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Abstract

Employing only basic arithmetic and algebraic techniques that would have been
known to Fermat, and utilizing alternate computation methods for arriving at
n
√
cn, we identify a governing relationship between

√
(a2 + b2) and n

√
(an + bn)

(for all n > 2), and are able to establish that c = n
√

(an + bn) can never be an
integer for any value of n > 2.
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1 Introduction

”It is impossible for a cube to be the sum of two cubes, a fourth power to
be the sum of two fourth powers, or in general, for any number that is a
power greater than the second to be the sum of two like powers.

I have discovered a truly marvelous demonstration of this proposi-
tion that this margin is too narrow to contain” [6].

Pierre de Fermat (1637 [4, p. 139])

Operating on the premise that the construction and examination of equivalent restate-
ments of an equation (and its elements and inverse operations) may reveal properties
and relationships that might not otherwise be apparent, we construct such equivalent
restatements and from their examination, are able to conclusively demonstrate that
n
√
cn can be an integer only at n = 2.

Remark The proof of Fermat’s Last Theorem rests upon the relationship between√
c2 =

√
(a2 + b2), and for all n > 2, n

√
cn = n

√
(an + bn), both of which are equally

regarded as c. Where it is necessary to distinguish between the two values, either
distinct side of these two equations may be used interchangeably.

Acknowledgement I can claim no credit for the insights and approaches contained within this
paper. All were gifts from God. And it is only to him that praise is due.
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Theorem 1.1 (Fermats Last Theorem) For all n > 2 there are no solutions to
the equation (an + bn) = cn where a, b, c, n are all positive integers.

Proof With (an + bn) = (bn + an) [2, p. 10], then the base integer values to be

assigned to a and b are unrestricted as to assignment to a or b. Let c = n
√

(an + bn).
Let a, b, n be positive integers with (see Lemmas 2, 3) a and b coprime and of opposite
parity, n ≥ 2, and a < b < c.

Consider, given (an + bn) = cn:

[(an/an) + (bn/an)] = (cn/an) [(an/bn) + (bn/bn)] = (cn/bn)

[(a/a)n + (b/a)n] = (c/a)n [(a/b)n + (b/b)n] = (c/b)n

[1 + (b/a)n] = (c/a)n; [(a/b)n + 1] = (c/b)n.

Then

cn = [an · (1 + (b/a)n)]; cn = [bn · ((a/b)n + 1)],

c = [a · n
√

(1 + (b/a)n)]; c = [b · n
√

((a/b)n + 1)], (1)

(c− a) = [(a · n
√

(1 + (b/a)n))− a] (c− b) = [(b · n
√

((a/b)n + 1))− b]

= [a · ( n
√

(1 + (b/a)n)− 1)]; = [b · ( n
√

((a/b)n + 1)− 1)],

and

a = [b · n
√

(c/b)n − (b/b)n)] b = [a · n
√

(c/a)n − (a/a)n)]

= [b · n
√

(1 + ((c− b)/b))n − 1 ]; = [a · n
√

(1 + ((c− a)/a))n − 1 ].

Of greatest significance (see Equation 1), c = [b · n
√

((a/b)n + 1)] gives us that regard-

less of whether
√

(a2 + b2) = [b ·
√

((a/b)2 + 1)] is an integer or is irrational [5, p. 35],√
c2 is always an integer multiple of

√
((a/b)2 + 1) (i.e., [c /

√
(a/b)2 + 1 = b]). And

with, for all n > 2, [( n
√
cn/ n

√
((a/b)n + 1)) = b] also, then

√
c2/ n
√
cn =

[
(b ·
√

((a/b)2 + 1)) / (b · n
√

((a/b)n + 1))
]

=
[√

((a/b)2 + 1) / n
√

((a/b)n + 1)
]
,

and n
√
cn =

[√
c2 /

(√
((a/b)2 + 1) / n

√
((a/b)n + 1)

)]
.

But we have that (see Lemma 4) for all n > 2, (an+bn) contains primes not in (a2+b2);

and thus n
√

((a/b)n + 1) contains the nth roots of primes not in
√

((a/b)2 + 1).

Then with
√
c2 an integer multiple of

√
(a/b)2 + 1,

√
c2 can never be an integer

multiple of [
√

((a/b)2 + 1)/ n
√

((a/b)n + 1)], and for all n > 2,

n
√
cn =

[√
c2 /

(√
((a/b)2 + 1) / n

√
((a/b)n + 1)

)]
is an irrational non-integer. �
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Appendices
A Lemma 1: The positive integers a and b cannot be equal

Proof If a = b then an = bn and (an + bn) = (an + an), and

n
√

(an + an) = n
√

(2an) = (
n
√

2 · n
√
an) = (

n
√

2 · a).

