

N_{ω} –CLOSED SETS IN NEUTROSOPHIC TOPOLOGICAL SPACES

Santhi R.¹ and Udhayarani N.²

¹N.G.M. college, Pollachi, Tamil nadu- 642001, India.E-mail:santhifuzzy@gmail.com ²N.G.M. college, Pollachi, Tamil nadu- 642001, India.E-mail: udhayaranin@gmail.com

Abstract. Neutrosophic set and Neutrosophic Topological spaces has been introduced by Salama[5]. Neutrosophic Closed set and Neutrosophic Continuous Functions were introduced by

Salama et. al.. In this paper, we introduce the concept of $N\omega$ - closed sets and their properties in Neutrosophic topological spaces.

Keywords: Intuitionistic Fuzzy set, Neutrosophic set, Neutrosophic Topology, N_s -open set, N_s -closed set, N_{ω} - closed set, N_{ω} - open set and $N\omega$ -closure.

1. Introduction

Many theories like, Theory of Fuzzy sets[10], Theory of Intuitionistic fuzzy sets[1], Theory of Neutrosophic sets[8] and The Theory of Interval Neutrosophic sets[4] can be considered as tools for dealing with uncertainities. However, all of these theories have their own difficulties which are pointed out in[8].

In 1965, Zadeh[10] introduced fuzzy set theory as a mathematical tool for dealing with uncertainities where each element had a degree of membership. The Intuitionistic fuzzy set was introduced by Atanassov[1] in 1983 as a generalization of fuzzy set, where besides the degree of membership and the degree of nonmembership of each element. The neutrosophic set was introduced by Smarandache[7] and explained, neutrosophic set is a generalization of intuitionistic fuzzy set.

In 2012, Salama, Alblowi[5] introduced the concept of Neutrosophic topological spaces. They introduced neutrosophic topological space as а generalization of intuitionistic fuzzy topological space and a neutrosophic set besides the degree of membership, the degree of indeterminacy and the degree of nonmembership of each element. In 2014 Salama, Smarandache and Valeri [6] were introduced the concept of neutrosophic closed sets and neutrosophic continuous functions. In this paper, we introduce the concept of N_o- closed sets and their properties in neutrosophic topological spaces.

2. Preliminaries

In this paper, X denote a topological space (X, τ_N) on which no separation axioms are assumed unless otherwise explicitly mentioned. We recall the following definitions, which will be used throughout this paper. For a subset A of X, Ncl(A), Nint(A) and A^c denote the neutrosophic closure, neutrosophic interior, and the complement of neutrosophic set A respectively. **Definition 2.1.[3]** Let X be a non-empty fixed set. A neutrosophic set(NS for short) A is an object having the form $A = \{ < x, \mu_A(x), \sigma_A(x), \upsilon_A(x) >: \text{ for all } x \in X \}$. Where $\mu_A(x), \sigma_A(x), \upsilon_A(x)$ which represent the degree of membership, the degree of indeterminacy and the degree of nonmembership of each element $x \in X$ to the set A.

Definition 2.2.[5] Let A and B be NSs of the form A = $\{<x, \mu_A(x), \sigma_A(x), \upsilon_A(x)>: \text{ for all } x \in X\}$ and B = $\{<x, \mu_B(x), \sigma_B(x), \upsilon_B(x)>: \text{ for all } x \in X\}$. Then

i. $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$, $\sigma_A(x) \ge \sigma_B(x)$ and $\upsilon_A(x) \ge \upsilon_B(x)$ for all $x \in X$,

ii. A = B if and only if $A \subseteq B$ and $B \subseteq A$,

- iii. $A^{c} = \{ < x, \upsilon_{A}(x), 1 \sigma_{A}(x), \mu_{A}(x) >: \text{ for all } x \in X \},$
- iv. A U B = {<x, $\mu_A(x) \lor \mu_B(x)$, $\sigma_A(x) \land \sigma_B(x)$, $\upsilon_A(x) \land \upsilon_B(x)$: for all $x \in X >$ },
- v. A \cap B = { $\langle x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \upsilon_A(x) \lor \upsilon_B(x): \text{ for all } x \in X >$ }.

