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Abstract 

In the present article, we proposed a family of estimators for estimating population 

means using known value of some population parameters. Khoshnevisan et al. [1] proposed a 

general family of estimators for estimating population means using known value of some 

population parameter(s) which after some substitutions led to some ratio and product estimators 

initially proposed by Sisodia and Dwivedi [2], Singh and Tailor [3], Pandey and Dubey [4], 

Adewara et al. [5], yadav and Kadilar [6]. The present family of estimators provides us 

significant improvement over previous families in theory. An empirical study is carried out to 

judge the merit of the proposed estimator. 

Keywords:  Ratio Estimator, Product Estimator, Population Parameter, Efficiency, Mean Square 

Error. 

1. Introduction

The problem of estimating the population mean in the presence of an auxiliary variable 

has been widely discussed in finite population sampling literature. Ratio, product and difference 

methods of estimation are good examples in this context. Ratio method of estimation is quite 

effective when there is high positive correlation between study and auxiliary variables. On the 

other hand, if correlation is negative (high), the product method of estimation can be employed 

efficiently. 
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In recent years, a number of research papers on ratio-type, exponential ratio-type and 

regression-type estimators have appeared, based on different types of transformations. Some 

important contributions in this area are due to Singh and Tailor [3], Shabbir and Gupta [7,8], 

Kadilar and Cingi [9,10], Khosnevisan et. al.(2007).  

Khoshnevisan et al. [1] defined their family of estimators as 

g]
b)Xα)(a(1b)xα(a

bXa
[yt






where 0)a( , b are either real numbers or the functions of the known parameters of the auxiliary 

variable x such as standard deviation ( xσ  ), Coefficient of Variation ( xC ), Skewness ( (x)β1 ), 

Kurtosis ( (x)β2 ) and Correlation Coefficient (ρ ). 
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(iii). When α=1, a=1, b=0, g=-1, we have the usual product estimator, )
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(iv). When α=1, a=1, b= xC , g=1, we have Sisodia and Dwivedi [2] ratio estimator, 
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(v). When α=1, a=1, b= xC , g=-1 
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 we have Pandey and Dubey [4] product estimator, )
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(vi). When α=1, a=1, b=  , g=1, we have Singh and Taylor [3] ratio estimator, )
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(vii). When α=1, a=1, b=ρ , g=-1, we have Singh and Taylor [3] product estimator, 
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There are other ratio and product estimators from these families that are not inferred here but this 

paper will be limited to those ones that made use of Coefficient of Variation ( xC ) and 

Correlation Coefficient ( ρ  ) since the conclusion obtained here can also be inferred on all others 

that made use of other population parameters such as the standard deviation ( xσ ), Skewness 

( (x)β1 ) and  Kurtosis ( (x)β2 ) in the same family. 

2. On the Modified Ratio and Product Estimators.

Adopting Adewara (2006), Adewara et al. (2012) proposed the following estimators as 
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Where *x and *y  are the sample means of the auxiliary variables and variable of  interest yet to 

be drawn with the relationships (i) *xf)(1xfX    and (ii). 
*yf)(1yfY  . 

Srivenkataramana and Srinath [12]. 

The Mean Square Errors of these estimators i
*t , i = 1,2, …, 6 are as follows: 
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Following Adewara et al [5], Yadav and Kadilar [6] proposed some improved ratio and product 

estimators for estimating the population mean of the study variable as follows 
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The mean square error of these estimators i
*η , i=1,2,…,6 are as follows 

       2

1yx1

2

1

2

x1

2

1

2

y

2

1

22

1
* 1kλCk2k2λC2k3kλCkhY)MSE(η  (2.19) 

     2

2yx1

2

1

2

x

2

2

2

y

2

2

22

2
* 1kλCk2k2λCkλCkhY)MSE(η  (2.20) 

       2

3yx3

2

31

2

x

2

13

2

3

2

y

2

3

22

3
* 1kλCk2k2νλCν2k3kλCkhY)MSE(η  (2.21) 

     2

4yx4

2

41

2

x

2

1

2

4

2

y

2

4

22

4
* 1kλCk2k2νλCνkλCkhY)MSE(η  (2.22) 

       2

5yx5

2

52

2

x

2

23

2

3

2

y

2

3

22

3
* 1kλCk2k2νλCν2k3kλCkhY)MSE(η  (2.23) 

     2

6yx6

2

62

2

x

2

2

2

4

2

y

2

6

22

4
* 1kλCk2k2νλCνkλCkhY)MSE(η  (2.24) 

Where,  

xy

yx

x

1

x

1

yx

yx2

2

x2

x2

2

y2

y
SS

S
andρ

CX

X
ν,

CX

X
ν,

XY

S
C,

X

S
C,

Y

S
C,

n-N

n
h,

Nn

n-N
λ 







And 
 

   
,

1λCλ4CλCh

1λCh
k,

1λCλ4Cλ3Ch

1λCλCh
k

2

yyx

2

x

2

yx

2

22

yyx

2

x

2

yx

2

x

2

1










 
 

