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BEAUTIFUL UNIVERSE SIMULATION
Part 1: proof of concept of energy transport in
a simple 2-D array of nodes
Vladimir F. Tamari

vladimirtamari(at)hotmail.com                             Tokyo, July 16, 2016

Abstract

The Beautiful Universe 1 model is a universal cellular automata of rotating dielectric dipolar
nodes exchanging angular momentum with neighboring nodes to make radiation, matter, 
and space itself. In this paper a simplified simulation of non-rotating nodes that 
nevertheless obey the momentum-exchange 'rules' of the model provide a qualitative 
picture of energy transport in the model and can be considered a  preliminary proof of 
concept on which to build further work

I-  Introduction

Fig. 1  The first ten frames of the 2D simulation of four nodes of the initial state (top left)
spread to adjoining nodes and spread then overlap. The size of a circle centered on a
node indicates its angular momentum, while its radius shows the direction the energy is
directed. As the energy spreads to more and more adjoining nodes each the a node
carries less and less energy, but the total momentum is conserved. 

1 Tamari, Vladimir F., Beautiful Universe: Towards Reconstructing Physics From New First Principles (self-
published online 2005)  http://vladimirtamari.com/beautiful_univ_rev_oct_2011.pdf (Web access: July 6, 
2016)

http://vladimirtamari.com/beautiful_univ_rev_oct_2011.pdf
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Beautiful Universe:Towards Reconstructing Physics From New First Principles (BU) the 
rudimentary 2005 model, generalizes a1993 result that a 2single dipole provides a unified 
electromagnetic, quantum and relativistic field, including gravity. BU proposes that the 
Universe (space, matter, radiation, energy, dark matter and energy etc.) is made up of a 
3D Cellular Automata (CA) matrix made up of just such dipolar nodes rotating in place and
exchanging angular momentum in units of Planck's constant (h). In 2014 Gerard 't Hooft 
showed that Quantum Mechanics can be modeled by (CA)3, which encourages the (BU) 
approach.

(Fig. 1) shows a preliminary proof-of-concept of how nodes transfer angular momentum to 
their neighbors according to a specific rule depending on the energy of the node being 
considered and inversely on the energy of its neighbor to which momentum is transferred. 
The rule is explained in Section II, and is is contrasted to the ordinary understanding of 
how (CA) cells interact merely by turning themselves and/or their neighbors on and off, for 
example in Stephen Wolfram's NKS4, which speculated that aspects of physics can be 
modeled as (CA).

While this simulation is limited in the several ways discussed in Section III. Its preliminary 
success however paves the way for more realistic simulations of (BU) in a 3D array 
whereby each node interacts with its neighbor with +-, -+, poles attracting and ++, - - 
repelling each other, in an attempt to model energy-particle conversion according to 
e=mc^2, gravity, Lorentz Transformations, quantum mechanical effects such as 
uncertainty, dark matter and energy and so forth as detailed in the (BU) proposal.

II -The simulation of wave transport from node to node
In a two dimensional orthogonal array of nodes forming r rows and c columns the 
momentum vector of a node is m(r,c). Transfer from a given node (a)  to its neighboring 
node (b) (the recipient) located next to it in the same row is:

dmab(r,c)= ma(r,c)/v(1+|mb(r+1,c+1)|) (1)

where ma and the mb are the momentum components of the nodes in question along the 
line ab joining them. The absolute value of mb is used indicated by the || bars.  dmab < ma
is the is the portion of node (a)'s momentum transferred to (b) in unit time 'tick'. The 
momentum transferred from (b) to (a) is similarly calculated:

dmba(r,c)= mb(r,c)/v(1+|ma(r+1,c+1)|) (2)

and unless mb=ma, dmab is usually unequal to dmba. The 2D simulation shows energy 
spreading as expected. In the resulting graphic The simulation scheme involves the 
following steps for each time tick (s):
1- Define initial momentum m(r,c) and 'phase' t(r,c) i.e. angle of the momentum of each 

2 Tamari, Vladimir F., United Dipole Field, 1993, published online 2008 http://arxiv.org/pdf/physics/0303082
(Web access: July 6, 2016)

3 Hooft, Gerard, The Cellular Automaton Interpretation of Quantum Mechanics 
https://arxiv.org/abs/1405.1548 (Web access 8 July, 2016)

4 Wolfram, Stephen, A New Kind of Science , (2002) http://www.wolframscience.com/nksonline/toc.html 
(Web access: July 6, 2016)

http://www.wolframscience.com/nksonline/toc.html
https://arxiv.org/abs/1405.1548
http://arxiv.org/pdf/physics/0303082
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node. Add up the total energy of all the nodes (mom) as a scalar.