Definition 2.3.[5] A neutrosophic topology(NT for short) on a non empty set X is a family τ of neutrosophic subsets in X satisfying the following axioms:

- i) $0_N, 1_N \in \tau$,
- ii) $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$,
- iii) $\cup G_i \in \tau$, for all $G_i: i \in J \subseteq \tau$

In this pair (X, τ) is called a neutrosophic topological space (NTS for short) for neutrosophic set (NOS for short) τ in X. The elements of τ are called open neutrosophic sets. A neutrosophic set F is called closed if and only if the complement of F(F^c for short) is neutrosophic open.

Definition 2.4.[5] Let (X, τ) be a neutrosophic topological space. A neutrosophic set A in (X, τ) is said to be neutrosophic closed(N-closed for short) if Ncl(A) \subseteq G whenever A \subseteq G and G is neutrosophic open.

Definition 2.5.[5] The complement of N-closed set is N-open set.

Proposition 2.6.[6] In a neutrosophic topological space $(X, T), T = \Im$ (the family of all neutrosophic closed sets) iff every neutrosophic subset of (X, T) is a neutrosophic closed set.

3. N_{ω} -closed sets

In this section, we introduce the concept of N_{ω} closed set and some of their properties. Throughout this paper (X, τ_N) represent a neutrosophic topological spaces.

Definition 3.1. Let (X, τ_N) be a neutrosophic topological space. Then A is called neutrosophic semi open set $(N_s$ -open set for short) if $A \subset Ncl(Nint(A))$.

Definition 3.2. Let (X, τ_N) be a neutrosophic topological space. Then A is called neutrosophic semi closed set $(N_s$ -closed set for short) if Nint $(Ncl(A)) \subset A$.

Definition 3.3. Let A be a neutrosophic set of a neutrosophic topological space (X, τ_N) . Then,

- i. The neutrosophic semi closure of A is defined as $N_scl(A) = \cap \{K: K \text{ is a } N_s\text{-closed in } X \text{ and } A \subseteq K\}$
- ii. The neutrosophic semi interior of A is defined as $N_{sint}(A) = \bigcup \{G: G \text{ is a } N_{s}\text{-open in } X \text{ and } G \subseteq A\}$

Definition 3.4. Let (X, τ_N) be a neutrosophic topological space. Then A is called Neutrosophic ω closed set $(N_{\omega}$ -closed set for short) if Ncl(A) \subseteq G whenever A \subseteq G and G is N_s-open set.

Theorem 3.5. Every neutrosophic closed set is N_{ω} -closed set, but the converse may not be true.

Proof: If A is any neutrosophic set in X and G is any N_s -open set containing A, then Ncl (A) \subseteq G. Hence A is N_{ω} -closed set.

The converse of the above theorem need not be true as seen from the following example.

Example 3.6. Let $X = \{a,b,c\}$ and $\tau_N = \{0_N,G_1, 1_N\}$ is a neutrosophic topology and (X, τ_N) is a neutrosophic topological spaces. Take $G_1 = \langle x, (0.5, 0.6, 0.4), (0.4, 0.5, 0.2), (0.7, 0.6, 0.9) \rangle$, $A = \langle x, (0.2, 0.2, 0.1), (0, 1, 0.2), (0.8, 0.6, 0.9) \rangle$. Then the set A is N_{ω} -closed set but A is not a neutrosophic closed.

Theorem 3.7. Every N_{ω} -closed set is N-closed set but not conversely.

Proof: Let A be any N_{ω} -closed set in X and G be any neutrosophic open set such that $A \subseteq G$. Then G is N_s -open, $A \subseteq G$ and Ncl (A) $\subseteq G$. Thus A is N-closed.

