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|.Introduction.

1.1.Main results.

Let us remind that accordingly to naive set theory, any definable collection is a set. Let
R be the set of all sets that are not members of themselves. If R qualifies as a member
of itself, it would contradict its own definition as a set containing all sets that are not
members of themselves. On the other hand, if such a set is not a member of itself, it
would qualify as a member of itself by the same definition. This contradiction is Russell's
paradox. In 1908, two ways of avoiding the paradox were proposed, Russell’s type
theory and Zermelo set theory, the first constructed axiomatic set theory. Zermelo’s
axioms went well beyond Frege’s axioms of extensionality and unlimited set abstraction,
and evolved into the now-canonical Zermelo—Fraenkel set theory ZFC."But how do we
know that ZFC is a consistent theory, free of contradictions? The short answer is that we
don't; it is a matter of faith (or of skepticism)"— E.Nelson wrote in his paper [1].
However, it is deemed unlikely that even ZFC, which is significantly stronger than ZFC
harbors an unsuspected contradiction; it is widely believed that if ZFC and ZFC; were
inconsistent, that fact would have been uncovered by now. This much is certain —ZFC
and ZFC; is immune to the classic paradoxes of naive set theory: Russell’s paradox, the
Burali-Forti paradox, and Cantor’s paradox.

Remark 1.1.1.Note that in this paper we view (i) the first order set theory ZFC under
the

canonical first order semantics (ii) the second order set theory ZFC, under the Henkin

semantics [2],[3] and (iii) the second order set theory ZFC,under the full second-order

semantics [4],[5],[6].

Remark 1.1.2.Second-order logic essantially differs from the usual first-order
predicate

calculus in that it has variables and quantifiers not only for individuals but also for
subsets

of the universe and variables for n-ary relations as well [7],[8]. The deductive calculus

DED:; of second order logic is based on rules and axioms which guarantee that the

guantifiers range at least over definable subsets [7]. As to the semantics, there

are two tipes of models: (i) Suppose U is an ordinary first-order structure and

Sis a set of subsets of the domain A of U. The main idea is that the set-variables

range over S,i.e. (U,S) £ IXD(X) < IS e S)[(U,S) = O(S)].

We call (U, S) a Henkin model, if (U, S) satisfies the axioms of DED» and

truth in (U, S) is preserved by the rules of DED». We call this semantics

of second-order logic the Henkin semantics and second-order logic with the

Henkin semantics the Henkin second-order logic. There is a special class of

Henkin models, namely those (U, S) where Sis the set of all subsets of A.

We call these full models. We call this semantics of second-order logic the full

semantics and second-order logic with the full semantics the full second-order logic.

Remark 1.1.3.We emphasize that the following facts are the main features of



second-order logic:
1.The Completeness Theorem : A sentence is provable in DED; if and only if it holds
in

all Henkin models [7].

2.The Lowenheim -Skolem Theorem : A sentence with an infinite Henkin model has a
countable Henkin model.

3.The Compactness Theorem : A set of sentences, every finite subset of

which has a Henkin model, has itself a Henkin model.

4.The Incompleteness Theorem : Neither DED> nor any other effectively

given deductive calculus is complete for full models, that is, there are

always sentences which are true in all full models but which are unprovable.

5.Failure of the Compactness Theorem for full models.

6.Failure of the Lowenheim-Skolem Theorem for full models.

7.There is a finite second-order axiom system Z, such that the semiring

N of natural numbers is the only full model (up to isomorphism) of Z».

8. There is a finite second-order axiom system RCF, such that the field

R of real numbers is the only (up to isomorphism) full model of RCF».

Remark 1.1.4.For let second-order ZFC be, as usual, the theory that results obtained

from ZFC when the axiom schema of replacement is replaced by its second-order

universal closure,i.e.

VX[Func(X) = YuavVr[r e v <= 3s(s€ UA (5,1) € X)]], (1.1.1)

where X is a second-order variable, and where Func(X) abbreviates " X is a functional

relation",see [7].

Thus we interpret the wif’s of ZFC, language with the full second-order semantics as
required in [4],[5],[6].[7].