 
  1λCλC4νλC3νh

1λCλνh
k,

1λCλC4νλC3νh

1λCνCλνh
k

2

yyx1

2

x

2

1

2

yx1

2

42

yyx1

2

x

2

1

2

yx1

2

x

2

1

2

3










 
 

 
  1λCλC4νλC3νh

1λCλνh
andk,

1λCλC4νλC3νh

1λCνCλνh
k

2

yyx2

2

x

2

2

2

yx2

2

62

yyx2

2

x

2

2

2

yx2

2

x

2

2

2

5












Uses of Sampling Techniques & Inventory Control with Capacity Constraints 

24

3. The Proposed family of estimators

Following Malik Singh [14], we define the following class of estimators for population mean Y

as 
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Where 1m and 2m are suitably chosen constants. ψ, δ,  ω , and μ  are either real numbers or 

function of known parameters of the auxiliary variable. The scalar β and α takes values +1 and -1 

for ratio and product type estimators respectively. 

To obtain the MSE , let us define 
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expressing equation (3.1) in terms of e’s and retaining only terms up to second degree of e’s, we 
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where,     μXω

Xω
R,

δXψ
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Subtracting Y from both the sides of (3.2), we have 
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Squaring both sides of (3.3) and neglecting terms of e’s having power greater than two, we have 
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minimization of (3.4) with respect to  m1 and m2 yields optimum values as 
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4. Empirical Study:

Population I: Kadilar and Cingi [9] 

N = 106, n = 20,   0.86ρ  , 5.22Cy  , 2.1Cx  , 2212.59Y   and 27421.70X   
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Population II: Maddala [13] 

N = 16, n = 4,   0.6823ρ  , 0.2278Cy  , 0.0986Cx  , 7.6375Y   and 75.4313X   

4. Results:

Table 4.1: Showing the estimates obtained for both the Khoshnevisan et al. [1] estimators and 

Adewara et al. [5] estimators 

Estimator Population I ( 0ρ  ) Population II ( 0ρ  ) 

0t 5411349 0.5676 

1t 2542740 - 

2t - 0.3387 

3t 2542893 - 

4t - 0.3388 

5t 2542803 - 

6t - 0.3376 

1
*t 137519.8 - 

2
*t - 0.03763 

3
*t 137528 - 

4
*t - 0.03765 

5
*t 137523.1 - 

6
*t

- 0.03751 
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Table 4.2: Showing the estimates obtained for Yadav and Kadilar [6] estimators 

Estimator Population I ( 0ρ  ) Population II ( 0ρ  ) 

1
*η 136145.37 - 

2
*η - 0.03762 

3
*η 136138.05 - 

4
*η - 0.03764 

5
*η 136107.94 - 

6
*η - 0.03750 

Table 4.3: MSE of suggested estimators with different values of constants 

1m 2m α β ψ  δ  ω μ estimator 

MSE 

PopI       PopII 

1 0 1 0 1 0 - - 1
*t 137519.8 - 

1 0 -1 0 1 0 - - 2
*t - 0.03763 

1 0 1 0 1 Cx - - 3
*t 137528 - 

1 0 -1 0 1 Cx - - 4
*t - 0.03765 

1 0 1 0 1 ρ - - 5
*t 137523.1 - 

1 0 -1 0 1 ρ - - 6
*t - 0.03751 

1m 0 1 0 1 0 - - 1
*η 136145.37 - 

1m 0 -1 0 1 0 - - 2
*η - 0.03762 
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1m 0 1 0 1 Cx - - 3
*η 136138.05 - 

1m 0 -1 0 1 Cx - - 4
*η - 0.03764 

1m 0 1 0 1 ρ - - 5
*η 136107.94 - 

1m 0 -1 0 1 ρ - - 6
*η - 0.03750 

1m 2m 1 1 1 1 1 1 
Mt 75502.23 - 

1m 2m -1 -1 1 1 1 1 
Mt - 0.03370 

Since conventionally, for ratio estimators to hold, 0ρ    and also for product estimators to 

hold, 0ρ  . Therefore two data sets are used in this paper, one to determine the efficiency of the 

modified ratio estimators and the other to determine that of the product estimators as stated 

below. 

5. Conclusion

In this paper, we have proposed a new family of estimator for estimating unknown 

population mean of study variable using auxiliary variable. Expressions for the MSE of the 

estimator are derived up to first order of approximation. The proposed family of estimator is 

compared with the several existing estimators in literature. From table 4.3, we observe that the 

new family of estimators performs better than the other estimators considered in this paper for 

both of the data sets. 
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