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The manuscripts provides a novel starting guess for the solution of Kepler’s equation for unknown
eccentric anomaly E given the eccentricy e and the mean anomaly M of an elliptical orbit.
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KEPLER’S EQUATION

Mean and Eccentric Anomaly

The track of the orbit for a 2-body potential propor-
tional to the inverse distance of the two bodies leads to so-
lutions which may be ellipses with eccentricity 0 < e < 1.
The time dependence is described by the parameter M of
the mean anomaly, which is an angle measured from the
center of the ellipse, and which is a product of a parame-
ter n called the mean motion (essentially the square root
of the coupling parameter in the numerator of the 2-body
potential divided by the cube of the major semi-axis) and
a time elapsed since some reference epoch:

M = n(t — to). (1)

For the manuscript at hand, M and e are considered
fixed parameters. To compute the circular coordinates of
distance and true anonmaly of the body at that time in
the reference frame centered at the ellipse, one encounters
Kepler’s equation

E=M+esinE (2)

E—M—esinE =0. (3)

E and M are angles measured in radian in the range

—m < E,M < 7. To simplify the notation, we discuss
only the cases where M > 0, because the parity

E(—=M) = —E(M), (4)

—equivalent to flipping the entire orbit along the major

axis of the ellipse—allows to recover solutions for nega-
tive M as well.

The Inverse Problem

The numerical problem considered here is to find the
root of the function

f(E)=FE—-M —esinE (5)

in an efficient and numerically stable fashion.

The expansion of E in a Taylor series of e can be writ-
ten as

E=Y mi(M)e (6)
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to tighten the notation. The standard problem with this

series is that the m; do not fall in magnitude as a function

of ; so the Taylor expansion is not converging well unless

e is close to zero.

NEWTON METHODS

The simplest technique of solving (2) is a fixed point
iteration

EGFD) = M 4 esinEW;  EO© = M. (7)

For faster convergence this is commonly replaced by a
first-order Newton iteration
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or a second-order Newton iteration [1-5]
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where the function and its derivatives with respect to the
unknown E are

f=E—esinE—~M; f'=1-ccosE; f’'=esinE.
(10)



(8) is for example used in the iauPlan94 TAU function for
planets’ emphemerides [6]. Note that, since the evalua-
tion of the trigonometric functions is expensive compared
to the fundamental operations [7, 8], the second-order it-
eration is preferred since sin F in f” is already calculated
in conjunction with f.

INITIAL VALUE PROBLEM
Standard Initial Guesses

If the initial guess is the second step of (7),
E© = M +esin M, (11)

and the iteration (8) is used with e > 0.99, a known
problem is that the iterations may converge to secondary
roots of the equation with the wrong sign [9]. This is
basically triggerd by starting with an underestimate of
E as illustrated in Figure 1.

FIG. 1. Mismatch E(®) — E of the initial estimate (11).

A well-known remedy is to start with the initial gess
EO =71 (12)
which is known to converge [10, 11]. The speed of conver-

gence with the two basic Newton methods is illustrated
in Figures 2 and 3.

FIG. 2. The number of iterations needed for a relative
accuracy of 107'2 in E starting from (12) iterating with (8).

Improved Initial Value, Version 1

A starting value of E is obtained by inserting the ap-
proximation

) 4
smEzl—;ﬂE—wﬂf (13)
into the equation. [Similar approximations could be ob-
tained by truncating the Chebyshev series approximation

of the sin E after the second term [12, 13].]
This leads to a quadratic equation for F

E(O) =M+e |:1 _ é(E(O) — 7T/2)2:| , (]_4)
e

which is solved by

@
Il

-1 (15)

EO = gé [sgn(e)\/ 1+ % - 1] . (16)

The error of this estimate relative to the accurate solution
is shown in Figure 4. It increases where M/e — 0 and
€ — 0. The figure shows that the (16) has the same
benefit as (12) of approximating the solution from above,
therefore converging [10], but being more accurate. In
consequence, the convergence is faster, as demonstrated
in Figure 5 if compared with Figure 3.
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FIG. 3. The number of iterations needed for a relative FIG. 5. The number of iterations needed for a relative
accuracy of 10712 in E starting from (12) iterating with (9). accuracy of 10712 in E starting from (16) iterating with (9).
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FIG. 4. Mismatch E(¥) — E of the initial estimate (16).