The converse of the above theorem proved by the following example.

Example 3.8. Let $X = \{a,b,c\}$ and $\tau_N = \{0_N,G_1,1_N\}$ is a neutrosophic topology and (X, τ_N) is a neutrosophic topological spaces. Let $G_1 = \langle x, (0.5, 0.6, 0.4), (0.4, 0.5, 0.2), (0.7, 0.6, 0.9) \rangle$ and $A = \langle x, (0.55, 0.45, 0.6), (0.11, 0.3, 0.1), (0.11, 0.25, 0.2) \rangle$. Then the set A is N-closed but A is not a N_{ω}-closed set.

Remark 3.9. The concepts of N_{ω} -closed sets and N_s -closed sets are independent.

Example 3.10. Let $X = \{a,b,c\}$ and $\tau_N = \{0_N,G_1, 1_N\}$ is a neutrosophic topology and (X, τ_N) is a neutrosophic topological spaces. Take $G_1 = \langle x, (0.5, 0.6, 0.4), (0.4, 0.5, 0.2), (0.7, 0.6, 0.9) \rangle$, $A = \langle x, (0.2, 0.2, 0.1), (0, 1, 0.2), (0.8, 0.6, 0.9) \rangle$. Then the set A is N_{ω} -closed set but A is not a N_s -closed set.

Example 3.11. Let $X = \{a,b\}$ and $\tau_N = \{0_N,G_1, G_2, 1_N\}$ is a neutrosophic topology and (X, τ_N) is a neutrosophic topological spaces. Take $G_1 = \langle x, (0.6, 0.7), (0.3, 0.2), (0.2, 0.1) \rangle$ and $A = \langle x, (0.3, 0.4), (0.6, 0.7), (0.9,0.9) \rangle$. Then the set A is N_s-closed set but A is not a N_o-closed.

Theorem 3.12. If A and B are N_{ω} -closed sets, then A \cup B is N_{ω} -closed set.

Proof: If $A \cup B \subseteq G$ and G is N_s -open set, then $A \subseteq G$ and $B \subseteq G$. Since A and B are N_{ω} -closed sets, $Ncl(A) \subseteq G$ and $Ncl(B) \subseteq G$ and hence $Ncl(A) \cup Ncl(B) \subseteq G$. This implies $Ncl(A \cup B) \subseteq G$. Thus $A \cup B$ is N_{ω} -closed set in X.

Theorem 3.13. A neutrosophic set A is N_{ω} -closed set then Ncl(A) – A does not contain any nonempty neutrosophic closed sets.

Proof: Suppose that A is N_{ω} -closed set. Let F be a neutrosophic closed subset of Ncl(A) - A. Then $A \subseteq F^c$. But A is N_{ω} -closed set. Therefore $Ncl(A) \subseteq F^c$. Consequently $F \subseteq (Ncl(A))^c$. We have $F \subseteq Ncl(A)$. Thus $F \subseteq Ncl(A) \cap (Ncl(A))^c = \phi$. Hence F is empty.

The converse of the above theorem need not be true as seen from the following example.

Example 3.14. Let $X = \{a,b,c\}$ and $\tau_N = \{0_N,G_1, 1_N\}$ is a neutrosophic topology and (X, τ_N) is a neutrosophic topological spaces. Take $G_1 = \langle x, (0.5, 0.6, 0.4), (0.4, 0.5, 0.2), (0.7, 0.6, 0.9) \rangle$ and $A = \langle x, (0.2, 0.2, 0.1), (0.6, 0.6, 0.6), (0.8, 0.9, 0.9) \rangle$. Then the set A is not a N_{\omega}-closed set and Ncl(A) – A = $\langle x, (0.2, 0.2, 0.1), (0.6, 0.6), (0.8, 0.9, 0.9) \rangle$ does not contain non-empty neutrosophic closed sets.