Designation 1 .1.1. We will denote (i) by ZFC} set theory ZFC, with the Henkin
semantics, (i) by ZFCfZss set theory ZFC; with the full second-order semantics,(iii) by

ZFCH® set theory ZFCHS + 3IMZ " and (i ZFc o
2 y 55+ 3IMg % and (iv) by ZFC« set theory ZFC + IM§ ™™, where Mg
is a standard model of the theory Th.

Remark 1.1.3.There is no completeness theorem for second-order logic with the full
second-order semantics. Nor do the axioms of ZFC5® imply a reflection principle which
ensures that if a sentence Z of second-order set theory is true, then it is true in some
model MZFCZ" of ZFC™S [5]. Let Z be the conjunction of all the axioms of ZFCE®, We
assume now that: Z is true,i.e. Con(ZFC‘(ZSS . Itis known that the existence of a model

for Z requires the existence of strongly inaccessible cardinals, i.e. under ZFC it can be
shown that « is a strongly inaccessible if and only if (H,, <) is a model of ZFC5®. Thus

ﬁCon(ZFCfZSS) = —Con(ZFC + Jk)).In this paper we prove that:

(i) ZFCq £ ZFC + 3IMZC (ji) ZFCH® £ ZFCYs + IMT" and (iii) ZFC'® is inconsistent,

where M is a standard model of the theory Th.
Axiom IMZC [8]. There is a set M% € and a binary relation ¢ £ M#¢ x MZ*€ which
makes M#C a model for ZFC.
Remark 1.1.3.(i) We emphasize that it is well known that axiom IM#C a single
statement in ZFC see [7],Ch.ll,section 7.We denote this statement throught all this
paper
by symbol Con(ZFC; M ¢).The completness theorem says that IM%¢ < Con(ZFC).



(i) Obviously there exists a single statement in ZFCY such that
IMZFCE = Con(ZFCHs).
We denote this statement throught all this paper by symbol Con(ZFCYs; M#*¢:*) and

there

exists a single statement IMZ" in Zs. We denote this statement throught all this
paper by

symbol Con(Z5s; M%),

Axiom IMEC.[8].There is a set M5© such that if Ris
{xy)xeyrxe MFC Ay e MFC}

then M4 € is a model for ZFC under the relation R.

Definition 1 .1.1.[8].The model M5 is called a standard model since the relation <
used

is merely the standard e- relation.

Remark 1.1.4.[8].Note that axiom IM# ¢ doesn’t imply axiom IM5.

Remark 1.1.5.We remind that in Henkin semantics, each sort of second-order variable
has a particular domain of its own to range over, which may be a proper subset of all
sets or functions of that sort. Leon Henkin (1950) defined these semantics and proved
that Godel's completeness theorem and compactness theorem, which hold for first-order
logic, carry over to second-order logic with Henkin semantics. This is because Henkin
semantics are almost identical to many-sorted first-order semantics, where additional
sorts of variables are added to simulate the new variables of second-order logic.
Second-order logic with Henkin semantics is not more expressive than first-order logic.
Henkin semantics are commonly used in the study of second-order arithmetic.Vaananen
[6] argued that the choice between Henkin models and full models for second-order logic
is analogous to the choice between ZFC and V (V is von Neumann universe), as a basis
for set theory: "As with second-order logic, we cannot really choose whether we
axiomatize mathematics using V or ZFC. The result is the same in both cases, as ZFC is
the best attempt so far to use V as an axiomatization of mathematics."

Remark 1.1.6.Note that in order to deduce: (i) ~Con(ZFCY*) from Con(ZFC%s),

(i) ~Con(ZFC) from Con(ZFC), by using Godel encoding, one needs something more
than

F

the consistency of ZFCHs, e.g., that ZFCYS has an omega-model M5 ¥ or an standard

model MiFC?S i.e., a model in which the integers are the standard integers.To put it

another way, why should we believe a statement just because there’s a ZFCYs-proof of
it? It's clear that if ZFCYS is inconsistent, then we won’t believe ZFCYs-proofs. What's
slightly more subtle is that the mere consistency of ZFC; isn’t quite enough to get us to
believe arithmetical theorems of ZFCYS; we must also believe that these arithmetical

theorems are asserting something about the standard naturals. It is "conceivable" that

