. Vak Newtown Square PA, Kirons House, USA, 10.08.2016

Dynamic Universe Model solves "Faster than Light Neutrinos" riddle.

Satyavarapu Naga Parameswara Gupta (SNP. Gupta) Retired Assistant General Manager, Bhilai Steel plant Residence 1B Street 57 Sector 8 Bhilai 490006 C.G. India <u>snp.gupta@gmail.com</u>, <u>snp.gupta@hotmail.com</u>

Abstract:

There are many instances that reported Superluminal neutrinos. Dynamic Universe Model explains the how and why of "Faster than Light Neutrinos" without any modification in its theory. Various instances like Astronomical jets, Gravitational catapult, MINOS experiment and Fermilab1979 in particle experiments and supernova SN1987A and Gamma Ray Bursts (GRBs) in astronomy Neutrinos travelling faster than speed of light were recorded. There were 76 theoretical experiments conducted and their results are reported in this paper. These experiments were done between 2009 to 2011. Dynamic Universe Model theory was tested in explaining many anomalies in Physics. Dynamic Universe Model's many predictions came true.

PACS numbers: N-Body problem; 45.50.-j; 02.70.-c; 95.75.Kk; 04.80.Cc;

Key words

Dynamic universe Model; SITA programming; Micro particle world; VLBI Very Long Baseline Interferometry; Gravitational Bending: PPN formulations; Faster than light neutrinos; Super luminous neutrinos;

1. Introduction:

"Faster than Light Neutrinos" were observed in Dynamic Universe Model while working with VLBI papers in 2008 or so. That time no further work was done on this front. Now the earlier work was dug-up again for the theoretical evidences after seeing many observational reports of faster than light (or super luminal) neutrinos. The output graphs of all the cases of these 76 different situations were presented in Table 4. Two typical Graphs were presented in the paper where super luminal neutrinos are seen. It can be said that the SITA calculation methods of Dynamic Universe Model can be used without any modifications for explaining "Faster than Light Neutrinos" There are many

experimental verifications, astronomical observations and news items supporting "Faster than light neutrinos" in the literature. There are some which are against. I am not discussing many of them

1.1. Astronomical jets,

In January 1999, John Biretta^[1] reported HUBBLE DETECTS FASTER-THAN-LIGHT MOTION IN GALAXY M87. They found clouds which appear to move many times faster than the speed of light, shooting out from the Galaxy center region of the M87 galaxy.

1.2. MINOS experiment

Autiero of OPERA experiment realized that the same equipment of OPERA can be used for measuring speed of neutrinos and worked out the MINOS experiment . First he published results in 2011^[2] later this result was contradicted by OPERA director in 2012, and said neutrinos are travelling at the velocity of light.

1.3. Fermilab1979 particle experiments

Zhe Chang, Xin Li, and Sai Wang from Institute of High Energy Physics, China confirmed "superluminal speed formula is consistent with data of OPERA, MINOS and Fermilab-1979 neutrino experiments as well as observations on neutrinos from SN1987a^[3]

1.4. Neutrinos from Supernova SN1987A

Arnett, W.D. et al. (1989)^[4] and Nomoto^[5] et al (1987) found that the neutrinos emitted from this Supernova explosion reached earth 3hours earlier than the light. This Supernova was at a distance of 168 kLy. Here the assumption is that the neutrinos and the light were released simultaneously from the explosion of SN1987A and the produced neutrinos arrived few hours earlier.

1.5. Gamma Ray Bursts (GRBs) in astronomy

Katsuaki Asano of Japan and Kohta Murase of USA ^[6] said about EeV Neutrinos in the Afterglow Phase that they have experienced about the relativistic shock often becomes superluminal in 2015.

2. Applying Dynamic Universe Model:

Dynamic Universe model can calculate the simultaneous gravitational effect of many gravitating bodies like Sun, planets, local stars etc., while considering their dynamic movements. For this purpose, the original mathematical background of Dynamic Universe Model was extended into micro world about 10 years back. SITA programming was used in this case, for doing so, we will take the setup of solar system as on 01.01.2000@00.00:00 hrs using Helio centric ecliptic xyz values and try sending the

neutrino from different directions i.e., in different solar elongation angle Φ min and trace the path of neutrino. I took 76 different xyz coordinates and different directions for neutrinos with the same status of solar system as on 01.01.2000@00.00:00 hrs. The only change from experiment to experiment is the initial position and direction the neutrino. All these theoretical experiments were designed in such a way, the neutrino goes grazingly near Sun or at the minimum distance from the centre of Sun at the moment of time as on 01.01.2000@00.00:00 hrs precisely. taking into account all the dynamic movements of planets and the their gravitational fields on the fast moving neutrino. Each of these computationally intensive theoretical experiments took a time 15 min at the lowest to 24 hours at the highest, on a recent HP Laptop, depending on the number of iterations. Now let us see what Dynamic Universe Model of Cosmology is...

Dynamic Universe Model explains reason behind such variations. General Relativistic Bending depends on the mass and radius of Sun or the main gravitating body only. Whereas Dynamic Universe Model considers Gravitational effect Sun, Planets, Globular clusters, Milky-way, Local systems etc., and finds the Universal gravitational force vector at that instant of time for that configuration of the Universe.

This new type of Mathematics is different from earlier Newtonian two body problem that used differential equations and Einstein's general theory of relativity that used tensors which in turn unwrap into differential equations. This new Math approach was presented as an invited talk in Conference on "Emerging Areas in Pure & Applied Mathematics" ¹⁷. This Dynamic Universe Model approach solves many unsolved problems like...

- 1. Galaxy Disk formation using Dynamic Universe Model (Dense mass) Equations
- 2. Solution to Missing mass in Galaxies: It proves that there is no missing mass in Galaxy due to circular velocity curves
- 3. Explains gravity disturbances like Pioneer anomaly, etc.
- 4. Non-collapsing Large scale mass structures formed when non-uniform density distributions of masses were used
- 5. Offers Singularity free solutions.
- 6. Non- collapsing Galaxy structures

7. Solving Missing mass in Galaxies, and it finds reason for Galaxy circular velocity curves....

- 8. Blue shifted and red shifted Galaxies co-existence...
- 9. Explains the force behind expansion of universe.
- 10. Explains the large voids and non-uniform matter densities.
- 11. Predicts the trajectory of New Horizons satellite.
- 12. Withstands 10⁵ (One Hundred Thousand) times the Normal Jeans swindle test
- 13. Explaining the Pioneer Anomaly
- 14. Explaining the formation of Astronomical jets
- 15. Explaining the high velocities in Astronomical Jets
- 16. Prediction of "No-dark" matter proved experimentally
- 17. Near light velocities in Astronomical jets
- 18. Prediction of Blue shifted Galaxies came true
- 19. Explaining VLBI (Very long Baseline Interferometry)

20. Energy to mass conversion21. Explaining super luminal neutrinosEtc...

Only differences used between the various simulations are in the initial values & the time steps. The structure of masses is different. In the first 2 cases, approximate values of masses and distances were used. In the third and fourth case, real values of masses and distances for a close approximation were used.

Dynamic universe model is different from Newtonian static model, Einstein's Special & General theories of Relativity, Hoyle's Steady state theory, MOND, M-theory & String theories or any of the Unified field theories. It is basically computationally intensive real observational data based theoretical system. It is based on non-uniform densities of matter distribution in space. There is no space time continuum. It uses the fact that mass of moon is different to that of a Galaxy. No negative time. No singularity of any kind. No divide by zero error in any computation/ calculation till today. No black holes, No Bigbang or no many minute Bigbangs. All real numbers are used with no imaginary number. Geometry is in Euclidian space. Some of its earlier results are non-collapsing, non-symmetric mass distributions. It proves that there is no missing mass in Galaxy due to circular velocity curves. It is single closed Universe model. **Today we are presenting the results of theoretical experiments conducted 7 years back**.

Our universe is not a Newtonian type static universe. There is no Big bang singularity, so the question "What happened before Big bang?" does not arise. Ours is neither an expanding nor contracting universe. It is not infinite but it is a closed finite universe. Our universe is neither isotropic nor homogeneous. It is LUMPY. But it is not empty. It may not hold an infinite sink at the infinity to hold all the energy that is escaped. This is closed universe and no energy will go out of it. Ours is not a steady state universe in the sense, it does not require matter generation through empty spaces. No starting point of time is required. Time and spatial coordinates can be chosen as required. No imaginary time, perpendicular to normal time axis, is required. No baby universes, black holes or warm holes were built in.

This universe exists now in the present state, it existed earlier, and it will continue to exist in future also in a similar way. All physical laws will work at any time and at any place. Evidences for the three dimensional rotations or the dynamism of the universe can be seen in the streaming motions of local group and local cluster. Here in this dynamic universe, both the red shifted and blue shifted Galaxies co-exist simultaneously.

A point to be noted here is that the Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step. All the mathematics and the Excel based software details are explained in the three

books published by the author [14, 15, 16] In the first book, the solution to N-body problem-called Dynamic Universe Model (SITA) is presented; which is singularity-free, inter-body collision free and dynamically stable. This is the Basic Theory of Dynamic Universe Model published in 2010 [14]. The second book in the series describes the SITA software in EXCEL emphasizing the singularity free portions. It explains more than 21,000 different equations (2011)[15]. The third book describes the SITA software in EXCEL in the accompanying CD / DVD emphasizing mainly HANDS ON usage of a simplified version in an easy way. The third book contains explanation for 3000 equations instead of earlier 21000 (2011)[16].

SITA solution can be used in many places like currently unsolved applications like Pioneer anomaly at the Solar system level, Missing mass due to Star circular velocities and Galaxy disk formation at Galaxy level etc. Here we are using it for prediction of blue shifted Galaxies.

Dynamic Universe model does NOT depend on speculation. It is based on hard observed facts. I am writing these sentences especially as cosmology is becoming more and more speculative today.