Improved Inital Value, Version 2
If (3) is expressed as
E—M=esin(M +E— M), (17)
both sides may be expanded in a Taylor series of £ — M,

E— M)?
E—M = esin(M)+(E—M)e cos M—g

(18)
Keeping this series up to O(E — M) yields the estimate

esin(M)

EO =p 4 7
+ 1—ecosM

(19)

This is basically the estimate of the second step of the
fixed point iteration (7) with an enhancement factor of
the second term if e or cos M are large. As pointed
out earlier [1], this is also obtained applying the New-
ton method to the estimator E(®) = M.
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FIG. 6. Mismatch E®© — E of the initial estimate (19).

If the series is kept up to O((E — M)?), the associated
|

esin M+. ..

quadratic equation proposes

g sin M (E© —M)2+(1—e cos M)(E® —M)—esin M = 0.

(20)
This quadratic equation is solved by

2¢2 sin? M
|
(1 —ecosM)?

(21)

1 —ecos M
T esinM

E© — M
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FIG. 7. Mismatch E(®) — E of the initial estimate (21).

Figures 6 and 7 show in comparison with Figure 4 that
these approximations derived from the Taylor series of
E — M are not better than the one from the quadratic
estimate of sin F.

Expansion of (18) up to third order in F — M yields
a cubic equation for E(®) — M, which is even closer to
the exact solution as demonstrated in Figure 8. See
Mikkola’s paper for a similar approach [14-16].

SUMMARY

A initial value (16) combined with Halley’s equation
(9) leads to fast and stable convergence for the inverse
problem of Kepler’s equation for elliptic orbits. That ini-
tial value is simpler but generally worse than Markley’s
estimator [16].



0.1 -

0.05

FIG. 8. Mismatch E(9 — E of the initial estimate of the cubic
order of (18).

C++ Example

A reference implementation is reprinted here which implements (9) and (16). If compiled with the -DTEST pre-
processor symbol, a test program is obtained which can be called with two command line arguments, e and M, to
investigate the convergence with this and other approaches.

#include <cmath>
#include <iostream>

/** short cut for the sign of an expression
*/
#define SGN(a) ((a)>071:-1)

using namespace std;

/** Solve the Kepler equation starting at an improved guess.
* The numeric routine proposed in vixra:1705.0216
* @param e ellipticity in the range [0..1]
* Q@param M mean anomaly in the range [-pi..pil
* Q@param eps required relative accuracy
* Q@return eccentric anomaly in the range [-pi..pi]
* Qauthor R. J. Mathar
* @since 2017-05-13
*/
double solveKepler(const double e, double M, const double eps)
{

M = remainder (M,2.*M_PI) ;

if (M <O0.)

return -solveKepler(e,-M,eps) ;

const double aux =0.25%M_PI/e-1.0 ;
double E=0.5*M_PI*aux*(

SGN (aux) *sqrt (1+M/ (e*aux*aux))-1.0) ;
for (int itr= 1 ; itr < 10 ; itr++)



{

#ifdef HAVE_SINCOS

double se,ce ;

sincos(E, & se, & ce) ;

const double f2 = ex*se ;

const double f1 = 1.-e*ce ;
#else

const double f2 = exsin(E) ;

const double f1 1.-excos(E) ;
#endif /* HAVE_SINCOS */

const double f = E-f2-M ;

const double Ediff = f*xf1/(f1*f1-0.5%xf*f2) ;

E -= Ediff ;
#ifdef TEST
cout << @ << " "M KK M K " "L itr
<< " " K< E << " " << Ediff << endl ;
#else
if ( fabs(Ediff) < eps*fabs(E) )
break ;
#endif /* TEST */
}
return E ;

} /* solveKepler */

#ifdef TEST
/** Solve the Kepler equation starting at Pi.
* This serves as a reference implementation which is known to
* converge.
* Q@param e ellipticity in the range [0..1]
* Q@param M mean anomaly in the range [-pi..pil
* @return eccentric anomaly in the range [-pi..pil
*/
double solveKeplerRef(const double e, double M)
{

M = remainder (M,2.*M_PI) ;

if (M <O0.)