Let v be a positive integer with (n/v) = w and n = (v ·w). Then 2n = 2(v·w) = (2v)w,

and n
√

2 = (v·w)
√

2 =
w
√

v
√

2 [3, p. 17].
Then for all n ≥ 2, n can be expressed in the form n = (v · w) = (2 · (n/2)),

and n
√

2 = 2·(n/2)
√

2 =
n/2
√

2
√

2 =
(n/2)
√√

2; and with the
√

2 an irrational non-integer

[2, p. 20-21], and
(n/2)
√√

2 the rational root of an irrational number, then the n
√

2 is
irrational.

Example

√
2 = 1.41421356

3
√

2 = 1.25992104 =
(2·(3/2))

√
2 =

(3/2)

√
(

2
√

2) =
(3/2)

√
(
√

2)

=
1.5
√

1.41421356 = (
√

1.41421356)(1/1.5) = 1.25992104

4
√

2 = 1.18920711 =
(2·(4/2))

√
2 =

(4/2)

√
(

2
√

2) =
(4/2)

√
(
√

2)

=
2
√

1.41421356 = (
√

1.41421356)(1/2) = 1.18920711

5
√

2 = 1.14869835 =
(2·(5/2))

√
2 =

(5/2)

√
(

2
√

2) =
(5/2)

√
(
√

2)

=
2.5
√

1.41421356 = (
√

1.41421356)(1/2.5) = 1.14869835

6
√

2 = 1.12246204 =
(2·(6/2))

√
2 =

(6/2)

√
(

2
√

2) =
(6/2)

√
(
√

2)

=
3
√

1.41421356 = (
√

1.41421356)(1/3) = 1.12246204

. . .

Then the ( n
√

2 ·a), the product of an irrational number and an integer, is also irrational
[1, p. 317], and n

√
cn being an integer is possible only where a and b are not equal. �
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B Lemma 2: Only coprime positive integers need be consid-
ered for a and b

Proof If a, b, c, n and B,A,M are positive integers with a 6= b and M common
to B and A; and (B/M) = b and (A/M) = a, then (An +Bn) = [(M ·a)n + (M · b)n],
and

n
√

(An + Bn) = n
√

[(M · a)n + (M · b)n]

= n
√

(Mn · an) + (Mn · bn)

=
n
√
Mn · n

√
(an + bn)

= M · n
√

(an + bn).

Where A and B share a common multiple, M , we have that n
√

(An + Bn) will always

be the product of the integer M times n
√

(an + bn), and it is only the nth root of the
sum of the products of the coprime elements of An and of Bn that determines if the
nth root of (An + Bn) can be an integer.

It is then only such coprime values of a and b that we need consider in determining
if the sum of two integers raised to a given power can be equal to a third integer raised
to that same power. �
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C Lemma 3: The positive integers a and b cannot be of the
same parity

Proof Where a and b are coprime then a and b cannot be equal and a and b
cannot both be products of 2 and even. Let x and y be positive integers.

If a and b are both odd then a can be restated in the form (2x+ 1) and b in the form
(2y + 1), with c2 = [(2x + 1)2 + (2y + 1)2] an even integer:

c2 = (2x + 1)2 + (2y + 1)2

= [(22x2 + (2 · 2x) + 1) + (22y2 + (2 · 2y) + 1)]

= (4x2 + 4x + 4y2 + 4y + 2).

But where c2 is even, and thus comprised of two equal factors,
√
c2 can be an integer

only if c is also even and a product of 2— and c2 is divisible by 22 = 4 and c2/4 is
also a perfect square.

However, c2/4 = [(4x2 +4x+4y2 +4y+2)/4] = (x2 +x+y2 +y+0.5) is a non-integer

and not a perfect square, giving us that c =
√
c2 is also a non-integer; and where a

and b are both odd,
√
a2 + b2) can never be an integer.

Then where n = 2, a and b cannot both be odd, and since a and b cannot both be
even (see Lemma 1), one of a and b must be odd and the other even.

And with a and b for n = 2 also a and b for all n > 2, then a and b, and an and bn,
can never both be odd. �
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D Lemma 4: For all n > 2, (an + bn) contains primes not in
(a2 + b2)

Proof With (an + bn) = [(a · a(n−1)) + (b · b(n−1))] then1

(an + bn) = [(a · (a(n−1) + b(n−1))) + (b(n−1) · (b− a))].

That is, with an comprised of ‘a‘ number of a(n−1) quantities and bn comprised of ‘b‘
number of b(n−1) quantities, then multiplying (a(n−1) + b(n−1)) by a gives us an, but
only ‘a‘ quantities of b(n−1); to which we must add (b − a) additional quantities of
(b(n−1) in order to arrive at (an + bn).