The following table gives basic differences between Bigbang based cosmologies and Dynamic Universe Model

	General question answered by any theory (Cosmology condition)	Bigbang based cosmology	Dynamic Universe Model
1	It should say something about the creation of Universe / matter.	Required, In the form of Bigbang Singularity.	Not required, NO Bigbang Singularity, No SINGULARITY
2	It should explain about the expansion of Universe.	Says Universe is expanding, But keeps mum about explaining the force behind expansion.	Says Universe is expanding, But explains the force behind expansion.
3	It should say about the universe closed- ness,	Due to Space-time continuum and curvature.	Due to Classical Physics
4	It should explain Large scale structures etc.	Explained Using General relativity	Explained Using Total Universal Gravitational Force on Bodies

5	Dark matter	Cannot explain missing mass, Concept of UNKNOWN dark matter required to explain many things	Explains missing mass, dark matter NOT required
6	Dark energy	Concept of UNKNOWN dark energy required to explain many things	NOT required
7	It should tell about existence of Blue shifted Galaxies	Keeps mum No answer	Blue and red-shifted Galaxies can co-exist
8	It should explain about universe starting assumptions like uniform density of matter	Uniform density of matter required	Can explain large VOIDs, Based on NON uniform mass densities
9	It should deal correctly with celestial mechanics Like pioneer anomaly	Predicts away from SUN Observed is TOWARDS SUN	Predicts towards SUN as Observed (Important)
10	It should calculate correctly the Trajectory of New horizons satellite to Pluto.	At present trajectory predictions done using thumb-rules not from any model	Theoretically Calculates Trajectory accurately

3 Mathematical formulation: Into the Micro world

3.a. Original Theoretical formation (Tensor):

Let us assume an inhomogeneous and anisotropic set of N point masses moving under mutual gravitation as a system and these point masses are also under the gravitational influence of other additional systems with a different number of point masses in these different. For a broader perspective, let us call this set of all the systems of point masses as an Ensemble. Let us further assume that there are many Ensembles each consisting of a different number of systems with different number of point masses. Similarly, let us further call a group of Ensembles as Aggregate. Let us further define a Conglomeration as a set of Aggregates and let a further higher system have a number of conglomerations and so on and so forth.

Initially, let us assume a set of N mutually gravitating point masses in a system under Newtonian Gravitation. Let the α^{th} point mass has mass m_{α} , and is in position x_{α} . In addition to the mutual gravitational force, there exists an external ϕ_{ext} , due to other systems, ensembles, aggregates, and conglomerations etc., which also influence the total force F_{α} acting on the point mass α . In this case, the ϕ_{ext} is not a constant universal Gravitational field but it is the total vectorial sum of fields at x_{α} due to all the external to its system bodies and with that configuration at that moment of time, external to its system of N point masses.

$$m = M = \sum_{\alpha=1}^{N} m_{\alpha}$$

Total Mass of system =

Total force on the point mass α is F α , Let F_{$\alpha\beta$} is the gravitational force on the α thpoint mass due to β thpoint mass.

(1)

(2)

$$F_{\alpha} = \sum_{\substack{\alpha=1\\\alpha\neq\beta}}^{N} F_{\alpha\beta} - m_{\alpha} \nabla_{\alpha} \Phi_{ext}(\alpha)$$

Moment of inertia tensor

Consider a system of N point masses with mass m_{α} , at positions X_{α} , α =1, 2,...N; The moment of inertia tensor is in external back ground field ϕ_{ext} .

$$I_{jk} = \sum_{\alpha=1}^{N} m_{\alpha} x_{j}^{\alpha} x_{k}^{\alpha}$$
(3)

Its second derivative is

$$\frac{d^2 I_{jk}}{dt^2} = \sum_{\alpha=1}^N m_\alpha \left(x_j^{\alpha} x_k^{\alpha} + x_j^{\alpha} x_k^{\alpha} + x_j^{\alpha} x_k^{\alpha} \right)$$
(4)

The total force acting on the point mass α is and F is the unit vector of force at that place of that component.

$$F_{j}^{\alpha} = m_{\alpha} x_{j}^{\alpha} = \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N} \frac{Gm_{\alpha}m_{\beta} \left(x_{j}^{\beta} - x_{j}^{\alpha}\right)\hat{F}}{\left|x^{\beta} - x^{\alpha}\right|^{3}} - \nabla \Phi_{ext,j}m_{\alpha}$$
(5)

Writing a similar formula for F_{k}^{α}

$$F_{k}^{\alpha} = m_{\alpha} x_{k}^{\alpha} = \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N} \frac{Gm_{\alpha}m_{\beta} \left(x_{k}^{\beta} - x_{k}^{\alpha}\right)\hat{F}}{\left|x^{\beta} - x^{\alpha}\right|^{3}} - \nabla \Phi_{ext,k} m_{\alpha}$$
(6)

А

Lets define Energy tensor (in the external field
$$\phi_{\text{ext}}$$
)

$$\frac{d^{2}I_{_{jk}}}{dt^{2}} = 2\sum_{\alpha=1}^{N} m_{\alpha} \left(\begin{array}{c} x_{j}^{\alpha} x_{k}^{\alpha} \end{array} \right) + \sum_{\alpha=1 \atop \alpha\neq\beta}^{N} \sum_{\beta=1 \atop \alpha\neq\beta}^{N} \frac{Gm_{\alpha}m_{\beta} \left\{ (x_{k}^{\beta} - x_{k}^{\alpha})x_{j}^{\alpha} + (x_{j}^{\beta} - x_{j}^{\alpha})x_{k}^{\alpha} \right\}}{\left| x^{\beta} - x^{\alpha} \right|^{3}}$$

$$- \sum_{\alpha=1}^{N} \nabla \Phi_{_{ext}}m_{\alpha}x_{j}^{\alpha} - \sum_{\alpha=1}^{N} \nabla \Phi_{_{ext}}m_{\alpha}x_{k}^{\alpha}$$
(9)

$$\sum_{\substack{\alpha=1\\\alpha\neq\beta}}^{N} \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N} \frac{Gm_{\alpha}m_{\beta}\left\{\left(x_{k}^{\beta}-x_{k}^{\alpha}\right)x_{j}^{\alpha}+\left(x_{j}^{\beta}-x_{j}^{\alpha}\right)x_{k}^{\alpha}\right\}}{\left|x^{\beta}-x^{\alpha}\right|^{3}}$$

$$(10)$$

Lets denote Kinetic energy tensor = 2 $K_{jk} = \frac{1}{2} \Phi_{jk}$ Lets denote External potential energy tensor = 2 Φ_{jk} (11)

$$= \sum_{\alpha=1}^{N} \nabla \Phi_{ext} m_{\alpha} x_{j}^{\alpha} + \sum_{\alpha=1}^{N} \nabla \Phi_{ext} m_{\alpha} x_{k}^{\alpha}$$

$$\frac{d^{2} I_{ik}}{d^{2} I_{ik}}$$
(12)

$$\frac{dt^{2}}{dt^{2}} = W_{jk} + 2K_{jk} - 2\Phi_{jk}$$
(13)

Here in this case

Hence

$$F(\alpha) = \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N} F_{\alpha\beta} - \nabla_{\alpha} \Phi_{ext}(\alpha) m_{\alpha}$$

$$= \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N} \frac{Gm_{\alpha}m_{\beta}(x^{\beta} - x^{\alpha})}{|x^{\beta} - x^{\alpha}|^{3}} - \nabla \Phi_{ext}m_{\alpha}$$

$$= \begin{cases} \sum_{\alpha\neq\beta}^{\infty\alpha} (\text{int }) - \nabla_{\alpha} \Phi_{ext}(\alpha) \end{cases} m_{\alpha}$$

$$= \begin{cases} x^{\alpha} (\text{int }) - \nabla_{\alpha} \Phi_{ext}(\alpha) \end{cases} m_{\alpha}$$
(14)

$$\overset{\circ\circ}{x(\alpha)} = \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N} \frac{Gm_{\beta}(x^{\beta} - x^{\alpha})}{|x^{\beta} - x^{\alpha}|^{3}} - \nabla \Phi_{ext}$$
(16)

We know that the total force at $x(\alpha) = F_{tot}(\alpha) = -\nabla_{\alpha} \Phi_{tot}(\alpha) m_{\alpha}$ Total PE at $\alpha = m_{\alpha} \Phi_{tot}(\alpha) = -\int F_{tot}(\alpha) dx$

$$= -\int \left\{ \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N} x_{int}^{\alpha\alpha} - \nabla_{\alpha} \Phi_{ext}(\alpha) m_{\alpha} - \right\} dx$$
$$= \int \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N} \frac{Gm_{\beta}m_{\alpha}(x^{\beta} - x^{\alpha})}{|x^{\beta} - x^{\alpha}|^{3}} dx - \int \nabla \Phi_{ext}m_{\alpha} dx$$
(17)

Therefore total Gravitational potential $\phi_{tot}(\alpha)$ at x (α) per unit mass

$$\Phi_{tot}(\alpha) = \Phi_{ext} - \sum_{\substack{\beta=1\\ \alpha\neq\beta}}^{N} \frac{Gm_{\beta}}{\left|x^{\beta} - x^{\alpha}\right|}$$

Lets discuss the properties of ϕ_{ext} :-

 ϕ_{ext} can be subdivided into 3 parts mainly

 ϕ_{ext} due to higher level system, ϕ_{ext} -due to lower level system, ϕ_{ext} due to present level. [Level : when we are considering point mass in the same system (Galaxy) it is same level, higher level is cluster of galaxies, and lower level is planets & asteroids].

(18-s)

 ϕ_{ext} due to lower levels : If the lower level is existing, at the lower level of the system under consideration, then its own level was considered by system equations. If this lower level exists anywhere outside of the system, center of (mass) gravity outside systems (Galaxies) will act as unit its own internal lower level practically will be considered into calculations. Hence consideration of any lower level is not necessary.

SYSTEM – ENSEMBLE:

Until now we have considered the system level equations and the meaning of $\phi_{\text{ext.}}$ Now let's consider an ENSEMBLE of system consisting of N₁, N₂ ... Njpoint masses in each. These systems are moving in the ensemble due to mutual gravitation between them. For example, each system is a Galaxy, and then ensemble represents a local group. Suppose number of Galaxies is j, Galaxies are systems with point masses N1, N2NJ, we will consider ϕ_{ext} as discussed above. That is we will consider the effect of only higher level system like external Galaxies as a whole, or external local groups as a whole.

