The distribution of primes

Ihsan Raja Muda Nasution

January 26, 2018

Abstract

In this paper, we find the axiomatic pattern of prime numbers.

MSC: 11A41
Keywords: prime numbers, distribution of primes

1 Introduction

In 1859, Riemann [Rie59] computed the distribution of primes. Our motivation is to axiomatize the structure of primes.

2 Results

These below are some patterns of number.
Let t_{n} denote the nth triangular number. Then

$$
t_{n}=\binom{n+1}{2} \quad n \geq 1
$$

where $\binom{n}{k}$ is the binomial coefficients.
Let F_{n} be the nth Fibonacci number. Then

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right],
$$

where n is an integer.
Let B_{n} be the nth Bernoulli number. Then

$$
B_{n}=(-1)^{n+1} n \zeta(1-n),
$$

where $\zeta(1-n)$ is the Riemann zeta-function.

Postulate 2.1 (Peano Postulates). Given the number 0 , the set \mathbf{N}, and the function σ. Then:

1. $0 \in \mathbf{N}$.
2. $\sigma: \mathbf{N} \rightarrow \mathbf{N}$ is a function from \mathbf{N} to \mathbf{N}.
3. $0 \notin \operatorname{range}(\sigma)$.
4. The function σ is one-to-one.
5. If $I \subset \mathbf{N}$ such that $0 \in I$ and $\sigma(n) \in I$ whenever $n \in I$, then $I=\mathbf{N}$.

We define $1=\sigma(0), 2=\sigma(1), 3=\sigma(2)$, etc. We have the following postulate.

Postulate 2.2. Given a prime number p and the function τ. Then:

1. $p \neq 0,1$.
2. $2 \leq p$.
3. $4 \nmid p$.
4. $(-1)^{\tau(p)}=1$.

References

[Rie59] B. Riemann. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsber. Akad. Berlin, pages 671-680, 1859.