Theorem 3.15. A neutrosophic set A is N_{ω} -closed set if and only if Ncl(A) - A contains no non-empty N_s -closed set.

Proof: Suppose that A is N_{ω} -closed set. Let S be a N_s closed subset of Ncl(A) – A. Then A \subseteq S^c. Since A is N_{ω} closed set, we have Ncl(A) \subseteq S^c. Consequently S \subseteq (Ncl(A))^c. Hence S \subseteq Ncl(A) \cap (Ncl(A))^c = ϕ . Therefore S is empty.

Conversely, suppose that Ncl(A) – A contains no nonempty N_s-closed set. Let $A \subseteq G$ and that G be N_s-open. If Ncl(A) \nsubseteq G, then Ncl(A) \cap G^c is a non-empty N_s-closed subset of Ncl(A) – A. Hence A is N_{ω}-closed set.

Corollary 3.16. A N_{ω} -closed set A is N_s -closed if and only if N_s cl(A) – A is N_s -closed.

Proof: Let A be any N_{ω} -closed set. If A is N_s -closed set, then $N_s cl(A) - A = \phi$. Therefore $N_s cl(A) - A$ is N_s -closed set.

Conversely, suppose that Ncl(A) - A is N_s -closed set. But A is N_{ω} -closed set and Ncl(A) - A contains N_s -closed. By theorem 3.15, $N_scl(A) - A = \phi$. Therefore $N_scl(A) = A$. Hence A is N_s -closed set.

Theorem 3.17. Suppose that $B \subseteq A \subseteq X$, B is a N_{ω} -closed set relative to A and that A is N_{ω} -closed set in X. Then B is N_{ω} -closed set in X.

Proof: Let $B \subseteq G$, where G is N_s -open in X. We have $B \subseteq A \cap G$ and $A \cap G$ is N_s -open in A. But B is a N_{ω} -closed set relative to A. Hence $Ncl_A(B) \subseteq A \cap G$. Since $Ncl_A(B) = A \cap Ncl(B)$. We have $A \cap Ncl(B) \subseteq A \cap G$. It implies $A \subseteq G \cup (Ncl(B))^c$ and $G \cup (Ncl(B))^c$ is a N_s -open set in X. Since A is N_{ω} -closed in X, we have $Ncl(A) \subseteq G \cup (Ncl(B))^c$. Hence $Ncl(B) \subseteq G \cup (Ncl(B))^c$ and $Ncl(B) \subseteq G$. Therefore B is N_{ω} -closed set relative to X.

Theorem 3.18. If A is N_{ω} -closed and $A \subseteq B \subseteq Ncl(A)$, then B is N_{ω} -closed.

Proof: Since $B \subseteq Ncl(A)$, we have $Ncl(B) \subseteq Ncl(A)$ and $Ncl(B) - B \subseteq Ncl(A) - A$. But A is N_{ω} -closed. Hence Ncl(A) - A has no non-empty N_s -closed subsets, neither does Ncl(B) - B. By theorem 3.15, B is N_{ω} -closed.

Theorem 3.19. Let $A \subseteq Y \subseteq X$ and suppose that A is N_{ω} -closed in X. Then A is N_{ω} -closed relative to Y.

Proof: Let $A \subseteq Y \cap G$ where G is N_s-open in X. Then $A \subseteq G$ and hence Ncl(A) $\subseteq G$. This implies, $Y \cap Ncl(A) \subseteq Y \cap G$. Thus A is N_{ω}-closed relative to Y.

Theorem 3.20. If A is N_s -open and N_{ω} -closed, then A is neutrosophic closed set.

Proof: Since A is N_s -open and N_{ω} -closed, then $Ncl(A) \subseteq A$. Therefore Ncl(A) = A. Hence A is neutrosophic closed.

4. N_{ω} -open sets

In this section, we introduce and study about N_{ω} -open sets and some of their properties.