return -solveKeplerRef(e,-M) ;

double E=M_PI ;
for (int itr= 1 ; itr < 10 ; itr++)

{
double f = E-e*sin(E)-M ;
double f1 = 1.-e*cos(E) ;
double f2 = ex*sin(E) ;
double Ediff = fxf1/(f1*f1-0.5xf*f2) ;
E -= Ediff ;
cout <K e <K " " KK MK "ML itr
KK " " K E KK " " < Ediff << endl ;
}
cout << endl ;
return E ;

} /* solveKeplerRef */

/** Solve the Kepler equation starting at Mikkola’s estimator.
* An implementation according to S. Mikkola, Cel. Mech. 40 (1987) 329.

* Q@param e ellipticity in the range [0..1]

* @param M mean anomaly in the range [-pi..pil

* Q@return eccentric anomaly in the range [-pi..pi]
* Qauthor R. J. Mathar

* @since 2019-02-11

*/

double solveKeplerMikkola(const double e, double M)
{

M = remainder (M,2.*M_PI) ;



if (M < 0.)
return -solveKeplerMikkola(e,-M) ;

const double alpha = (1.0-e)/(4.0%e+0.5) ;
const double beta = 0.5%M/(4.0%e+0.5) ;
double z =sqrt(beta*betat+pow(alpha,3.0)) ;
if ( beta > 0.0)

z = cbrt(beta+z) ;
else

z = cbrt(beta-z) ;
const double s = z-alpha/z ;

double E=M+e*s*(3.0-4.0%s*s) ;
for (int itr= 1 ; itr < 10 ; itr++)

{
double f = E-exsin(E)-M ;
double f1 = 1.-e*cos(E) ;
double f2 = e*sin(E) ;
double Ediff = fxf1/(f1%f1-0.5*%f*f2) ;
E -= Ediff ;
cout << e <K " " KK M<K " " itr
K< " "MK E KK " " << Ediff << endl ;
}
cout << endl ;
return E ;

} /* solveKeplerRef */

/** Solve the Kepler equation starting at Markley’s estimator.
* An implementation according to F. L. Markley, Cel. Mech. Dyn. Astr. 63 (1995) 101

* Q@param e ellipticity in the range [0..1]

* @param M mean anomaly in the range [-pi..pil

* Q@return eccentric anomaly in the range [-pi..pi]
* Qauthor R. J. Mathar

* @since 2019-02-11

*/

double solveKeplerMarkley(const double e, double M)
{

M = remainder (M,2.*M_PI) ;
if (M < 0.)
return -solveKeplerMarkley(e,-M) ;

const double alpha = M_PI*(3.*M_PI+1.6%(M_PI-M)/(1.0+e))/(M_PI*M_PI-6.0) ;
const double d = 3.0%(1.0-e)+alphaxe ;

const double q = 2*alpha*d*(1.0-e)-M*M ;

const double r = M*(3*alpha*d*(d-1.0+e)+M*M) ;

const double w = pow(abs(r)+sqrt(g*g*q+r*r),2.0/3.0) ;

double E=(2%r*w/(wkw+wxq+q*q)+M)/d ;
for (int itr= 1 ; itr < 10 ; itr++)

{
double f = E-e*sin(E)-M ;
double f1 = 1.-excos(E) ;
double f2 = e*sin(E) ;
double Ediff = f*f1/(£1*f1-0.5*xf*£f2) ;
E -= Ediff ;
cout << e <K " " KK M<K " " jtr
<< " MK E << " " << Ediff << endl ;
}
cout << endl ;
return E ;

} /* solveKeplerRef */

/** Compare the speed of convergence for 4 different estimators.
* test usage:



* tst e M

*/
int main(int argc, char *argv[])
{
if (argc < 3 )
{
cout << "usage: tst e M" << endl ;
return 1 ;
}
else
{
double e = atof(argv[1]) ;
double M = atof(argv([2]) ;
cout <<"standard" << endl ;
solveKeplerRef (e,M) ;
cout <<"Mikkola" << endl ;
solveKeplerMikkola(e,M) ;
cout <<"Markley" << endl ;
solveKeplerMarkley(e,M) ;
cout <<"Mathar" << endl ;
solveKepler(e,M,1.e-14) ;
return O ;
}

}
#endif /* TEST x/

*
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