Ensemble Equations (Ensemble consists of many systems)

$$\frac{d^2 I^{\gamma}_{jk}}{dt^2} = W^{\gamma}_{jk} + 2K^{\gamma}_{jk} - 2\Phi^{\gamma}_{jk}$$
(18-E)

Here ^v denotes Ensemble.

This Φ^{γ} is the external field produced at system level. And for system

$$\frac{d^2 I_{jk}}{dt^2} = W_{jk} + 2K_{jk} - 2\Phi_{jk}$$
(13)

Assume ensemble in a isolated place. Gravitational potential $\phi_{ext}(\alpha)$ produced at system level is produced by Ensemble and $\phi^{Y}_{ext}(\alpha) = 0$ as ensemble is in a isolated place.

$$\Phi_{tot}^{\gamma}(\alpha) = \Phi_{ext}^{\gamma} - \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\gamma}} \frac{Gm_{\beta}^{\gamma}}{\left|x^{\gamma\beta} - x^{\gamma\alpha}\right|}$$
(19)

As Ensemble situated in an isolated place, Gravitational potential $\phi^{\gamma}_{ext}(\alpha) = 0$ There fore

$$\Phi_{tot}^{\gamma} = \Phi_{ext}(\alpha) = -\sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\gamma}} \frac{Gm_{\beta}^{\gamma}}{\left|x^{\gamma\beta} - x^{\gamma\alpha}\right|}$$
(20)

And
$$2\Phi_{jk} = -\frac{d^{2}I_{jk}}{dt^{2}} + W_{jk} + 2K_{jk}$$
(13)

And

$$=\sum_{\alpha=1}^{N} \nabla \Phi_{ext} m_{\alpha} x_{j}^{\alpha} + \sum_{\alpha=1}^{N} \nabla \Phi_{ext} m_{\alpha} x_{k}^{\alpha}$$
(21)

(13)

AGGREGATE Equations(Aggregate consists of many Ensembles)

$$\frac{d^2 I_{jk}^{\delta\gamma}}{dt^2} = W_{jk}^{\delta\gamma} + 2K_{jk}^{\delta\gamma} - 2\Phi_{jk}^{\delta\gamma}$$
(18-A)

Here ^o denotes Aggregate.

This $\Phi^{\delta\gamma}$ is the external field produced at Ensemble level. And for Ensemble $d^2 I^{\gamma}$

$$\frac{dt^{2}}{dt^{2}} = W_{jk}^{\gamma} + 2K_{jk}^{\gamma} - 2\Phi_{jk}^{\gamma}$$
(18-E)

Assume Aggregate in an isolated place. Gravitational potential $\phi_{\text{ext}}(\alpha)$ produced at Ensemble level is produced by Aggregate and $\phi^{\delta \gamma}_{ext}(\alpha) = 0$ as Aggregate is in a isolated place.

$$\Phi_{tot}^{\delta\gamma}(\alpha) = \Phi_{ext}^{\delta\gamma} - \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\delta\gamma}} \frac{Gm_{\beta}^{\delta\gamma}}{\left|x^{\delta\gamma\beta} - x^{\delta\gamma\alpha}\right|}$$

$$\Phi_{tot}^{\delta\gamma}(A_{ggregate}) = \Phi_{ext}^{\gamma}(\alpha)(E_{ISEmble}) = -\sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\delta\gamma}} \frac{Gm_{\beta}^{\delta\gamma}}{\left|x^{\delta\gamma\beta} - x^{\delta\gamma\alpha}\right|}$$
(22)

Therefore

And

$$\Phi_{jk}^{\gamma} = \sum_{\alpha=1}^{N^{\gamma}} \nabla \Phi_{ext}^{\delta} m_{\alpha} x_{j}^{\delta \alpha} + \sum_{\alpha=1}^{N} \nabla \Phi_{ext}^{\delta} m_{\alpha} x_{k}^{\delta \alpha}$$
(24)

(23)

(13)

Total AGGREGATE Equations :(Aggregate consists of many Ensembles and systems)

Assuming these forces are conservative, we can find the resultant force by adding separate forces vectorially from equations (20) and (23).

$$\Phi_{ext}(\alpha) = -\sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\gamma}} \frac{Gm_{\beta}^{\gamma}}{\left|x^{\gamma\beta} - x^{\gamma\alpha}\right|} - \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\delta\gamma}} \frac{Gm_{\beta}^{\sigma\gamma}}{\left|x^{\delta\gamma\beta} - x^{\delta\gamma\alpha}\right|}$$
(25)

This concept can be extended to still higher levels in a similar way.

Corollary 1:

$$\frac{d^2 I_{jk}}{dt^2} = W_{jk} + 2K_{jk} - 2\Phi_{jk}$$

The above equation becomes scalar Virial theorem in the absence of external field, that is $\phi=0$ and in steady state,

i.e.
$$\frac{d^2 I_{jk}}{dt^2} = 0$$
 (27)
2K+W = 0 (28)

But when the N-bodies are moving under the influence of mutual gravitation without external field then only the above equation (28) is applicable.

Corollary 2:

Ensemble achieved a steady state,

i.e.
$$\frac{d^2 I_{jk}^{\gamma}}{dt^2} = 0$$
 (29)

$$W_{jk}^{\gamma} + 2K_{jk}^{\gamma} = 2\Phi_{jk}^{\gamma}$$
(30)

This Φ jk external field produced at system level. Ensemble achieved a steady state; means system also reached steady state.

i.e.
$$\frac{d^2 I_{jk}}{dt^2} = 0$$
 (27)
 $W_{jk} + 2K_{jk} = 2\Phi_{jk}^{\gamma}$ (31)

Equation (20) gives $\phi^{\gamma}_{tot}(\alpha)$, that is external potential field present at the system level. Combining Eqn (31) and eqn (9).

$$2\Phi_{ext}jk = \sum_{\alpha=1}^{N} \nabla \Phi_{ext}m_{\alpha}x_{j}^{\alpha} + \sum_{\alpha=1}^{N} \nabla \Phi_{ext}m_{\alpha}x_{k}^{\alpha}$$
(31-A)

The Equation 25 is the main powerful equation, which gives many results that are not possible otherwise today. This tensor can be subdivided into 21000 small equations without any differential equations or integral equations. Hence, this set up gives a unique solution of Cartesian X, Y, Z components of coordinates, velocities and accelerations of each point mass in the setup for that particular instant of time. A point to be noted here is that the Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. All the mathematics and the Excel based software details are explained in the three books published by the author^{14, 15, 16}

Now let's see how the Dynamic Universe Model extends into Micro world mathematically.

3.b. Additional mathematical formulation allowing for the Micro world:

In addition to previously published mathematical formulation (viz. eqn 1 to 31) for Dynamic Universe Model, as cited in section 3, the following new equations are added to enable this model for operating into Micro world.

Combining both 3 and 25 (Newly introduced in this paper)

$$F_{\alpha} = \sum_{\substack{\alpha=1\\\alpha\neq\beta}}^{N} F_{\alpha\beta} - m_{\alpha} \nabla_{\alpha} \left[-\sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\gamma}} \frac{Gm_{\beta}^{\gamma}}{\left| x^{\gamma\beta} - x^{\gamma\alpha} \right|} - \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\delta\gamma}} \frac{Gm_{\beta}^{\delta\gamma}}{\left| x^{\delta\gamma\beta} - x^{\delta\gamma\alpha} \right|} \right]$$
(32)

So ...

$$F_{\alpha} = \sum_{\substack{\alpha=1\\\alpha\neq\beta}}^{N} F_{\alpha\beta} + m_{\alpha} \nabla_{\alpha} \left[\sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\gamma}} \frac{Gm_{\beta}^{\gamma}}{\left| x^{\gamma\beta} - x^{\gamma\alpha} \right|} + \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\delta\gamma}} \frac{Gm_{\beta}^{\delta\gamma}}{\left| x^{\delta\gamma\beta} - x^{\delta\gamma\alpha} \right|} \right]$$
(33)

Interchanging $\sum and \nabla$ operations:

$$F_{\alpha} = \sum_{\substack{\alpha=1\\\alpha\neq\beta}}^{N} F_{\alpha\beta} + m_{\alpha} \left[\sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\gamma}} \nabla_{\alpha} \frac{Gm_{\beta}^{\gamma}}{\left| x^{\gamma\beta} - x^{\gamma\alpha} \right|} + \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\phi}} \nabla_{\alpha} \frac{Gm_{\beta}^{\delta\gamma}}{\left| x^{\delta\gamma\beta} - x^{\delta\gamma\alpha} \right|} \right]$$
(34)

Or

$$F_{\alpha} = \sum_{\substack{\alpha=1\\\alpha\neq\beta}}^{N} F_{\alpha\beta} + \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\gamma}} \nabla_{\alpha} \frac{Gm_{\alpha}m_{\beta}^{\gamma}}{\left|x^{\gamma\beta} - x^{\gamma\alpha}\right|} + \sum_{\substack{\beta=1\\\alpha\neq\beta}}^{N^{\delta\gamma}} \nabla_{\alpha} \frac{Gm_{\alpha}m_{\beta}^{\delta\gamma}}{\left|x^{\delta\gamma\beta} - x^{\delta\gamma\alpha}\right|}$$
(35)

The above equation 35 means the force on α^{th} point mass will be a sum of three components i.e., the summation of attraction forces due to point masses from its own system, ensemble and aggregate. This is the key result that can be applied to point masses or subatomic particles or can be combined in any fashion together. The equations 34 & 35 are important, simple & straightforward results.

Let us apply the above equations to some practical situations like radio waves that are going grazingly near Sun from an artificial satellite and are coming to Earth (VLBI). Let us use SITA algorithm for calculation.

4. Initial Values

Initial value of Mass of neutrino

The basic behavior that a neutrino can oscillate from one flavor to another requires that it must have a mass by Super-Kamiokande (1998) ^[52] ^[53] and by <u>KamLAND</u> (2005) ^[54] ^[55]. The present neutrino mass estimates are between 0.2 eV and 2 eV. Conversion from eV to kg was done using the equation : $(1 \ eV)/c^2 = x \ kg \ x = \{e/c^2\}$. Value of conversion factor: $x = 1.782 \ 661 \ 907(11) \ x \ 10^{-36}$.