Definition 4.1. A Neutrosophic set A in X is called N_{ω} -open in X if A^c is N_{ω} -closed in X.

Theorem 4.2. Let (X, τ_N) be a neutrosophic topological space. Then

- (i) Every neutrosophic open set is N_{ω} -open but not conversely.
- (ii) Every N_{ω} -open set is N-open but not conversely.

The converse part of the above statements are proved by the following example.

Example 4.3. Let $X = \{a,b,c\}$ and $\tau_N = \{0_N,G_1, 1_N\}$ is a neutrosophic topology and (X, τ_N) is a neutrosophic topological space. Take $G_1 = \langle x, (0.7, 0.6, 0.9), (0.6, 0.5, 0.8), (0.5, 0.6, 0.4) \rangle$ and $A = \langle x, (0.8, 0.6, 0.9), (1, 0, 0.8), (0.2, 0.2, 0.1) \rangle$. Then the set A is N_w-open set but not a neutrosophic open and $B = \langle x, (0.11, 0.25, 0.2), (0.89, 0.7, 0.9), (0.55, 0.45, 0.6) \rangle$ is N-open but not a N_w-open set.

Theorem 4.4. A neutrosophic set A is N_{ω} -open if and only if $F \subseteq Nint(A)$ where F is N_s -closed and $F \subseteq A$.

Proof: Suppose that $F \subseteq Nint(A)$ where F is N_s -closed and $F \subseteq A$. Let $A^c \subseteq G$ where G is N_s -open. Then $G^c \subseteq A$ and G^c is N_s -closed. Therefore $G^c \subseteq Nint(A)$. Since $G^c \subseteq Nint(A)$, we have $(Nint(A))^c \subseteq G$. This implies $Ncl((A)^c) \subseteq G$. Thus A^c is N_{ω} -closed. Hence A is N_{ω} -open.

Conversely, suppose that A is N_{ω} -open, $F \subseteq A$ and F is N_s closed. Then F^c is N_s -open and $A^c \subseteq F^c$. Therefore $Ncl((A)^c) \subseteq F^c$. But $Ncl((A)^c) = (Nint(A))^c$. Hence $F \subseteq$ Nint(A).

Theorem 4.5. A neutrosophic set A is N_{ω} -open in X if and only if G = X whenever G is N_s -open and $(Nint(A)\cup A^c) \subseteq G$.

Proof: Let A be a N_{ω} -open, G be N_s -open and $(Nint(A)\cup A^c) \subseteq G$. This implies $G^c \subseteq (Nint(A))^c \cap ((A)^c)^c = (Nint(A))^c - A^c = Ncl((A)^c) - A^c$. Since A^c is N_{ω} -closed and G^c is N_s -closed, by Theorem 3.15, it follows that $G^c = \phi$. Therefore X = G.

Conversely, suppose that F is N_s-closed and $F \subseteq A$. Then Nint(A) \cup A^c \subseteq Nint(A) \cup F^c. This implies Nint(A) \cup F^c = X and hence $F \subseteq$ Nint(A). Therefore A is N_{ω}-open.

Theorem 4.6. If Nint(A) \subseteq B \subseteq A and if A is N_{ω}-open, then B is N_{ω}-open.

Proof: Suppose that Nint(A) \subseteq B \subseteq A and A is N_{ω}-open. Then A^c \subseteq B^c \subseteq Ncl(A^c) and since A^c is N_{ω}-closed. We have by Theorem 3.15, B^c is N_{ω}-closed. Hence B is N_{ω}-open.

Theorem 4.7. A neutrosophic set A is N_{ω} -closed, if and only if Ncl(A) - A is N_{ω} -open.