ZFCYs might be consistent but that the only nonstandard models Mf,';(:?s it has are those

in which the integers are nonstandard, in which case we might not "believe" an

arithmetical statement such as "ZFCY is inconsistent" even if there is a ZFCYs-proof of it.
Remark 1.1.7. However assumption EIMéchs is not necessary. Note that in any

nonstandard model Mﬁa of the second-order arithmetic Z5* the terms 0,

0 = 1,S0 = 2,... comprise the initial segment isomorphic to M?S - Mﬁf:f. This initial

segment is called the standard cut of the Mﬁ% The order type of any nonstandard



model of Mﬁa is equal to N+ A x Z for some linear order A [9]. Thus one can to choose
Godel encoding inside Migs.

Remark 1.1.8. However there is no any problem as mentioned above in second order
set theory ZFC, with the full second-order semantics becouse corresponding second
order arithmetic Zfzss is categorical.

Remark 1.1.9. Note if we view second-order arithmetic Z, as a theory in first-order
predicate calculus. Thus a model M?% of the language of second-order arithmetic Z,
consists of a set M (which forms the range of individual variables) together with a
constant 0 (an element of M), a function Sfrom M to M, two binary operations + and x on
M, a binary relation < on M, and a collection D of subsets of M, which is the range of the
set variables. When D is the full powerset of M, the model M?#2 is called a full model. The
use of full second-order semantics is equivalent to limiting the models of second-order
arithmetic to the full models. In fact, the axioms of second-order arithmetic have only
one full model. This follows from the fact that the axioms of Peano arithmetic with the
second-order induction axiom have only one model under second-order semantics, i.e.
Z,, with the full semantics, is categorical by Dedekind’s argument, so has only one
model up to isomorphism. When M is the usual set of natural numbers with its usual
operations, M#2 is called an w-model. In this case we may identify the model with D, its
collection of sets of naturals, because this set is enough to completely determine an

fss
w-model. The unique full omega-model M%? , which is the usual set of natural numbers
with its usual structure and all its subsets, is called the intended or standard model of
second-order arithmetic.

2.Derivation of the inconsistent definable set in set theory
ZFC5® and in set theory ZFCy.

2.1.Derivation of the inconsistent definable set in set
theory ZFC5".

Designation 2 .1.1.Let I'§s be the collection of the all 1-place open wff of the set
theory

ZFC5°.
Definition 2 .1.1.Let ¥1(X), ¥Y2(X) be 1-place open wif's of the set theory ZTC?S.
(i) We define now the equivalence relation (+ ~x «) < I'{s x 'S by

F1(X) ~x Y2(X) = VX[Y1(X) = Y2(X)] (2.1.1)
(ii) A subset AKS of 'S such that W1(X) ~x ¥2(X) holds for all ¥1(X) and W»(X) in A§S,
and never for W1(X) in A¥S and W,(X) outside A%, is called an equivalence class of
FQS by ~X .
(iii)The collection of all possible equivalence classes of I'is by ~x, denoted 'S/ ~x

T ~x 2 {{P(X)]elP(X) € T, (2.1.2)

is the quotient set of I'{{s by ~x .
(iv) For any W(X) € T’ let [¥(X)],s £ {@(X) € T'E¥(X) ~ O(X)} denote the
equivalence class to which ¥(X) belongs. All elements of 'S equivalent to each other
are also elements of the same equivalence class.



Definition 2 .1.2.[9].Let Th be any theory in the recursive language £m > £pa,Where
Lpa

is a language of Peano arithmetic.We say that a number-theoretic relation R(x,...,Xn)
of

n arguments is expressible in Th if and only if there is a wif /R\’(xl, ..., Xpn) of Th with the
free

variables xi,...,Xn such that,for any natural numbers ki, ...,kn, the following hold:

(i) If R(ke, ..., kn) is true, then - R(Ki,...,Kn).

(ii) If R(Ky,...,kn) is false, then -t —R(Ky,...,Kn).

Designation 2 .1.2.(i) Let gzrcys(u) be a Godel number of given an expression u of

the set theory ZFC5® 2 ZFCHS + IMZC",

(i) Let Fr5(y,v) be the relation : y is the Godel number of a wff of the set theoryZTCZ'S
that contains free occurrences of the variable X with Godel number v [8]-[9].