Here in this paper the particle mass was taken as 1.1 e-52 kg which is much smaller than Neutrino mass = 1.5 ev / c2 = 2.685 e -36 kg or Radio wave photon mass = 9.019 e -46 kg etc. The behaviour shown by such a mass will be experienced by higher mass also. Every mass behave in the similar way in Dynamic Universe Model.

Initial Values table and other tables

Full set of initial values are shown in Table 1 at the end of this paper. This Table 1 gives the initial values of all the point masses, their respective masses in Kg, and their x y z

Cartesian positions. The summary of all the 76 experiments conducted & reported in Table 2, which is also at the end of this paper and can be seen in 13 columns. The various filenames, Time step values, Number of iterations, initial position, and final position of the Neutrino, General relativistic deflection (bending) angle, Calculated Solar elongation angle in degrees, and SITA Deflection are mentioned there in 13 columns. But it was condensed from the Table 3. There are 71 columns from where these 13 columns were taken. So the summary and finer differences between each experiment can be found from main Table 3 easily. This Table 3 is uploaded into web along with main file. [The name of the file is '*Vak Table 3 Results 71 columns.xls'*; brief description of material: There are 76 data records of final data for each file in 71 columns in a single Excel sheet. The header rows for all the data is in the 3rd and 4th rows.]."

As a result of SITA calculations, there is an assortment of xyz positions, velocities and accelerations in all iterations at each time step for every one of the 133 point masses. It is possible to track any one of these values for every time step throughout the experiment as needed. This data is in an XLS file and uploaded in Web. The Table 4 contains all the individual iteration outputs for each of the 76 experiments are in an XLS file and uploaded along with the main paper for keeping in e-publication. The summary of each experiment is given in that Excel file web attachment because the large volume of data, which will be given in the web version of this paper. Name of the file is 'Vak Table 4 Consolidation Super luminal neutrino Results.xls'. Brief description of material: Main Data file: There are 19681 lines in this file in 55 columns. The file is subdivided into as many as 76 sections in a single sheet, instead of 76 separate files. It was thought handling separate 76 files will be very difficult, and the server also many not have provisions to hold that many additional files while uploading. The first file name will start in A2 cell. later the header row for the columns. The data is then follows after a blank row. There will be additional blank rows before the next file data. Each data set varies in number of data rows depending on number of iterations. Each row represents a set of data for that time step. Number of data rows from file to file varies from 40 to Any further additional details can be obtained by contacting the author.]." All 3000. these tables are available in the webpage ^[10] which can be down loaded.

These experiments were originally designed to study the solar gravitational bending effects at the planetary positions as on 01.01.2000@00.00:00 hrs on a light neutrino positioned at various locations in solar system. Later the results were grouped to view the with respect to solar elongation angle.

4. Super Luminal Neutrinos:

There are 52 cases out of 76 experiments that gave Super luminal neutrinos. For every experiment the initial data like starting position and final position of the neutrino were available in Table 2. Additional details are available in table 3 & 4. A maximum of about 1200 m/s higher neutrinos velocities above velocity of light were observed. These results vary from case to case. Sometimes the peek came to as low as 0.1 meters higher velocity only.

5. Results

Two typical graphs are given below. For all the remaining graphs see the Table 4. All the graphs (both the Super Luminal neutrino and normal neutrino cases) are shown in Table 4. For this Fig 1 and 2 the initial conditions are given in the captions of the figures. Number of iterations are 80 for the case fig1, and 1200 for the case of fig 2. Remaining 50 cases of Super luminal 24 cases of normal neutrinos are documented in table 4, which is a supplementary file for this paper.

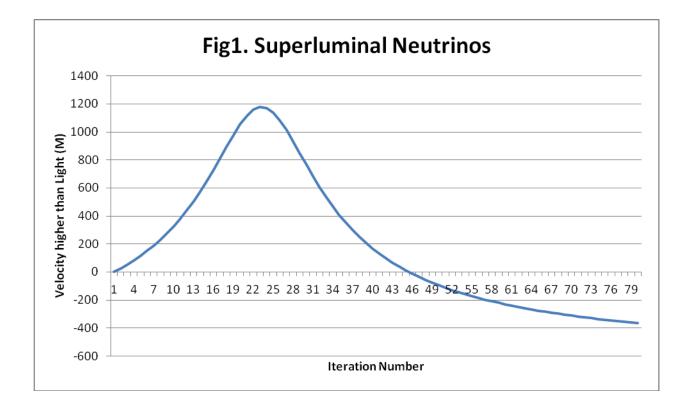


Fig1. Super luminal Neutrino initial conditions: Velocities in meters per second (vx, vy, vz) = (-74948114.5, -280430167.2, -74948114.5) and Positions in meters (sx, sy, sz) = (0, 696001492.1, 0). The maximum Neutrino velocity achieved in this case is about 1200 m/s higher than the velocity of light

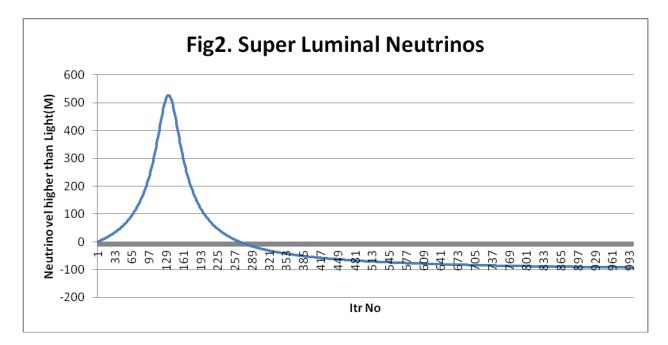


Fig2. Super luminal Neutrino initial conditions: Velocities in meters per second (vx, vy, vz) = (150.1563894, -211985280, -211985280) and Positions in meters (sx, sy, sz) = (696011352, 2804642125, 2804642125). The maximum Neutrino velocity achieved in this case is about 550 m/s higher than the velocity of light

One may feel it is very silly to consider the gravitational effect of the entire Universe at that point at that time, the gravitational effect of all the other bodies can be neglected near some huge Gravitating body. No, that is not true. For especially very low weight bodies like Photons of radio waves or light waves, or Neutrinos. Let's see an example. Consider me standing on this earth. One may think gravitation of other bodies like Sun and Moon can be neglected on earth. But what about the tide caused by Sun and Moon in Oceans? Yes it is High tide and Low tide in the morning and evening, or on full-moonday on no-moon-day. And there will be higher tide on a full-moon-day evening. These tides are caused by Gravitation of Sun and Moon only.

Here in Dynamic Universe Model an attempt is made to calculate the 3 dimensional Cartesian vectorial force of Universe approximated to 133 mutually Gravitating Nbodies. These preliminary attempts are giving sufficiently accurate results otherwise not possible by other theories. Of course approximating the Universe by 133 bodies may not be correct and accurate. But these approximations are better than single point mass or uniform mass density approximations. But one has to consider that there are many images present in the Universe for many Galaxies. There are limitations like presently available commercial PCs and their available scientific and mathematical software, their accuracies, with in my purse. The present SITA calculations are giving sufficiently accurate results.

6. Conclusion:

A process similar to this happens at stars, Galaxy centers, Astronomical jets etc. Hence we can say Dynamic Universe Model can successfully solve the riddle of "Super Luminal Neutrinos" along with many other problems.

7. Acknowledgements:

I gracefully acknowledge the guidance given by the Lord of Puri for extending the Mathematics.

8. References

 [1] John Biretta (1999), Space Telecsope Science Institute, Baltimore, (Phone: (410) 338-4917; biretta@stsci.edu)
 <u>http://www.stsci.edu/ftp/science/m87/press.txt</u>

[2] Nosengo, N. (December 21, 2011), "Dario Autiero: Relativity challenger", <u>Nature</u> <u>News</u>, **480** (7378): 437–445, <u>Bibcode:2011Natur.480..437B, doi:10.1038/480437a</u>

[3] Zhe Chang, Xin Li, and Sai Wang, OPERA superluminal neutrinos and Kinematics in Finsler spacetime. <u>http://arxiv.org/pdf/1110.6673.pdf</u>

[4] Arnett, W.D.; et al. (1989). Supernova 1987A. Annual Review of Astronomy and Astrophysics. DOI:10.1146/annurev.aa.27.090189.003213.

[5] Nomoto, Ken'ichi; Shigeyama, Toshikazu (1987). Supernova 1987A: Constraints on the Theoretical Model. In Minas Kafatos. Supernova 1987a in the Large Magellanic Cloud. Cambridge University Press. Section 3.2 Shock propagation time. ISBN 0-521-35575-3.

[6] Katsuaki Asano and Kohta Murase in Advances in Astronomy, "Gamma-Ray Bursts as Multienergy Neutrino Sources" Volume 2015 (2015), Article ID 568516, 10 pages, <u>http://dx.doi.org/10.1155/2015/568516</u>, Review Article

⁷Gott et al., 2005, ApJ, 624, 463 <u>http://www.journals.uchicago.edu/ApJ/journal/issues/ApJ/v624n2/59364/59364.html</u> <u>http://www.astro.princeton.edu/universe/ms.pdf</u>

See for various maps of Universe and Fig 8 at: <u>http://www.astro.princeton.edu/universe/</u>

⁸Heinkelmann,Robert ; & Harald Schuh, in their paper 'Very long baseline interferometry: accuracy limits and relativistic tests' in Relativity in Fundamental Astronomy Proceedings IAU Symposium No. 261, 2009, edited by S. A. Klioner, P. K. Seidelman & M. H. Soffel, (eds.) International Astronomical Union 2010 doi:10.1017/S1743921309990524

⁹Lambert,S. B.; and C. Le Poncin-Lafitte in their paper 'Determination of the relativistic parameter using very long baseline interferometry' in Astronomy & Astrophysics manuscript no. gammaAA c ESO 2009, March 9, 2009. http://arxiv.org/abs/0903.1615v1

¹⁰Lawrence Rudnick, Shea Brown, Liliya R. Williams, Extragalactic Radio Sources and the WMAP Cold Spot, Astrophysics journal and arXiv:0704.0908v2 [astro-ph]

¹¹Lebach, D. E.; B. E. Corey, I. I. Shapiro, M. I. Ratner, J. C. Webber, A. E. E. Rogers, J. L. Davis, and T. A. Herring in their paper 'Measurement of the Solar Gravitational Deflection of Radio Waves Using Very-Long-Baseline Interferometry' in Phys. Rev. Lett. 75, 1439–1442 (1995),

¹²Ojars J. Sovers, John L. Fanselow, Christopher S. Jacobs, Jet Propulsion Laboratory, 'Astrometry and geodesy with radio interferometry: experiments, models, results' <u>http://arxiv.org/abs/astro-ph/9712238v1</u>

¹³Shapiro,S. S.; J. L. Davis, D. E. Lebach, and J. S. Gregory 'Measurement of the Solar Gravitational Deflection of RadioWaves using Geodetic Very-Long-Baseline Interferometry Data, 1979–1999' PH YSICA L R EV I EW L ET T ERS, VOLUME 92, NUMBER 12, 26 MARCH 2004121101-1 to 121101- 4.