2- Display the data. The radius of the circle surrounding a node indicates its energy, while 
its direction is shown by the angle made by the radius shown. The data could also be 
displayed as a vector field.

3- For each time-tick s = 0, 1,2, … and for each node in turn on row r= 1,2,3... and column 
c= 1,2,3, …, and using the convenient scanning scheme of assigning names (a), (b), (c), 
(d) to the four contiguous nodes to the left and below a given node (n) as described in the 
in Section  IV, Use Eq(1) and Eq.(2) to systematically calculate the energy transfer 
between all unique pairs of contiguous nodes in the array. Each node has eight contiguous
nodes surrounding it, except at the edges of the matrix.

4- Calculate the (x) and (y) components of the resulting transferred momenta, and 
summate them for each node. This is works because the momentum is added and 
subtracted linearly.

5- Add up the total resulting total momentum (momtot) of the array and, to conserve 
momentum, multiply each node's new momentum by a renormalization scalar

ren = mom /momtot                                                            (3)

This may seem like an artificial step casting doubt that (BU) is true to the workings of 
nature, where momentum is conserved in due course. However, due to the step-by-step 
scheme of transfer between a node and its neighbors, rather than an all-at-once 
determination of all transfers, a spurious numerical imbalance is introduced for example 
when a node may end up contributing a total of more energy than it had initially. 

6- Using the mx(r,c) and my(r,c) components, display the new momenta and repeat the 
cycle for a new time tick s= s+1.

As expected a nodes's energy spreads to its neighbors in a symmetrical fashion. In the 
simulation four nodes were 'energized' artificially and in isolation as a test pulse – i.e it is 
not representative of a photon or de-Broglie wave released by or associated with matter. 
Therefore besides the forward momentum the energy also spreads in the opposite 
directions – a 'kickback' effect reminiscent of Newton's Third Law 'for every action there is 
an equal and opposite reaction. 

The reason for this in-built property of the simulation will become clearer when a more 
realistic scenario is implemented with dipolar attraction and repulsion causing symmetrical 
action all around a node. Results of simulating the transfer of momentum of four test 
pulses directed at a common center are shown in where the eight states shown. An 
animated version of this simulation can be seen online 5. An orderly and symmetrical 
transfer of momentum, despite the peculiar rules of Eq. (1) and (2) can be considered a 
preliminary proof of concept of energy transfer in (BU)

5 Animated version of Fig. 1 can be seen online here:
     http://vladimirtamari.com/images/bu-basic-animation.gif 
     https://www.youtube.com/watch?v=NbwBwanXYq4 

(Web Acess:  July 16, 2016)

https://www.youtube.com/watch?v=NbwBwanXYq4
http://vladimirtamari.com/images/bu-basic-animation.gif
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III - Limitations of the simulation

                            a.                                                            b.

Fig. 2  Comparing Beautiful Universe's( BU) rotating dipolar dielectric nodes – miniature 
Bloch Spheres - with those used in the simulation. (a) (BU) nodes have + - polarity and 
rotate in units of Planck's constant (h) . When rotating nodes with opposite polarity lie next 
to each other (dashed square) they 'stick' together and form matter. (b) The same nodes 
using the conventions of this simulation as simple dimensionless vectors. The radius of 
each circle shows the momentum, but unlike the situation in (BU) in this simulation 
opposite vectors annihilate each other and cannot show interference e
________________________________________________________________________

The simulation is limited by being 2D, but this does not affect the way unimpeded energy 
is transmitted across the array. More seriously, as seen in Fig. 2, comparing  (BU) nodes 
to the ones used in the simulation, the simulation nodes do not have the 
repulsion/attraction properties of dipolar nodes in (BU). There are no interference effects, 
as when two sine waves add up or subtract when they overlap out of phase, but otherwise 
continue unaffected. When the four waves of Fig. 1 meet at the center they annihilate each
other rather than superimpose as theory demands. 