(i) Note that the relation Fr5S(y,v) is expressible in ZFC5® by a wff Fr s(y,v)
(iv) Note that for any y,v e N by definition of the relation Fr45(y,v) follows that

FrEww) o 3900 (e (P0) = ¥) A (e = ) ], (2.1.3)

where WY(X) is a unique wff of ZFC2 which contains free occurrences of the variable X

with Godel number v.We denote a unique wiff W (X) defined by using equivalence
(1.2.3)

by symbol ¥y, (X),i.e.

Frisy,v) < 3y, ([ (0w (X)) = Y) A (0¥ =v) ], (21.4)
(v) Let p5S(y,v,v1) be a Godel number of the following wff: IIX[W(X) A Y = X],where
Ozt (P(X) = ¥, 0zzc5:(X) = v, Qgees(Y) = va

(vi) Let Przcis(2) be a predicate asserting provability in ZFC5®, which defined by

formula
(2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [9]-[10]).

Remark 2 .1.0.Note that this function Ozt (Pyn (X)) =y is expressible in set theory
ZFCy®

by a wff of the set theory ZTC?S that contains free occurrences of the variable y € N.

Note that formula Wy, (X) is given by an expression ugus..u;...Ur,i.e.

¥y, (X) = UoUs..Uj...Ur,where each u; is a symbol of ZFC5°. We introduce now a

functions [Wy, (X);]] : Yy, (X) = u;,] = 0,1,...,i.e. [Py, (X);]] =t u; and revrite

expression Ugus..U;...u, in the following equivalent form

[Py (X); O][Wy,y (X); 1]... [Py (XD3 ] . [Wyw(X); 1]
By definitions we obtain that
Ozrca(Py(X)) =y = y = 29[y (X);01) 39 ¥y X)i1]) pjg([‘ify,v(X);j]). “pg([‘?y,v(x);r]).

Let us denote by (y); the exponent g(['¥'y,(X);]]) in this factorization

y = 29([ ¥y (X):0) 39 ¥y CNL]) pjg([‘i’y,v(x);j])_ y pg([‘Fy,v(X):r])_

Ify=1,(y); = 1forallj. If x = 0, we arbitrarily let (y); = 0 for all j. Then the functions
()j,j = 0,1,... is primitive recursive, since (y); = uz(pfly A —p?ly),[8]. Thus the



function
(y)j is expressible in set theory ZFC5® by formula denoted below by
A (¥, 9([¥y (X)511))-
Fory > 0, let Ih(y) be the number of non-zero exponents in the factorization of y into
powers of primes, or, equivalently, the number of distinct primes that divide y.Let
Ih(0) = 0O, then Ih(y) is primitive recursive.Thus function Ozt (Pyw (X)) =y is
expressible
in set theory ZTC?S by formula E(\W¥y, (X),y)

E(Yyv(X)y) & /\ Aj (Y, 9([¥yw (X)511))-
i<Ih(y)
Definition 2 .1.3. Let 'S be the countable collection of the all 1-place open wff’s of
the set theoryZTC;'S that contains free occurrences of the variable X.

Definition 2 .1.4. Let Ozrcs(X) = v.Let I'’s be a set of the all Godel numbers of the

1-place open wiff's of the set theoryZFCZ'S that contains free occurrences of the
variable X
with Goédel number v,i.e.

IV = {y e N[y,v) € Fri®(y,v)}, (2.1.5)
or in the following equivalent form:

wy(y e N)|:y eIt o (y e N) Aﬁ?(y,v)]. (2.1.6)

Remark 2.1.1.Note that from the axiom of separation it follows directly that I''s is a set
in the sense of the set theory ZFC?S.
Definition 2 .1.5.(i)We define now the equivalence relation

(+~ ¢) CIilexrhe (2.1.7)
in the sense of the set theory ZFC5" by
Y1~y Y2 & (VX[Wy (X) <= Fy,n(X)]) (2.1.8)

Note that from the axiom of separation it follows directly that the equivalence relation

(+ ~y +)is arelation in the sense of the set theory ﬁ?s.