[14] SNP.GUPTA, Book1. Dynamic Universe Model: A singularity-free N-body problem solution [ISBN 978-3-639-29436-1]---2010 October----VDM Germany https://www.morebooks.de/store/gb/book/dynamic-universe-model/isbn/978-3-639-29436-1 http://waksdynamicuniverse-model.html

http://vaksdynamicuniversemodel.blogspot.in/p/books-published.html

[15] SNP.GUPTA, Book2. Dynamic Universe Model: SITA singularity free software --- 2011 March --- VDM n Germany, March- 2011, ISBN 978-3-639-33501-9,

https://www.morebooks.de/store/gb/book/dynamic-universe-model/isbn/978-3-639-33501-9

[16] SNP.GUPTA, Book3. Dynamic Universe Model: SITA software simplified [ISBN 978-3-639-36469-9]---Aug-2011----VDM Germany

https://www.morebooks.de/store/fr/book/dynamic-universe-model/isbn/978-3-639-36469-9

[17]. A paper "Combining Micro & Macro worlds in Dynamic Universe Model---Explains VLBI observations " Presented as a 30 min talk at COSPAR-12, Mysore, India, on !7th July 2012, with their ID: (H0.2-0010-12) by SNP.GUPTA, Bhilai Steel Plant snp.gupta@gmail.com

[18] Fairall, A. P., Palumbo, G. G. C., Vettolani, G., Kauffman, G., Jones, A., & Baiesi-1990MNRAS.247P..21F. See in Wikipedia "The Large scale structure of cosmos" http://en.wikipedia.org/wiki/Large-scale_structure_of_the_cosmos H.P. Robertson, Kinematics and world Structure III, The Astrophysical Journal, May 1936, vol 83 pp 257.

[19] Lawrence Rudnick, Shea Brown, Liliya R. Williams, Extragalactic Radio Sources and the WMAP Cold Spot, Astrophysics journal and arXiv:0704.0908v2 [astro-ph],

[20] S.Samurovic et al; 0811.0698v1 Arxiv, 'Mond vs Newtonian dynamics GC', A&A accpted Nov 5, 2008. (for mass calculations)

Xxxxx

Table	1:
-------	----

SI.No.	Name	Mass (kg)	HELIO CENTRIC ECLIPTIC XYZ VALUES of positions as on 01.01.2000@00.00:00 hrs in METR				
			xecliptic	yecliptic	zecliptic		
1	Particle mass << neutrino mass (The initial Position vary with experiment)	1.10E-52	200000000	69600000	650947504.6		
2	Mercury	3.30E+23	5064417926 3	8540296134	-3949485753		
3	Venus	4.87E+24	6965787886 2	8261419807 9	-2889306238		
4	Earth	5.97E+24	- 2956578581 8	1.44096E+11	- 2869446.398		
5	Mars	6.42E+23	-3275068912	- 2.17902E+11	-4484946284		
6	Jupiter	1.90E+27	4.09177E+11	- 6.46362E+11	-6473185584		
7	Saturn	5.68E+26	- 1.35874E+12	3.39522E+11	4816746141 2		
8	Uranus	8.68E+25	2.97521E+12	- 4.32376E+11	- 4014152547 7		
9	Neptune	1.02E+26	3.61461E+12	- 2.66852E+12	- 2835029013 8		
10	Pluto	1.27E+22	6931588227 3	- 4.69858E+12	4.82751E+11		
11	Moon	7.35E+22	- 2919165734 4	1.43975E+11	16609650.17		
12	SUN	1.99E+30	0	0	0		
13	near star	3.97658E+2 9	- 3.07379E+16	- 2.48085E+16	5.99014E+15		
14	near star	1.88888E+3 0	- 1.70141E+16	- 4.49612E+13	3.79378E+16		
15	near star	2.18712E+3 0	- 1.71774E+16	- 1.53305E+14	3.78638E+16		
16	near star	7.95317E+2 9	- 1.85801E+15	1.6393E+15	- 5.61485E+16		

		0.047045.0			
17	near star	8.94731E+2 9	9.02924E+15	- 7.13182E+15	- 7.77879E+16
18	near star	1.73976E+3 1	-3.1682E+16	- 2.99664E+16	6.86968E+16
19	near star	8.94731E+2 9	2.37665E+16	- 7.07555E+15	8.82862E+16
20	near star	1.88888E+3 0	9.77757E+16	- 1.69837E+16	3.32855E+15
21	near star	8.94731E+2 9	- 1.75629E+16	-2.0874E+16	9.78004E+16
22	near star	3.97658E+2 9	3.82107E+16	6.00795E+16	7.44241E+16
23	near star	1.82923E+3 0	- 4.50486E+16	3.01003E+16	9.28066E+16
24	near star	3.28068E+3 0	- 8.42312E+15	5.24915E+16	- 9.39112E+16
25	near star	1.19298E+3 0	- 4.60396E+16	3.03873E+16	9.29744E+16
26	near star	7.95317E+2 9	4.90495E+16	9.64605E+16	7.35909E+15
27	near star	8.94731E+2 9	4.99158E+16	9.78689E+16	7.06783E+15
28	near star	7.95317E+2 9	- 1.39114E+16	- 1.09124E+17	4.36506E+15
29	near star	1.82923E+3 0	- 6.28738E+16	- 8.89396E+16	- 2.56335E+16
30	near star	2.18712E+3 0	- 6.90623E+16	- 8.50246E+16	2.58319E+16
31	near star	3.97658E+2 9	- 2.35768E+16	2.08864E+16	1.10275E+17
32	near star	7.95317E+2 9	1.86257E+16	- 5.54342E+16	- 1.01576E+17
33	near star	8.94731E+2 9	- 5.04468E+16	3.78032E+16	- 1.03142E+17
34	near star	1.19298E+3 0	2.09805E+16	- 4.31965E+16	- 1.11915E+17
35	near star	5.96488E+2 9	- 3.34107E+16	- 3.81344E+16	1.12791E+17
36	near star	5.96488E+2 9	1.20105E+17	- 5.23499E+15	- 4.10595E+16
37	near star	8.94731E+2 9	- 5.81398E+16	4.54439E+16	- 1.08443E+17
38	near star	6.95902E+2 9	- 1.07352E+17	7.50846E+16	-1.2264E+16
39	near star	9.94146E+2 9	2.96095E+16	1.22996E+17	4.58116E+16

40	near star	2.90291E+3 0	8.24904E+16	- 2.35538E+16	- 1.05478E+17
41	near star	8.94731E+2 9	- 6.10305E+16	4.80435E+16	- 1.15415E+17
42	near star	8.94731E+2 9	9.76996E+16	2.14625E+16	- 9.75422E+16
43	near star	7.95317E+2 9	2.15194E+16	1.34558E+17	- 3.20268E+16
44	near star	5.64675E+3 0	- 5.35209E+16	- 2.81642E+16	- 1.29127E+17
45	near star	6.95902E+2 9	1.14625E+16	1.39712E+16	- 1.43945E+17
46	near star	8.94731E+2 9	- 1.32781E+17	1.60851E+16	- 6.59031E+16
47	near star	1.19298E+3 0	- 4.78813E+16	9.19484E+16	- 1.08903E+17
48	near star	1.65028E+3 0	1.04974E+16	- 1.34655E+17	- 7.02332E+16
49	near star	8.94731E+2 9	- 4.59519E+16	8.94752E+15	1.44982E+17
50	near star	5.96488E+2 9	1.36804E+17	5.36738E+16	- 5.10992E+16
51	near star	2.00817E+3 0	1.77107E+16	2.7082E+16	- 1.52249E+17
52	near star	8.94731E+2 9	-1.0952E+17	9.68318E+16	5.3829E+16
53	near star	1.88888E+3 0	- 4.72306E+16	- 1.16764E+17	9.36129E+16
54	near star	5.09003E+3 0	9.79121E+16	-9.2465E+16	8.39443E+16
55	near star	3.97658E+2 9	1.09829E+17	9.70466E+16	6.62157E+16
56	near star	7.95317E+2 9	- 9.10748E+16	- 1.36971E+17	- 2.48893E+16
57	near star	1.09356E+3 0	-7.0043E+16	9.14497E+16	1.2171E+17
58	near star	5.96488E+2 9	- 2.64948E+16	4.32255E+16	1.61635E+17
59	near star	1.49122E+3 0	- 3.16721E+16	1.25283E+17	1.1067E+17
60	near star	7.95317E+2 9	4.73982E+16	1.59067E+15	1.63433E+17
61	near star	5.96488E+2 9	1.20195E+17	-9.0224E+16	8.74395E+16
62	near star	8.94731E+2 9	- 5.75703E+16	-1.4009E+17	8.88539E+16