The simulation only considers exchanges between contiguous nodes, while in theory every
node is affected by every other node in the array. This first approximation allows the 
simulation to be made inexpensively in a relatively short program. Another obvious 
limitation is the lack of quantitative definitions of what is being simulated. In (BU) the nodes
rotate with angular momentum in units of Planck's constant (h), and in the vacuum a wave 
travels at a velocity c. The distances of the nodes and the time-tick value of s in seconds 
should be defined in a quantitative model. The simulation was implemented using a BASIC
app an iPhone and iPad severely limiting the possibilities. A proper 3D simulation with 
rotating dipolar nodes in the detailed manner of an earlier simulation of three interacting 
dipoles simulating the Strong Force 6 should be able to show a more realistic wave transfer
in the (BU) model.

6 Tamari, Vladimir F. , Three Magnetic Dipoles Provide a Physically Realistic Simulation of the Repulsive-
Attractive Nature of the Strong Force and of the Cabibbo Angle (2011) http://vixra.org/abs/1107.0033 

     (Web Access: July 6, 2016)

http://vixra.org/abs/1107.0033
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IV- The simulation concept and program.

The BASIC program below is based on the general ideas detailed in Section II, while Fig. 3
shows the exact vector labels and relations used in the program. 

Fig. 3: Diagram of the node geometry and momentum accounting scheme used in the 
simulation of a 2D square array of nodes (top left). A given node (n) at row (r) and column 
(c) has initial momentum m(r,c) (green vector) at a phase t(r,c) and contributes some of it 
to the neighboring nodes a, b, c, d while at the same time it receives momentum from 
them, according to a specific rule peculiar to the Beautiful Universe model. Only 
components mna, mnb, mnc, mnd (blue vectors) along the lines joining the nodes na, nb, 
nc, nd are considered. However n donates only part of those components (orange 
vectors): for example node (n) contributes to (b) only dnb = mnb / v(1+mnb) where v is a 
velocity factor taken to be one. At the same time (n) receives momentum dbn from (b), 
and similarly for the other pairs of nodes adjacent to and directly below n. Finally for each 
(n) the (x) and y components of all the contributions from and to its neighbors are 
calculated and stored in memory. The next node cluster in the row then the column is 
similarly treated systematically. Exchanges along only four lines (red, top left) for each 
node is sufficient to cover all contiguous unique pairs in the array. After exchanges from all
unique pairs of the array are summed up and assigned to each node, the new initial 
momenta and phases calculated for each node in the next scan of the array.

____________________________________________________________
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BASIC program used in the simulation
The following code was edited and displayed using the BASIC! app available from the iOS 
App Store  using an iPad Mini and an iPhone. Figs 1 shows ten  screenshots of the iPad 
tablet as the program was implemented

_________________________
REM BEAUTIFUL UNIVERSE JULY 10 2016
REM  SYMMETRICAL TRANSFER 4NODES
REM 2D SQUARE GRID LATTICE nabcd NODES
COLOR 139, 30, 0
BCOLOR  255,255,204
TCOLOR 150,150,150
REM t is node phase ; m is its "density"
sw=ScreenWidth
sh=ScreenHeight '
REM node spacing
n= 20
REM v is a velocity factor
v=1
REM renormalization quotient reevaluated each cycle
ren = 1
REM example n= 24 gives 14 rows 12 columns
r#= INT ((sh- n)/n)
REM #row
c#= INT ((sw - n)/n)
REM # nodes in row
DIM m(r#,c#) ,  t(r#,c#), mx(r#,c#), my(r#,c#)
DIM mna(r#,c#), mnb(r#,c#) , mnc(r#,c#), mnd(r#,c#), man(r#,c#), mbn(r#,c#), mcn(r#,c#), mdn(r#,c#)
DIM dna(r#,c#), dnb(r#,c#) , dnc(r#,c#),  dnd(r#,c#), dan(r#,c#), dbn(r#,c#), dcn(r#,c#), ddn(r#,c#)
DIM   dnby(r#,c#),  dncy(r#,c#), dndy(r#,c#),  dbny(r#,c#),  dcny(r#,c#), ddny(r#,c#)
DIM dnax(r#,c#),  dnbx(r#,c#),  dncx(r#,c#), dbnx(r#,c#),  dcnx(r#,c#), danx(r#,c#)
REM bnay(r#,c#)= dany(r#,c#)= 0. Initial conditions s=1 define angular momentum vector m length with phase angle t at given 
r=row, c=column. Set  and display initial vectors m and t of node field. Dots indicate zero momentum nodes. Circles show 
momentum of node & its radius m at the phase angle t
REM initial conditions phase t measured from 3 0'clock counterclockwise in RADIANS
j =1/SQR(2)
REM j = SIN or COS (PI/4)

