(1 + e−2iπkm/n) = n+ log2


(n−1)/2∏

k=1

cos
kmπ

n

2
 .

When both arguments of gcd in Equation 3 are even, Slavin’s formula produces a
negative infinity so it can also be used to find roots of QF,p(x).
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4. The Dual

The recursion states that given solution p for a prime constellation F , the next
element in the sequence of solutions is obtained by finding the next larger root
of QF,p. One can also formulate this recursion using the divisors of the integers
between 1 and p rather than the non-divisors. Since the number of divisors grows
slightly more quickly than the number of non-divisors, this may yield computational
efficiency by reducing the complexity of QF,p.

To take this dual approach, we set

Pd(x) =
∏

1≤n<d
n|d

(x mod d− n)2

and

Qd(x) =
d−1∏
k=1

Pk(x).

To generate a sequence of prime constellation solutions using this formulation, we
seek non-zero values of a product over the constellation functions rather than a
zero value over a sum. The difficulty of seeking a non-zero value as compared to
seeking a root may, of course, offset the reduction in complexity of the function
being analyzed.
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5. The Computation

The next larger root of QF,p(x) is readily computed and easily checked as the
next solution F after p. The following Mathematica routine computes the next n
sequence elements satisfying constellation after the solution start:

Sieve[constellation_, start_, n_] := Module[{f, i, j, q = start, l},

For[i = 1, i <= n, i++,

f[x_] :=

Sum[Q[constellation[[i]][x], constellation[[i]][q]],

{i, 1, Length[constellation]}];

q = NextZero[f, q];

l = {};

For[j = 1, j <= Length[constellation], j++,

p = pattern[[j]][q];

AppendTo[l, {p, PrimeQ[p]}];

];

Print[{q, l}];

];

]

Table 2 below lists some prime constellations for which sequences of solutions have
been generated using this routine. The starting value Table 2 is a value which when
substituted into the pattern yields a prime sequence satisfying the pattern. Thus,
for example, when looking for Shank’s primes of the form n2 + 1 a starting value
could be 4. Tables 3 and 5 lists some other types of prime sequences to which the
routine has been applied.
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Familiar Name Pattern Start

Primes {#&} 5

Twin Primes {#&,#+2&} 3

Cousin Primes {#&,#+4&} 3

Prime Constellation {#&,#+2&,#+6&} 5

Sophie Germain Primes {#&,2#+1&} 5

Gaussian Primes {#&,4#+3&} 5

Cunningham Chain {#&,2#+1&,4#+3&} 5

Dickson Chain {#&,2#+1&,3#+4&} 5

Star Primes {6#(#-1)+1&} 2

Shanks Primes {#^2+1&} 4

Shanks Twins {(#-1)^2+1 &,(#+1)^2+1 &} 3

Shanks Quads {(#-1)^2+1 &,(#+1)^2+1 &} 4

Hardy-Littlewood Primes {#^4+#+1&} 3

Safe Primes {#&,(#-1)/2&} 11

Centered Heptagonal Primes {(7#^2-7#+2)/2&} 4

Centered Square Primes {#^2+(#+1)^2&},3 4

Centered Triangular Primes {(3#^2+3#+2)/2&} 3

Centered Decagonal Primes {5(#^2-#)+1&} 2

Pythagorean Primes {4#+1&} 0

Prime Quadruplets {#&,#+2&,#+6&,#+8&} 3

Sexy Primes {#&, #+6&} 5

Table 2. Hypothesis H Constellations
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Familiar Name Pattern Start

Thabit Primes {3*2^#-1&} 3

Wagstaff Primes {(2^#+1)/3&} 5

Proth Primes {2^#+1&},3 4

Kynea Primes {(2^#+1)^2-2&} 2

Mersenne Primes {2^#-1&} 1

Double Mersenne Primes {2(̂2^#-1)-1&} 2

Mersenne Prime Exponents {#&,2^#-1&} 2

Carol Primes {(2^#-1)^2-2&} 2

Cullen Primes {#(2^#)+1&} 1

Fermat Primes {2(̂2^#)+1&} 0

Generalized Fermat Primes Base 10 {10^#+1&} 0

Factorial Primes { # + 1 &} or { # - 1 &} 0

Table 3. Other Single-Variable Prime Sequences

Familiar Name Pattern Start

Leyland Primes { #1#2 + #2#1 & } 0

Pierpont Primes { 2#1 3#2 & } 0

Solinas Primes { 2#1± 2#2± 1 &} 0

Primes of Binary Quadratic Form { #12 + #1 #2 + 2 #22 &} 0

Quartan Primes { #14 + #24 &} 0

Table 4. Two-Variable Prime Sequences

The following Mathematica routine implements the dual.

Sieve[constellation_, start_, n_] := Module[{f, i, j, q = start, l},

For[i = 1, i <= n, i++,

f[x_] :=

Sum[Q[constellation[[i]][x], constellation[[i]][q]],

{i, 1, Length[constellation]}];

q = NextNonZero[f, q];

l = {};

For[j = 1, j <= Length[constellation], j++,

p = pattern[[j]][q];

AppendTo[l, {p, PrimeQ[p]}];

];

Print[{q, l}];

];

]
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