		7.050475.0			
63	near star	7.95317E+2 9	6.76572E+16	- 4.60048E+16	- 1.57068E+17
64	near star	2.12747E+3 0	-9.2162E+16	- 1.20447E+17	9.30606E+16
65	near star	8.94731E+2 9	5.72296E+15	1.76608E+17	- 2.27853E+16
66	near star	5.96488E+2 9	- 1.34996E+17	- 1.16182E+17	- 1.30636E+16
67	near star	5.96488E+2 9	- 1.19512E+17	4.88067E+16	-1.2445E+17
68	near star	9.94146E+2 9	7.87302E+16	1.638E+16	- 1.62411E+17
69	near star	1.82923E+3 0	3.91777E+16	1.47326E+17	- 9.98492E+16
70	near star	6.95902E+2 9	1.67294E+17	- 1.18466E+16	- 7.32836E+16
71	near star	8.94731E+2 9	- 1.39077E+17	- 9.10857E+16	7.67253E+16
72	near star	2.78361E+3 0	5.24234E+16	- 1.59364E+16	1.75315E+17
73	near star	1.65028E+3 0	3.6434E+15	2.91335E+16	- 1.81794E+17
74	near star	9.94146E+2 9	- 9.07771E+16	1.01639E+17	1.23937E+17
75	near star	1.88888E+3 0	6.41076E+15	1.79687E+16	- 1.83691E+17
76	near star	1.88888E+3 0	- 2.06314E+15	- 5.39393E+15	1.86646E+17
77	near star	2.18712E+3 0	1.0974E+17	- 3.31921E+16	1.4771E+17
78	near star	2.18712E+3 0	- 1.54154E+17	- 1.01333E+17	3.85252E+16
79	near star	5.96488E+2 9	4.30221E+16	- 1.83542E+17	8.55871E+15
80	near star	9.94146E+2 9	- 1.30645E+17	6.84493E+16	- 1.20949E+17
81	near star	1.09356E+3 0	- 1.31276E+17	6.75268E+16	- 1.20784E+17
82	near star	1.19298E+3 0	- 1.33898E+17	- 5.20951E+16	1.2578E+17
83	near star	1.09356E+3 0	- 2.19059E+16	6.93128E+16	- 1.77114E+17
84	near star	1.49122E+3 0	3.99999E+16	8.00904E+16	1.70731E+17
85	near star	6.95902E+2 9	- 2.19758E+16	- 1.28321E+16	-1.9175E+17

86	near star	1.09356E+3	-1.3524E+17	-	1.27447E+17
07		0 8.94731E+2	-	5.38681E+16 -	
87	near star	9	2.07383E+16	9.28974E+15	1.93754E+17
88	near star	5.96488E+2 9	1.01434E+17	8.45481E+16	1.45159E+17
89	near star	5.96488E+2 9	7.37726E+16	- 5.17702E+16	- 1.79009E+17
90	near star	1.82923E+3 0	- 1.50711E+17	6.46728E+16	1.16827E+17
91	near star	6.95902E+2 9	- 3.30768E+16	- 1.22256E+17	- 1.58766E+17
92	Glob Clus Group	1.20578E+3 7	- 1.16925E+21	- 1.04245E+21	9.31497E+19
93	Glob Clus Group	7.43305E+3 6	- 1.79414E+20	- 3.61781E+20	- 1.42253E+19
94	Glob Clus Group	9.58802E+3 6	1.48744E+19	2.77665E+19	- 7.91706E+19
95	Glob Clus Group	7.05555E+3 6	6.94375E+19	- 4.44352E+18	7.944E+17
96	Glob Clus Group	6.46631E+3 6	9.11252E+19	- 4.39257E+19	1.89032E+20
97	Glob Clus Group	7.23385E+3 6	1.05314E+20	2.06504E+19	8.97721E+19
98	Glob Clus Group	6.79923E+3 6	1.25702E+20	6.15542E+19	3.76993E+19
99	Glob Clus Group	8.07244E+3 6	1.5288E+20	2.40773E+19	- 1.58338E+19
100	Glob Clus Group	9.57827E+3 6	1.74887E+20	1.35743E+19	- 3.13919E+19
101	Glob Clus Group	8.2981E+36	1.85602E+20	5.87126E+19	1.50955E+19
102	Glob Clus Group	1.03904E+3 7	2.00762E+20	1.02368E+20	7.89348E+19
103	Glob Clus Group	8.99599E+3 6	2.21232E+20	1.03194E+19	- 1.15685E+20
104	Glob Clus Group	8.5572E+36	2.40926E+20	2.38732E+19	8.08095E+18
105	Glob Clus Group	9.81786E+3 6	2.52521E+20	- 1.04214E+19	- 1.90968E+18
106	Glob Clus Group	9.86105E+3 6	2.63724E+20	1.58631E+19	2.36248E+19
107	Glob Clus Group	8.93192E+3 6	2.80244E+20	4.57404E+18	- 5.62166E+18
108	Glob Clus Group	1.00965E+3 7	2.93615E+20	- 2.52379E+19	6.36066E+18
109	Glob Clus Group	1.37127E+3	3.13834E+20	-	1.46617E+19

		7		1.18077E+18	
110	Glob Clus Group	1.01466E+3 7	3.35306E+20	- 1.68075E+20	- 3.47826E+19
111	Glob Clus Group	1.11914E+3 7	3.72364E+20	1.37362E+19	- 1.25647E+20
112	Glob Clus Group	1.02218E+3 7	4.87315E+20	1.74393E+20	8.66073E+19
113	Glob Clus Group	9.30663E+3 6	6.49171E+20	1.82615E+18	9.06719E+19
114	Glob Clus Group	9.89727E+3 6	1.0232E+21	1.53107E+20	4.80442E+20
115	Galaxy centre	7.164E+36	4.79211E+19	1.67483E+20	1.56991E+20
116	Milkyway part	3.84731E+4 0	- 1.63642E+20	1.47838E+20	- 7.97417E+19
117	Milkyway part	4.80914E+4 0	1.54517E+20	8.22578E+19	1.56049E+20
118	Milkyway part	5.77096E+4 0	- 1.14673E+19	4.68166E+19	2.29499E+20
119	Milkyway part	6.73279E+4 0	- 8.86592E+19	-1.0611E+19	2.16841E+20
120	Milkyway part	7.69462E+4 0	5.62463E+19	- 1.61296E+20	- 1.60665E+20
121	Milkyway part	8.65645E+4 0	-1.1565E+20	2.03896E+20	6.68227E+18
122	Milkyway part	9.61827E+4 0	- 3.63423E+19	1.12347E+19	- 2.31401E+20
123	Milkyway part	1.05801E+4 1	- 1.72238E+20	- 7.67886E+19	1.39394E+20
124	Milkyway part	1.05801E+4 1	- 2.05075E+19	- 2.19577E+20	7.97417E+19
125	Milkyway part	9.61827E+4 0	- 1.58373E+20	7.45639E+19	- 1.56049E+20
126	Milkyway part	8.65645E+4 0	- 3.06445E+19	- 3.72049E+19	- 2.29499E+20
127	Milkyway part	7.69462E+4 0	6.156E+19	- 6.46792E+19	- 2.16841E+20
128	Milkyway part	6.73279E+4 0	9.55613E+19	1.41591E+20	1.60665E+20
129	Milkyway part	5.77096E+4 0	2.32564E+20	- 2.93704E+19	- 6.68227E+18
130	Milkyway part	4.80914E+4 0	3.07501E+19	2.23922E+19	2.31401E+20
131	Milkyway part	3.84731E+4 0	4.15581E+19	1.83944E+20	- 1.39394E+20
132	Andromeda	1.4129E+42	1.74266E+22	1.50487E+22	6.79254E+21

133	Triangulum Galaxy	1.41E+41	1.28546E+20	1.93083E+22	- 1.82029E+22
	1: Giving the initial eir x y z Cartesian p		e point masses,	their respective	masses in Kg,

				Initial neutrin	positio o	n of	Final position of neutrino			GenR el	Calculat	SITA
Exp t Sl. No	Ti me ste p	No of itera tion s	File name	s x	sy	SZ	s x	sy	Sz	Deflec tion degre es / 10000 0	ed Solar elongati on angle in degrees	Deflecti on degree s / 100000
1	0.1	40	Vvtc vy -c. x Ro. 40x0.1s 4.6552.xls	6959 9999 8.6	- 29979 245.8	- 1.344 2E-11	695998 564	- 1169190 027	-2.04E- 08	- 0.1168 8	11.5952 7069	10.446 4361
2	0.1	40	Vvtc vy eq c.x eq 2c 40x.1s result 6.714.xls	5995 8491 5.5	- 29979 245.8	6959 9999 9	599584 312	- 1169190 284	695999 299	3.99E +15	11.5952 7069	7.2424 9697
3	0.1	40	Vvtc 40x0.1s Y 1.2 Radi result 3.48905.xls	- 126.4 1240 44	- 2.7723 E-07	8351 9972 8	- 569605 932	- 1.05415 E-06	835198 835	4.79E +15	11.5952 7069	11.615 0876
4	0.1	40	Vvtc 40x0.1s Y 1.5 Radi result 4.094753.xls	- 2997 9325. 19	- 3.0566 E-07	1043 9997 85	- 569605 822	- 1.05419 E-06	104399 9202	5.98E +15	11.5952 7069	7.9175 7108
5	0.1	40	Vvtc 40x0.1s Y 2 Radi result 5.167069.xls	- 34.66 4776 83	- 2.7726 E-07	1391 9998 81	- 569605 742	- 1.05426 E-06	139199 9524	7.98E +15	11.5952 7069	4.7058 3429
6	0.1	40	Vvtc 40x0.1s Y 3 Radi result 7.424343.xls	- 11.20 7476 24	- 2.773E -07	2087 9999 43	- 569605 693	- 1.05442 E-06	208799 9778	1.2E+ 16	11.5952 7069	2.1833 9152
7	0.1	40	Vvtc 40x0.1s Y 10 Radi result 23.25372.xls	- 0.324 0519 2	- 2.7782 E-07	6959 9999 95	- 569605 671	- 1.05639 E-06	695999 9979	3.99E +16	11.5952 7069	0.2091 3098
8	0.1	40	vak variable time create vak1 40x 0.1 NORMAL radius	6959 9965 0.8	- 190.33 1964	- 5.390 2E-09	695998 440	- 5696060 64.7	- 2.0473 E-08	- 0.1173	11.5952 7069	15.632 2201