(i) A subset A''s of 'S such that y; ~, y» holds for all y; and y; in Al'S,and never for y;
in

AP and y, outside AYS, is an equivalence class of TS,

(iii) For any y € T'¥* let [y], = {z € T'f"ly ~, z} denote the equivalence class to which y

belongs. All elements of T'!s equivalent to each other are also elements of the same

equivalence class.

(iv)The collection of all possible equivalence classes of I't's by ~,, denoted I''S/ ~,

O~y 2 {lylpdly € TV} (2.1.9)
Remark 2.1.2. Note that from the axiom of separation it follows directly that T'}!S/ ~, is
a
set in the sense of the set theory ZFC5".
Definition 2 .1.6.Let 34 be the countable collection of the all sets definable by 1-place
open wff of the set theory ZFC5”, i.e.

VY{Y € 35 = IPO[(P(X)]ge € TES ~x ) A[RIXF)AY = X]]]}. (2.1.10)



Definition 2 .1.7.We rewrite now (2.1.10) in the following equivalent form
VY{Y € 38 <= FYX)[([YX) s € T ~x YA (Y = X)]}, (2.1.11)
where the countable collection I’/ ~x is defined by
VPX){[P(X)] € TLS ~x = [([P(X)] € TES ~x ) A IXP(X)]} (2.1.12)
Definition 2 .1.8. Let R4S be the countable collection of the all sets such that
UYX(X € IF)[X e RS = X ¢ X]. (2.1.13)
Remark 2.1.3. Note that R4S € 34 since R4S is a collection definable by 1-place open
wif
W(Z,35%) 2 VX(X e 3F)[X e Z = X ¢ X].
From (2.1.13) one obtains

RS € RS = RYs ¢ RS, (2.1.14)
But (2.1.14) gives a contradiction
(RS € RYS) A (RE® 2 \E°). (2.1.15)

However contradiction (2.1.15) it is not a contradiction inside ZFC';Is for the reason that
the countable collection 34 is not a set in the sense of the set theory ZFC,".

In order to obtain a contradiction inside ZFC?S we introduce the following
definitions .

Definition 2 .1.9.We define now the countable set T';"S/ ~, by
W{[y]Hs e I ~, = ([Ylus € TV~ ) AFrES(y,v) A [H!X‘Py,v(x)]}- (2.1.16)

Remark 2 .1.4. Note that from the axiom of separation it follows directly that T";/ is a
set in the sense of the set theory ZFC5".
Definition 2 .1.10.We define now the countable set 33 by formula
vY{Y e 33 < Fy[(Iy] € Ti" ~ ) A (g = v) AY=X]}.  (21.17)
Note that from the axiom schema of replacement (1.1.1) it follows directly that 33" is
a
set in the sense of the set theory ZFC5".
Definition 2 .1.12.We define now the countable set R3S by formula
VYX(X € 339X e 3™ = X ¢ X]. (2.1.18)
Note that from the axiom schema of separation it follows directly that )3 is a set in
the
sense of the set theory ZFC'SS.
Remark 2.1.5.Note that R3S e 331 since R3Hs is a definable by the following formula

PH(Z) 2 VX(X € 35X e Z = X ¢ X]. (2.1.19)

Theorem 2 .1.1.Set theory ZFC';Is is inconsistent.
Proof. From (2.1.18) and Remark 2.1.5 we obtain R3HS € R3S — R3S ¢ R3HS from
which immediately one obtains a contradiction (R3™ € R3"S) A (R3HS ¢ R3HS).

2.2.Derivation of the inconsistent definable set in set



theory ZFCg.

Designation 2 .2.1.(i) Let gzec,(u) be a Godel number of given an expression u of

the set theory ZFCy 2 ZFC + IM&C.

(ii) Let Fr«(y,Vv) be the relation : y is the Godel number of a wff of the set theoryZFCq
that contains free occurrences of the variable X with Godel number v [9].

(i) Note that the relation Fr 4(y, V) is expressible in ZFCy by a wif I/:?st(y,v)
(iv) Note that for any y,v € N by definition of the relation Fr «(y, v) follows that

Fra(y,v) = IMPO[(@zrca(P(X)) = ¥) A (@zrca(X) = )], (2.2.1)

where ¥(X) is a unique wff of ZFCg which contains free occurrences of the variable X

with Godel number v.We denote a unique wff ¥ (X) defined by using equivalence
(2.2.1)

by symbol ¥y, (X),i.e.