REM nodes at initial conditions.
m(10,19 ) = 500
t(10,19) = PI/2
m(17,27) = 500
t(17,27)= PI
m(17,11) = 500
t(17,11) =  0
m(25,19) = 500
t(25,19) = 3* PI / 2
REM mom is total initial total momentum in system of nodes

FOR r = 1 TO r#-1

    FOR c = 2 TO c#-1

        mx(r,c)= m(r,c)* COS (t(r,c))

        my(r,c)= m(r,c)* SIN (t(r,c))

        mom= mom+ m(r,c)

    NEXT c
NEXT r

REM  display initial and later states
display:
CLS
PRINT s
FOR r = 1 TO r#-1

    y= r*n
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    FOR c = 2 TO c#-1

        x=c*n

        CIRCLE x, y, m(r,c),1

        CIRCLE x,y, 1, 1

        LINE x, y, (x +mx(r,c)), (y + my(r,c)),1

        REM origin is at top left of screen so make +y points down

    NEXT c
NEXT r

REM For each point N Calculating momentum exchange between a set of four unique neighboring node pairs in the square grid. 
Each point N has a node A to its right in the same row. In the next row D diagonally to the left , C directly under it in the same 
column, and B diagonally to its right. Last column c# and last row # skipped. Scanning the grid systematically  provides the 
interactions of each N with all of its immediate neighbors in the grid.
FOR r=1TO r#-1

    FOR c=2 TO c# -1

        REM Momentum exchanges between N & A   (No y components)

        IF m(r,c) = 0 AND m(r,c+1) = 0 THEN

            GOTO skipna

        ENDIF

        mna(r,c) = m(r,c) * COS( t(r,c))

        man(r,c+1) = m(r,c+1)* COS( t(r,c+1))

        dnax(r,c) = mna(r,c) / (v*(1+ABS (man(r,c+1))))

        danx(r,c+1) = man(r,c+1) /(v* (1+ABS (mna(r,c))))

        skipna:

        REM Momentum exchange between Nodes N  & B

        IF m(r,c) = 0 AND m(r+1,c+1) = 0 THEN

            GOTO skipnb

        ENDIF

        mnb(r,c) = m(r,c) * COS (t(r,c)-PI/4)

        mbn(r+1,c+1) = m(r+1,c+1) * COS (t(r+1,c+1)-RAD(45))

        dnb(r,c) = mnb(r,c) /(v*(1+ ABS (mbn(r+1,c+1))))

        dnbx(r,c) = dnb(r,c) * j

        dnby(r,c) = dnb(r,c) * j

        dbn(r+1,c+1) = mbn(r+1,c+1) / (v* (1+ ABS (mnb(r,c))))

        dbnx(r+1,c+1) = dbn(r+1,c+1) * j

        dbny(r+1,c+1) =  dbn(r+1,c+1) * j

        skipnb:

        REM Exchange between Node N  & C

        IF m(r,c) = 0 AND m(r+1,c-1) = 0 THEN

            GOTO skipnc

        ENDIF

        mnc(r,c) = m(r,c) * COS(RAD(135) - t(r,c))

        mcn(r+1,c-1) = m(r+1,c-1) * COS((t(r+1,c-1) - RAD(315)))

        dnc(r,c) = mnc(r,c) / (v*(1+ ABS (mcn(r+1,c- 1))))

        dncx(r,c) =  - dnc(r,c) * j

        dncy(r,c) = dnc(r,c) * j

        dcn(r+1,c-1) = mcn(r+1,c-1) / (v*(1+ ABS (mnc(r,c))))

        dcnx(r+1,c-1) =dcn(r+1,c-1) * j

        dcny(r+1,c-1) = - dcn(r+1,c-1) * j

        skipnc:

        REM Momentum exchanges between N & D  (No x components)

        IF m(r,c) = 0 AND m(r+1,c) = 0 THEN
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            GOTO skipnd

        ENDIF

        mnd(r,c) = m(r,c) * SIN( t(r,c))

        mdn(r+1,c) = m(r+1,c)* SIN( t(r+1,c))

        dndy(r,c) = mnd(r,c) / (v*(1+ABS (mdn(r+1,c))))

        ddny(r+1,c) = mdn(r+1,c) /(v* (1+ABS (mnd(r,c))))

        skipnd:

    NEXT c
NEXT r

REM CALCULATING NEW MOMENTA AFTER EXCHANGES OF ENTIRE NODES
FOR r=1 TO c#-1

    FOR c=2 TO c# -1

        REM Cumulative X Y of Momentum for node N

        mx(r,c)= mx(r,c) +danx(r,c+1) +dbnx(r+1,c+1) + dcnx(r+1,c-1) -dnax(r,c) - dnbx(r,c) - dncx(r,c)

        my(r,c) = my(r,c) + dbny(r+1,c+1) + dcny(r+1,c-1) +ddny(r+1,c) - dnby(r,c) - dncy(r,c) -dndy(r,c)

        REM Cumulative X Y of Momentum for node A

        mx(r,c+1)= mx(r,c+1)+ dnax(r,c) - danx(r,c+1)

        REM Cumulative X Y of Momentum for node B

        mx(r+1,c+1)= mx(r+1,c+1) +dnbx(r,c) -  dbnx(r+1,c+1)

        my(r+1,c+1) = my(r+1,c+1)  +dnby(r,c)  - dbny(r+1,c+1)

        REM Cumulative X Y of Momentum for node. C

        mx(r+1,c-1)= mx(r+1,c-1) +dncx(r,c)  - dcnx(r+1,c-1)

        my(r+1,c-1) = my(r+1,c-1) +dncy(r,c) - dcny(r+1,c-1)

        REM Cumulative X Y of Momentum for node D

        my(r+1,c)= my(r+1,c) +dndy(r,c) - ddny(r+1,c)

    NEXT c
NEXT  r

REM UPDATED MOMENTUM AND PHASE FOR NEXT ROUND
FOR r = 1 TO r#-1

    FOR c = 2 TO c#-1

        IF mx(r,c)=0 AND my(r,c)=0 THEN

            GOTO skipangle

        ENDIF

        IF mx(r,c)=0  AND my(r,c) < 0 THEN

            t(r,c)=  3*PI/2

            GOTO skipangle

        ENDIF

        IF mx(r,c)=0 AND my(r,c) > 0 THEN

            t(r,c)=PI/2

            GOTO skipangle

        ENDIF

        IF mx(r,c)<0 AND my(r,c) =0 THEN

            t(r,c)=  PI

            GOTO skipangle

        ENDIF

        IF mx(r,c)>0  AND my(r,c) = 0 THEN

            t(r,c)=0

            GOTO skipangle

        ENDIF

        t(r,c) =  ATN( my(r,c)/mx(r,c))
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        IF mx(r,c)<0 AND my(r,c) <0 THEN

            t(r,c)= t(r,c) +PI

        ENDIF

        IF mx(r,c)<0 AND my(r,c) >0 THEN

            t(r,c) = -PI + t(r,c)

        ENDIF

        skipangle:

        m(r,c) =((mx(r,c)^2+ my(r,c)^2)^0.5 )

        momtot = momtot + m(r,c)

    NEXT c
NEXT r

REM renormalize all momenta to conserve total momentum
ren= mom/momtot
FOR r = 1 TO r#-1

    FOR c = 2 TO c#-1

        mx(r,c)=mx(r,c)*ren

        my(r,c)=my(r,c)* ren

        m(r,c)= m(r,c)*ren

    NEXT c
NEXT r

REM count cycle number
s=s+1
momtot=0
GOTO display

 ________________