			result 3.11093.xls									
9	0.1	40	vak variable time create vak1 40x 0.1s 3 radius result 7.24.xls	2087 9999 43	- 11.207 4768	- 5.556 7E-09	208799 9778	- 5696056 93.3	- 2.1104 E-08	- 0.1209 2	11.5952 7069	2.1833 9152
10	0.1	160	Vvtc vx 0.25c.vy 0.97c, x 2e8 y 6e8 z 5e11 160x0.1s result 0.797441 extr Good	5761 9336. 65	13320 063.2	4.971 4E+1 1	- 871737 283	- 3586062 665	4.9714 E+11	2.85E +18	26.0727 8278	0.0853 7736
11	0.1	80	Vvtc vx vz 0.25c.vy 0.93c, y Ro. 80x0.1s result 0.7345 V GOOD IMP.xls	- 1798 7495 5	22967 354.8	- 1798 7495 5	- 592077 652	- 1519405 093	- 592077 652	- 3.4E+ 15	29.9948 7522	66.203 7468
12	0.1	40	Vvtc -vy vz eq .7c.x eq 2c 40x result 12.032.1s.xls	5995 8491 5.5	- 21198 528	7171 9852 7	599584 480	- 8267424 60.5	152274 1954	8.72E +15	46.1565 8888	4.0416 9627
13	0.1	160	Vvtc vy vz 0.7c. x Ro. 80x0.1s result 4.169102.xls	6960 0249 8.6	- 21198 528	- 2119 8528	695998 662	- 1674682 200	- 167468 2200	- 9.6E+ 15	46.1587 618	11.664 5604
14	0.1	160	Vvtc vz vy 0.7c. x Ro yz 2.8e08 264x0.1s result 2.0309 GOOD.xls	6960 1216 0.8	64349 34.11	6434 934.1 1	695998 984	- 2770573 788	- 277057 3788	- 1.6E+ 16	46.1587 724	23.944 8121
15	0.1	160	Vvtc vz vy 0.7c. x Ro. 160x0.1s result 2.083574 v Good.xls	6960 0536 3.3	9.0590 489	9.059 0567 3	695996 805	- 1674682 214	- 167468 2214	- 9.6E+ 15	46.1587 804	23.340 0541

16	0.1	160	Vvtc vz vy 0.7c. x Ro yz 8e08 160x0.1s result 2.181198 Good.xls	6959 9930 2.4	- 55432 72.01	- 5543 272.0 1	695986 377	- 2570560 903	- 257056 0903	- 1.5E+ 16	46.1587 804	22.295 4287
17	0.1	160	Vvtc vz vy 0.7c. x Ro yz 4e08 160x0.1s result 2.473451 Good.xls	6959 9967 1.9	- 27715 39.85	- 2771 539.8 5	695986 439	- 2970558 735	- 297055 8735	- 1.7E+ 16	46.1587 804	19.661 0928
18	0.1	160	Vvtc vz vy 0.7c. x Ro yz 6e08 160x0.1s result 2.27 Good.xls	6959 9948 8.7	64418 56.72	6441 856.7 2	695986 065	- 2770559 962	- 277055 9962	- 1.6E+ 16	46.1587 804	21.369 7685
19	0.1	160	Vvtc vz vy 0.7c. x Ro yz 6e08 160x0.1s result 2.2456 Good.xls	6959 9941 3.6	- 71536 81.74	- 7153 681.7 4	695986 096	- 2720560 223	- 272056 0223	- 1.6E+ 16	46.1587 804	21.655 746
20	0.1	160	Vvtc vz vy 0.7c. x Ro yz 6.2e08 160x0.1s result 2.605 Good.xls	6959 9946 8.4	52433 44.22	5243 344.2 2	695986 073	- 2750560 069	- 275056 0069	- 1.6E+ 16	46.1587 804	21.489 3317
21	0.1	160	Vvtc vz vy 0.7c. x Ro yz 5.8e08 160x0.1s result 2.89314 Good.xls	6959 9950 9.5	76403 69.05	7640 369.0 5	695986 064	- 2790559 852	- 279055 9852	- 1.6E+ 16	46.1587 804	21.242 4991
22	0.1	160	Vvtc vz vy 0.7c. x Ro yz 5.5e08 160x0.1s result 2.311574 Good.xls	6959 9951 8.4	- 11611 18.37	- 1161 118.3 7	695986 077	- 2820559 682	- 282055 9682	- 1.6E+ 16	46.1587 804	21.036 2966
23	0.1	160	Vvtc vz vy 0.7c. x Ro yz 4e08 160x0.1s result 2.220438 Good.xls		- 27715 39.85	- 2771 539.8 5	695986 161	- 2670560 467	- 267056 0467	- 1.5E+ 16	46.1587 804	21.901 4159

24	0.1	160	Vvtc vz vy 0.7c. x Ro yz 4e08 160x0.1s result 2.220438 Good1.xls	6959 9939 0.8	44929 3.027	4492 93.02 7	695986 161	- 2670560 467	- 2.671E +09	- 1.5E+ 16	46.1587 804	21.901 4159
25	0.1	160	Vvtc vz vy 0.7c. x Ro yz 2e08 160x0.1s result 2.9314.xls	6959 9987 9.2	- 11984 981.4	- 1198 4981. 4	695988 030	- 3170557 360	- 317055 7360	- 1.8E+ 16	46.1587 804	16.589 3734
26	0.1	160	Vvtc vz vy 0.7c. x Ro yz 1e09 160x0.1s result 2.1318 Good.xls	6959 9920 7.5	36701 21.84	3670 121.8 4	695987 045	- 2370561 602	- 237056 1602	- 1.4E+ 16	46.1587 804	22.812 0586
27	0.1	160	Vvtc vz vy 0.7c. x Ro yz 1.4e09 160x0.1s result 2.090797.xls	6959 9904 1.7	89842 6.816	8984 26.81 6	695988 869	- 1970562 510	- 197056 2510	- 1.1E+ 16	46.1587 804	23.265 2927
28	0.1	160	Vvtc vz vy 0.7c. x 3437 Ro. 160x0.1s result 2.104776.xls	6960 0262 2.5	- 83149 93.67	- 8314 993.6 7	695991 441	- 2170562 122	- 217056 2122	- 1.2E+ 16	46.1587 804	23.104 9511
29	0.1	160	Vvtc vz vy 0.7c. x 0000 Ro. 160x0.1s result 2.104761 Good.xls	6959 9908 5.5	- 83149 93.68	- 8314 993.6 8	695987 904	- 2170562 122	- 217056 2122	- 1.2E+ 16	46.1587 804	23.105 1088
30	0.1	200 0	Vvtc vz 0.25c.vx 0.97c, yRo. x 2e8 z 6,5e8 2000x0.1s result 2.357395 Good.xls	3511 4073. 22	69599 9620	1234 7120. 7	- 1.4782 E+10	6957869 80.5	- 5.7375 E+10	- 3.3E+ 17	46.1587 804	20.629 1925
31	0.1	160	Vvtc vz 0.25c.vx 0.97c, yRo. x 2e8 z 6,5e8 160x0.1s result 2.357032 Good.xls	5012 4424. 53	69599 9562	- 1570 7474. 8	- 961675 531	6959862 15.7	- 393438 7845	- 2.3E+ 16	46.1587 804	20.632 1958

32	0.1	80	Vvtc vy vz 0.7c. x Ro. 80x0.1s result 4.1691.xls	6960 0249 8.6	- 21198 528	- 2119 8528	695998 662	- 1674682 200	- 167468 2200	- 9.6E+ 15	46.1587 804	11.664 5604
33	0.1	160	Vvtc vz vy 0.7c. x Ro yz 6e08 264x0.1s result 2.262125 Good.xls	6959 9948 8.7	64409 54.63	6440 954.6 3	695974 356	- 4975209 668	- 497520 9668	- 2.9E+ 16	46.1588 0458	21.497 8102
34	0.1	160	Vvtc vz vy 0.7c. x yz Ro.1.7e9 160x0.1s result 2.083574 v Good.xls	6960 0037 3.5	9.0551 0929	9.055 1172 8	695986 887	- 1674682 214	- 167468 2214	- 9.6E+ 15	46.1588 1362	23.340 3664
35	0.1	100 0	Vvtc vz vy 0.7c. x Ro yz 6e08 1000x0.1s result 2.015571 v Good.xls	6960 1216 0.8	64349 34.11	6434 934.1 1	695917 209	- 1837268 6666	- 1.8373 E+10	- 1.1E+ 17	46.1589 6774	24.127 5284
36	0.1	200 0	Vvtc vz vy 0.7c. x Ro yz 6e08 2000x0.1s result 2.015268 v Good.xls	6960 1216 0.8	64349 34.11	6434 934.1 1	695805 961	- 3957120 7721	- 3.9571 E+10	- 2.3E+ 17	46.1592 003	24.131 1535
37	0.1	300 0	Vvtc vz vy 0.7c. x Ro yz 6e08 3000x0.1s result 2.015243 v Good.xls	6960 1216 0.8	64349 34.11	6434 934.1 1	695694 706	- 6076972 8423	- 6.077E +10	- 3.5E+ 17	46.1594 3289	24.131 4556
38	0.1	160	Vvtc vx vy 0.7c. z 714Ro. 160x0.1s result 0.79744121 extr Good.xls	- 8316 096.0 02	- 83160 96	4.971 4E+1 1	- 217056 5952	- 2170565 952	4.9714 E+11	2.85E +18	56.5952 7064	0.0853 7736
39	0.1	160	Vvtc vx vy 0.7c. z Ro. 160x0.1s result 2.104776.xls	- 8316 830.0 82	- 83168 30.08	6960 0308 6	- 217056 7245	- 2170567 245	695991 904	3.99E +15	56.5952 7064	23.104 9511