Fra(y,V) & 3%y, 00[(@zrca (Fyw (X)) = ¥) A (Gzrca(X) = )], (2.2.2)
(V) Let p «(y,v,v1) be a Godel number of the following wff: IIX[W(X) A Y = X],where
9zrcs (Y(X)) = ¥,0zrca(X) = v, Gzrce(Y) = va.

(vi) Let Przec4(2) be a predicate asserting provability in ZFCg, which defined by

formula
(2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [8]-[9]).

Remark 2 .2.0.Note that this function gzrc, (Wy, (X)) = y is expressible in set theory
ZFCy

by a wiff of the set theory ZFCg« that contains free occurrences of the variable y € N.

Note that formula ¥y, (X) is given by an expression ugus..u;...Ur,i.€.

Wy, (X) = UpU1..U;...ur,where each u; is a symbol of ZFCy. We introduce now a

functions [Wy, (X);]] : Yy, (X) = u;,] = 0,1,...,i.e. [Py, (X);]] =t u; and revrite

expression Ugus..u;...u, in the following equivalent form

[Py, (X); 0[Py, (X); 1]... [Py (X); ] ] . [Py (X);5 1]
By definitions we obtain that
gzrce(Pyy (X)) = y & y = 200¥ 000D 30(¥yr ()2 pjg([‘ify,v(x);j]). “pg([‘ify,v(x);r])_
Let us denote by (y). the exponent g([\Vy,,(X);]j]) in this factorization
i Yy
y = 29([Fy.y (X);01) 39 ¥yw(X)i1]) pjg([‘i'y,v(x);j])_ y pg([‘vy,v(x);r])_

Ify=1,(y); = 1forallj. If x = 0, we arbitrarily let (y); = O for all j. Then the functions
(V)i,j = 0,1,... is primitive recursive, since (y); = uz(pfly A —p?ly),[8]. Thus the
function
(y)j is expressible in set theory ZFCg by formula denoted below by
Ai (¥, 9([Fy (X)5)1)-
Fory > 0, let Ih(y) be the number of non-zero exponents in the factorization of y into
powers of primes, or, equivalently, the number of distinct primes that divide y.Let
Ih(0) = 0, then Ih(y) is primitive recursive. Thus function gzrcy (Wy, (X)) = yis
expressible
in set theory ZFCg« by formula Z(Wy,,(X),y)



2Py ) y) = A A9 ¥y (X))
i<Ih(y)
Definition 2 .2.1. Let I'§ be the countable collection of the all 1-place open wif's of
the set theory ZFCg that contains free occurrences of the variable X.
Definition 2 .2.2. Let gzrcy (X) = v.Let ' be a set of the all Godel numbers of the
1-place open wff's of the set theory ZFCgq that contains free occurrences of the
variable X
with Goédel number v,i.e.

I = {y € NKy,v) € Fra(y,v)}, (2.2.3)
or in the following equivalent form:

Wy eN)|yeTE o (e AFRLY) |,

Remark 2 .2.1.Note that from the axiom of separation it follows directly that I'$! is a set
in the sense of the set theory ZFCy.
Definition 2 .2.3.())We define now the equivalence relation (« ~x -) < I'§{ x I'§ by

Y1(X) ~x Y2(X) = (VX[Y1(X) = Y20X)]) (2.2.4)

(i) A subcollection A§ of I'$ such that ¥1(X) ~x ¥2(X) holds for all ¥1(X) and ¥2(X)
in
A%, and never for W1(X) in A§ and ¥,(X) outside A$, is an equivalence class of
rs.
(iii) For any W(X) € I'§ let [¥(X)]4 = {®(X) € T|¥(X) ~x ®(X)} denote the
equivalence
class to which ¥(X) belongs. All elements of I'§{ equivalent to each other are also
elements of the same equivalence class.
(iv) The collection of all possible equivalence classes of I'§ by ~x, denoted T'$§/ ~x

T ~x 2 {{¥OOI4P(0) € TH). (2.2.5)

Definition 2 .2.4.(i)\We define now the equivalence relation (- ~, ) < I'S x 'S in the
sense of the set theory ZFCq by

Yi~v Y2 & (VX[Pyu(X) & Py,n(X)]) (2.2.6)

Note that from the axiom of separation it follows directly that the equivalence relation
(+ ~y +)is arelation in the sense of the set theory ZFCy.