Proof: Suppose that A is N_{ω} -closed. Let $F \subseteq Ncl(A) - A$ Where F is N_s -closed. By Theorem 3.15, $F = \phi$. Therefore $F \subseteq Nint((Ncl(A) - A))$ and by Theorem 4.4, we have Ncl(A) - A is N_{ω} -open. Conversely, let $A \subseteq G$ where G is a N_s-open set. Then Ncl(A) \cap G^c \subseteq Ncl(A) \cap A^c = Ncl(A) – A. Since Ncl(A) \subseteq G^c is N_s-closed and Ncl(A) – A is N_w-open. By Theorem 4.4, we have Ncl(A) \cap G^c \subseteq Nint(Ncl(A) – A) = ϕ . Hence A is N_w-closed.

Theorem 4.8. For a subset $A \subseteq X$ the following are equivalent:

(i) A is N_{ω} -closed.

- (ii) Ncl(A) A contains no non-empty N_sclosed set.
- (iii) Ncl(A) A is N_{ω} -open set.

Proof: Follows from Theorem 3.15 and Theorem 4.7.

5. N_{ω} -closure and Properties of N_{ω} -closure

In this section, we introduce the concept of $N_{\omega}\text{-}$ closure and some of their properties.

Definition 5.1. The N_{ω} -closure (briefly $N_{\omega}cl(A)$) of a subset A of a neutrosophic topological space (X, τ_N) is defined as follows:

 $N_{\omega}cl(A) = \cap \{ F \subseteq X / A \subseteq F \text{ and } F \text{ is } N_{\omega}\text{-closed in } (X, \tau_N) \}.$

Theorem 5.2. Let A be any subset of (X, τ_N) . If A is N_{ω} -closed in (X, τ_N) then $A = N_{\omega}cl(A)$.

Proof: By definition, $N_{\omega}cl(A) = \cap \{F \subseteq X / A \subseteq F \text{ and } F \text{ is a } N_{\omega}\text{-closed in } (X, \tau_N)\}$ and we know that $A \subseteq A$. Hence $A = N_{\omega}cl(A)$.

Remark 5.3. For a subset A of (X, τ_N) , $A \subseteq N_{\omega}cl(A) \subseteq Ncl(A)$.

Theorem 5.4. Let A and B be subsets of (X, τ_N) . Then the following statements are true:

- i. $N_{\omega}cl(A) = \phi$ and $N_{\omega}cl(A) = X$.
- ii. If $A \subseteq B$, then $N_{\omega}cl(A) \subseteq N_{\omega}cl(B)$
- iii. $N_{\omega}cl(A) \cup N_{\omega}cl(B) \subset N_{\omega}cl(A \cup B)$
- iv. $N_{\omega}cl(A \cap B) \subset N_{\omega}cl(A) \cap N_{\omega}cl(B)$

References

[1] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20(1986), 87-96.

[2] C.L. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications, 24(1968),182-190.

[3] F.G. Lupianez, On Neutrosophic sets and Topology, Kybernetes, 37(2008), 797-800.

[4] F.G. Lupianez, Interval Neutrosophic sets and Topology, Proceedings of 13^{th} WSEAS. International

Conference on Applied Mathematics(MATH'08) Kybernetes, 38(2009), 621-624.

[5] A.A. Salama and S.A. Alblowi S.A., Neutrosophic set and Neutrosophic Topological Spaces, IOSR-JM., 3(2012), 31-35.

[6] A.A. Salama, F. Samarandache and K. Valeri, Neutrosophic closed set and Neutrosophic continuous functions, Neutrosophic sets and Systems, 4(2014), 4-8.

[7] R. Santhi and D. Jayanthi, Intuitionistic fuzzy semi-pre closed sets, Tripura Math. Soc., 12(2010), 10-20.

[8] F. Smarandache, Neutrosophic set:- A generalization of the Intuitionistic Fuzzy set, Journal of Defense Resources Management. 1(2010),107-116.

[9] P. Sundaram, and M. Sheik John, On ω -closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.

[10] L.A. Zadeh, Fuzzy set, Inform. and Control, 8(1965), 338-353.

Received: May 30, 2016. Accepted: July 06, 2016.