40	0.1	228	Vvtc vx vy 0.7c. z Ro. 160x0.1s result 2.104776.xls	- 8316 830.0 82	- 83168 30.08	6960 0308 6	- 217056 7245	- 2170567 245	695991 904	3.99E +15	56.5952 7064	23.104 9511
41	0.1	160	Vvtc vx vy 0.7c. z Ro. 160x0.1s result 2.10477.xls	- 8316 830.0 82	- 83168 30.08	6960 0308 6	- 217056 7245	- 2170567 245	695991 904	3.99E +15	56.5952 7064	23.104 9511
42	0.1	80	Vvtc vx c. x Ro. 40x0.1s.result div 0.xls	7259 7924 4.4	- 6.93E- 10	- 1.344 2E-11	186518 9527	- 1.05405 E-06	- 2.0611 E-08	- 0.1180 9	78.4047 2937	0
43	0.1	40	Vvtc vx vz eq .7c.x eq 2c 40x.1s result 171.14.xls	6207 8344 3.5	- 6.9306 E-10	7171 9852 7	142632 7053	- 1.05421 E-06	152274 2080	8.72E +15	81.8282 9177	0.2831 6468
44	0.1	80	Vvtc vz -c. x Ro. 80x0.1s result PI see.xls	6959 9999 8.6	- 6.93E- 10	2997 9245. 8	695996 162	- 4.32552 E-06	236835 8279	1.36E +16	89.9988 8233	11.664 5604
45	0.1	160	Vvtc vx vy0 vz c. z4.97e11 Ro. 160x0.1s result div0.xls	6.697 38E- 06	- 1.3131 E-05	4.923 4E+1 1	6.6138 E-06	- 1.29672 E-05	4.9237 E+11	2.82E +18	90.0011 1767	0
46	0.1	160	Vvtc vz c-c. y Ro. 160x0.1s result 2.08388.xls	3.842 59E- 06	69600 6966	1658 889.8 6	1.5185 E-05	6959984 10	- 236670 3025	- 1.4E+ 16	90.0011 1767	23.339 898
47	0.1	80	Vvtc vz c-c. y Ro. 80x0.1s result 2.320042.xls	9.825 82E- 07	69600 0777	- 1247. 0530 5	3.7712 E-06	6959972 41.8	- 116919 2521	- 6.7E+ 15	90.0011 1767	20.961 1428
48	0.1	160	Vvtc vz c-c. y Ro. 160x0.1s result 2.083588.xls	6960 0696 5.5	- 4.4364 E-06	1658 889.8 6	695998 410	- 1.75225 E-05	- 236670 3025	- 1.4E+ 16	90.0011 1767	23.339 898
49	0.1	80	Vvtc vz c. x Ro. 80x0.1s result 4.1067.xls	6959 9999 8.6	- 6.93E- 10	- 2997 9245. 8	695996 162	- 4.32475 E-06	- 236835 8279	- 1.4E+ 16	90.0011 1767	11.664 5604

50	0.1	40	Vvtc 40x0.1s Y NORMAL light ray in different direction result 2.5.xls		- 3.6662 E-07	6477 007.4	599583 146	- 1.0541E -06	- 473191 257	- 2.7E+ 15	90.0011 1767	19.431 5581
51	0.1	40	Vvtc vz eq c.x eq 2c 40x.1sresult 2.502.xls	5995 8443 0.5	- 3.6662 E-07	6477 007.4	599583 146	- 1.0541E -06	- 473191 257	- 2.7E+ 15	90.0011 1767	19.431 5581
52	0.1	160	Vvtc vz vy 0.7c. x Ro. 160x0.1s result 15.32195 not bad.xls	6510 3513 0.2	23237 90014	- 1741 6368 0	- 495671 353	2323788 188	- 461533 6694	- 2.6E+ 16	92.8813 6738	3.1739 2578
53	0.1	100 0	Vvtc vz 0.25c.vx 0.97c, yRo. x 2e8 z 6,5e8 1000x0.1s result 2.3576 Good.xls	3511 4073. 22	69599 9620	1234 7120. 7	- 728731 1867	6958953 09.6	- 2.8347 E+10	- 1.6E+ 17	92.8813 6738	20.626 5423
54	0.1	160	Vvtc vz 0.25c.vx 0.97c, yRo. x 2e8 z 6,5e8 160x0.1s result 2.377165 Good.xls	2761 9255. 29	69599 9577	- 1668 0176. 8	- 991675 061	6959862 05.8	- 396438 7731	- 2.3E+ 16	92.8813 6738	20.457 457
55	0.1	160	Vvtc vz 0.25c.vx 0.97c, yRo. x 1.8e8 z 6,2e8 160x0.1s result 240159 Good.xls		69599 9597	- 1765 2877. 1	- 101167 4778	6959862 46.4	- 399438 7580	- 2.3E+ 16	92.8813 6738	20.249 7399
56	0.1	160	Vvtc vz 0.25c.vx 0.97c, yRo. x 1.5e8 z 5.8e8 160x0.1s result 2. Good.xls	23.40	69599 9651	4017 19.00 9	- 104167 4338	6959863 40.5	- 403438 7381	- 2.3E+ 16	92.8813 6738	19.928 0719
57	0.1	160	Vvtc vz 0.25c.vx 0.97c, yRo. 160x0.1s result	2429	69599 9699	- 9665 4868.	- 591680 288	6959904 80.2	- 401533 4352	- 2.3E+ 16	92.8813 6738	17.014 3186

			2.85844.xls			3						
58	0.1	80	Vvtc vx 0.25c.vz 0.97c, y Ro. 80x0.1s result 4.297657.xls	2995	69600 2951	1606 142.3 4	- 292090 044	6960030 05.3	306334 67.4	1.76E +14	92.8813 6738	11.315 6416
59	0.1	80	Vvtc vx 0.25c.vz 0.97c, y Ro. 80x0.1s result 4.16899.xls		69599 9999	- 2902 7280. 1	- 592089 570	6959976 53.7	- 229315 3054	- 1.3E+ 16	92.8813 6738	11.664 8728
60	0.1	80	Vvtc vx 0.25c.vz 0.97c, y less Ro. 160x0.1s result 2.08335.xls		69600 2962	- 3516. 8838 6	- 592091 386	6959944 03.7	- 229316 0088	- 1.3E+ 16	92.8813 6738	23.340 5226
61	0.1	80	Vvtc vx 0.25c.vz 0.97c, y less Ro. 80x0.1s result 4.16899.xls		69599 9999	- 2902 7280. 1	- 592089 570	6959961 61.6	- 229315 3054	- 1.3E+ 16	92.8813 6738	11.664 8728
62	0.1	200 0	Vvtc vz 0.25c.vx 0.97c, yRo. x 2e8 z 6,5e8 2000x0.1s result 2.36 Good.xls	9255.	69599 9577	- 1668 0176. 8	- 1.4782 E+10	6957869 80.5	- 5.7375 E+10	- 3.3E+ 17	92.8818 9979	20.629 1925
63	0.1	40	Vvtc -vx vz eq .7c.x eq 2c 40x.1s result 7.217.xls	5783 8638 7.5	- 6.9306 E-10	7171 9852 7	- 227158 051	- 1.05418 E-06	152274 1731	8.72E +15	98.1701 1138	6.7383 2433
64	0.1	40	Vvtc vz vz eq .7c.x eq 2c 40x.1sresult 7.127.xls	5783 8638 7.5	- 6.9306 E-10	7171 9852 7	- 227158 051	- 1.05418 E-06	152274 1731	8.72E +15	98.1701 1138	6.7383 2433
65	0.1	80	Vvtc vy vz 0.7c. x Ro. 80x0.1s result 4.169.xls	- 2119 8528	69600 1491	- 2119 8528	- 167468 2200	6959976 53.7	- 167468 2200	- 9.6E+ 15	98.1717 0823	11.664 5604

66	0.1	160	Vvtc vx vz 0.7c. y Ro. 160x0.1s result 2.10471.xls	- 7078 6889 8.4	69600 0057	- 7078 6889 8	- 217056 7245	6959919 03.9	- 217056 7245	- 1.2E+ 16	98.1717 0823	23.104 7933
67	0.1	80	Vvtc vz 0.25c.vx 0.97c, y Ro. 80x0.1s result 4.3715.xls	1606 213.1 98	69600 2966	4147 22.46 3	306335 37.7	6960030 23.8	790954 5.39	4.53E +13	101.222 4936	11.124 3135
68	0.1	80	Vvtc vz 0.25c.vx 0.97c, y Ro. 80x0.1s result 4.169.xls	- 2902 7280. 06	69600 1491	- 7494 811.4 5	- 229315 3054	6959976 53.7	- 592089 570	- 3.4E+ 15	101.222 4936	11.664 8728
69	0.1	160	Vvtc vz 0.25c.vx 0.97c, y less Ro. 160x0.1s result 2.083537.xls	- 3516. 8838 55	69600 2962	- 908.0 5550 8	- 229316 0088	6959944 03.7	- 592091 386	- 3.4E+ 15	101.222 4936	23.340 3664
70	0.1	80	Vvtc vx c-c. z Ro. 80x0.1s result 2.3200.xls	- 1247. 0530 45	- 1.0874 E-06	6960 0077 7	- 116919 2521	- 4.30388 E-06	695997 242	3.99E +15	101.595 2706	20.960 969
71	0.1	160	Vvtc vx c-c. y Ro.2.4e in z 160x0.1s result 16.2.xls	- 2997 9245. 8	69600 8000	2400 0000 00	- 476669 9340	6960075 22.9	239999 8355	1.38E +16	101.595 2706	3.0003 7974
72	0.1	160	Vvtc vx c-c. y Ro.2.4e in x 160x0.1s result 2.083588.xls	1658 889.8 57	69600 6966	- 8.814 9E-08	- 236670 3025	6959984 10	- 3.4244 E-07	- 1.9620 6	101.595 2706	23.339 898
73	0.1	40	Vvtc vy vz eq .7c.x eq 2c 40x result 12.032.1s.xls	5995 8491 5.5	21198 528	7171 9852 7	599584 480	8267424 60.5	152274 1954	8.72E +15	133.841 2196	4.0416 9627
74	0.1	80	Vvtc vx 0.25c.vz 0.97c, y 3000 Ro. 80x0.1s result 4.169102.xls	- 7494 811.4 5	69600 2999	- 2902 7280. 1	- 592089 570	6959991 61.6	- 229315 3054	- 1.3E+ 16	168.404 7293	11.664 5604

75	0.1	40	Vvtc vy c. x Ro. 40x0.1s result 4.65524.xls	6959 9999 8.6	29979 245.8	- 1.344 2E-11	695998 564	1169190 027	- 2.0491 E-08	- 0.1174 1	168.404 7293	10.446 4361	
76	0.1	20	vak variable time create vak1 20x 0.1 sec result 9.956.xls	6959 9988 1.5	35.571 8466	- 1.342 5E-09	695999 990	- 2098547 16.6	- 1.2078 E-10	- 0.0006 9	168.404 7293	4.8844 5089	
Gene	Image:												

xXx