(i) A subset A% of I't such that y; ~, y» holds for all y; and y; in A$,and never for y; in
A and y, outside A%, is an equivalence class of 'S,

(i) Forany y € T'{ let [y]4 = {z € T'{!ly ~» z} denote the equivalence class to which y
belongs. All elements of I't equivalent to each other are also elements of the same
equivalence class.

(iv)The collection of all possible equivalence classes of I'$ by ~,, denoted I'${/ ~,
¥~ 2 ALlylgly € TV (2.2.7)

Remark 2.2.2. Note that from the axiom of separation it follows directly that I'${/ ~, is
a

set in the sense of the set theory ZFCg.

Definition 2 .2.5.Let 34 be the countable collection of the all sets definable by 1-place

open wff of the set theory ZFCg, i.€.



VY{Y € 3¢ = FPX)[([P(X)]g € TR ~x )A[FIXFX)AY =X]]]}.  (2.2.8)
Definition 2 .2.6.We rewrite now (2.2.8) in the following equivalent form
VY{Y € 3¢ = FPX)[([YX)]q € T ~x ) A (Y = X)]}, (2.2.9)
where the countable collection I’/ ~x is defined by
VEXO{[Y(X)]g € T ~x = [([PK)]q € TR/ ~x ) AIXE(X)]}  (2.2.10)
Definition 2 .2.7. Let R« be the countable collection of the all sets such that
VX(X € 34)[X € Rg &= X ¢ X]. (2.2.11)

Remark 2.2.3. Note that R¢ € I« since Ry is a collection definable by 1-place open
wif

Y(Z,34) 2 VX(X € Ig)[X e Z = X ¢ X].
From (2.2.11) and Remark 2.2.3 one obtains directly

Rg € Ry & Ra € Ra. (2.2.12)
But (2.2.12) immediately gives a contradiction
(Re € Ra) A (Ra & Ra). (2.2.13)

However contradiction (2.2.13) it is not a true contradiction inside ZFCg for the reason
that the countable collection 3 is not a set in the sense of the set theory ZFCyg.
In order to obtain a true contradiction inside ZFC« we introduce the following

definitions .
Definition 2 .2.8.We define now the countable set I';%/ ~, by formula

Vy{[yjst el ~, & (Ylg € T ~ ) AFTa(y,V) A [alxwy,v(xn}. (2.2.14)

Remark 2 .2.4. Note that from the axiom of separation it follows directly that I';%/ ~, is
a

set in the sense of the set theory ZFCyg.

Definition 2 .2.9.We define now the countable set 3% by formula

VY{Y € 3§ < FY[([ylg € T ~v ) A(Qzrce(X) = V) AY = X]}. (2.2.15)
Note that from the axiom schema of replacement it follows directly that 3% is a set in
the

sense of the set theory ZFCyg.
Definition 2 .2.10.We define now the countable set $R§ by formula

VX(X € 3%)[X e Ry < X ¢ X]. (2.2.16)
Note that from the axiom schema of separation it follows directly that 1% is a set in the

sense of the set theory ZFCy.
Remark 2.2.5.Note that R € 3% since R is a definable by the following formula

Y*(Z) 2 VX(X e 3§)[Xe Z= X ¢ X]. (2.2.17)
Theorem 2 .2.1.Set theory ZFCy is inconsistent.
Proof. From (2.2.17) and Remark 2.2.5 we obtain R € R§ < RE ¢ RE from which
immediately one obtains a contradiction (R € RE) A (R ¢ RY).
2.3.Derivation of the inconsistent definable set in ZFCyg.
Definition 2 .3.1.Let PA be a first order theory which contain usual postulates of Peano



arithmetic [9] and recursive defining equations for every primitive recursive function as

desired.So for any (n+ 1)-place function f defined by primitive recursion over any
n-place

base function g and (n + 2)-place iteration function h there would be the defining

equations:

(I) f(o’yL o Yn) =9y, ’yn),(”) f(X+ 1’y11 o Yn) = h(X,f(X,yl, s ’yn),yl: : ’yn)-

Designation 2 .3.1.(i) Let M&E be a nonstandard model of ZFC and let M§* be a
standard

model of PA.We assume now that ME* — MZEC and denote such nonstandard model
of the set theory ZFC by M{EC[PA]. (ii) Let ZFCng be the theory

ZFCng = ZFC + MZC[PA.