We then have:

(a2 + b2) = [(a · (a + b)) + (b · (b − a))];

(a3 + b3) = [(a · (a2 + b2)) + (b2 · (b− a))]

= [a · ((a · (a + b)) + (b · (b− a)))] + (b · (b · (b− a)))

= [(a · (a2 + b2)) + (b2 · (b − a))];

(a4 + b4) = [(a · (a3 + b3)) + (b3 · (b− a))]

= [a · (a · ((a · (a + b)) + (b · (b− a))) + (b2 · (b− a)))]

+ (b · (b2 · (b− a)))

= [a2 · (a2 + b2)] + [(a · (b2 · (b− a))) + (b3 · (b− a))]

= [a2 · (a2 + b2)] + [(b2 · (b − a)) · (a + b)];

(a5 + b5) = [(a · (a4 + b4)) + (b4 · (b− a))]

= [a · (a · (a · ((a · (a + b)) + (b · (b− a))) + (b2 · (b− a)))

+ (b3 · (b− a)))] + (b · (b3 · (b− a)))

= [a3 · (a2 + b2)] + [(a2 · (b2 · (b− a)) + (a · (b3 · (b− a))) + (b4 · (b− a))]

= [a3 · (a2 + b2)] + [(b2 · (b − a)) · (a2 + ab + b2)];

(a6 + b6) = [(a · (a5 + b5)) + (b5 · (b− a))]

= [a · (a · (a · (a · ((a · (a + b)) + (b · (b− a))) + (b2 · (b− a)))

+ (b3 · (b− a))) + (b4 · (b− a)))] + (b · (b4 · (b− a)))

= [a4 · (a2 + b2)] + [(a3 · (b2 · (b− a))) + (a2 · (b3 · (b− a)))

+ (a · (b4 · (b− a))) + (b5 · (b− a))]

= [a4 · (a2 + b2)] + [(b2 · (b − a)) · (a3 + a2b + ab2 + b3)]

. . .

Proof by Mathematical Induction

Conjecture For all positive integers n > 2,

(an + bn) = [a(n−2) · (a2 + b2)]

+ [(a(n−3) · (b2 · (b− a))) + (a(n−4) · (b3 · (b− a))) + · · ·
+ (a1 · (b(n−2) · (b− a))) + (a0 · (b(n−1) · (b− a)))].

1Alternately, (an + bn) = [b · (a(n−1) + b(n−1))]− [a(n−1) · (b− a)]; or

(an + bn) = [a(n−1) · (a+ b)] + [b · (b(n−1) − a(n−1))].
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Base Case, n = 3 (a = 3, b = 4):

(a3 + b3) = (33 + 43) = 91

= [a(3−2) · (a2 + b2)] + (a0 · (b(n−1) · (b− a)))]

= [(31 · 25) + (1 · (42 · (4− 3)))]

= (75 + 16)

= 91.

Induction Hypothesis – Assume our conjecture holds true for some n = k:

(ak + bk) = [a(k−2) · (a2 + b2)]

+ [(a(k−3) · (b2 · (b− a))) + (a(k−4) · (b3 · (b− a))) + · · ·
+ (a1 · (b(k−2) · (b− a))) + (a0 · (b(k−1) · (b− a)))].

Then it must also hold true for n = (k + 1):

(a(k+1) + b(k+1)) = [a((k+1)−2) · (a2 + b2)]

+ [(a((k+1)−3) · (b2 · (b− a))) + (a((k+1)−4) · (b3 · (b− a))) + · · ·
+ (a1 · (b((k+1)−2) · (b− a))) + (a0 · (b((k+1)−1) · (b− a)))]

= [a(k−1) · (a2 + b2)]

+ [(a(k−2) · (b2 · (b− a))) + (a(k−3) · (b3 · (b− a))) + · · ·
+ (a1 · (b(k−1) · (b− a))) + (a0 · (bk · (b− a)))];

and (ak + bk) =⇒ (a(k+1) + b(k+1)):

[(a · ak) + (b · bk)] = [a · a(k−2) · (a2 + b2)] + [a · a(k−3) · (b · (b · (b− a)))]

+ (a · a(k−4) · (b · (b2 · (b− a))) + · · ·+ (a1 · (b · (b(k−2) · (b− a))))

+ (a0 · (b · (b(k−1) · (b− a)))]

= [a(k−1) · (a2 + b2)] + [a(k−2) · (b2 · (b− a))]

+ (a(k−3) · (b3 · (b− a))) + · · ·+ (a1 · (b(k−1) · (b− a)))

+ (a0 · (bk · (b− a)))]

= [a(k+1) + b(k+1)].

By the principle of mathematical induction, our conjecture holds.

With the final term to be added to [a(n−2) · (a2 + b2)], for each increase in n, equal to
(b(n−1) · (b− a)), then for all n > 2, (an + bn) is reducible to [a(n−2) · (a2 + b2)], plus
a product of (b2 · (b− a)).

And with a(n−2) and (a2+b2) coprime to b2 and (b−a), then the addition of a product
of (b2 · (b − a)) to [a(n−2) · (a2 + b2)] generates primes not in [a(n−2) · (a2 + b2)] or
(b2 · (b− a)), and for all n > 2, (an + bn) contains primes not in (a2 + b2). �
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