Designation 2 .3.2.(i) Let gzec,\y (U) be a Godel number of given an expression u of
the set theory ZFCng 2 ZFC + IMEE[PA].
(i) Let Frns(y,V) be the relation : y is the Godel number of a wif of the set theory
ZFCns
that contains free occurrences of the variable X with Godel number v [9].

(i) Note that the relation Frng (Y, V) is expressible in ZFCng by a wif I/:?Nst(y,v)
(iv) Note that for any y,v € N by definition of the relation Fr ng(y, V) follows that

Frus(y,V) = 3P [(@zrcn (F(X) = ¥) A (Gzrc (X) = 1)1, (2.3.1)

where ¥(X) is a unique wff of ZFCg which contains free occurrences of the variable X

with Godel number v.We denote a unique wff ¥ (X) defined by using equivalence
(2.3.1)

by symbol ¥y, (X),i.e.

Frua(¥,V) & 31y, 00[(@zrcn Py (X)) = ) A (Gzrca(X) = V)], (2.3.2)
(V) Let pna(Y,V,v1) be a Godel number of the following wff: ITX[W(X) A Y = X],where
gzrens (F(X)) = ¥, 9zrcye (X) = v, Ozreye (Y) = vi.

(vi) Let Przec,y(2) be a predicate asserting provability in ZFCng, which defined by

formula
(2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [9]-[10]).

Definition 2 .3.2. Let I'}{® be the countable collection of the all 1-place open wff’s of

the set theory ZFCng that contains free occurrences of the variable X.

Definition 2 .3.3. Let gzrcy (X) = v.Let ' be a set of the all Gédel numbers of the

1-place open wif’s of the set theory ZFCng that contains free occurrences of the
variable X

with Godel number v,i.e.

Iy =y € NKy,v) € Fr(y,v)}, (2.3.3)
or in the following equivalent form:

Wy eN)|yelE = e N AR |.

Remark 2 .3.1.Note that from the axiom of separation it follows directly that I'$t is a set
in the sense of the set theory ZFCps.
Definition 2 .3.3.(i)\We define now the equivalence relation (- ~x +) < T} x '§{ by

P1(X) ~x Y2(X) = (VX[T1(X) = FP2(X)]) (2.3.4)



(i) A subcollection A§ of I'§ such that ¥1(X) ~x ¥2(X) holds for all ¥1(X) and ¥2(X)
in
A%, and never for ¥1(X) in AR and ¥, (X) outside AJY, is an equivalence class of
s,
(iii) For any W(X) € I'§ let [P(X)]\g = {O(X) € TRI¥(X) ~x ©(X)} denote the
equivalence class to which ¥ (X) belongs. All elements of I'§ equivalent to each
other
are also elements of the same equivalence class.
(iv) The collection of all possible equivalence classes of 'Y by ~x, denoted I'}{#%/ ~x

IR ~x & {[PX)]nglP(X) € TR} (2.3.5)
Definition 2 .3.4.(i))\We define now the equivalence relation (+ ~, -) < ' x I'% in the
sense of the set theory ZFCng by

Y1 ~v Y2 = (VX[¥y,v(X) & Fy,n (X)]) (2.3.6)

Note that from the axiom of separation it follows directly that the equivalence relation

(+ ~, +)is arelation in the sense of the set theory ZFCyg.

(i) A subset AN of ' such that y; ~, Yy, holds for all y; and y; in AN, and never for
y1in

AN and y, outside A, is an equivalence class of '),

(iii) Forany y € T let [y]q = {z € I')*|y ~, z} denote the equivalence class to which

y
belongs. All elements of I' equivalent to each other are also elements of the same
equivalence class.

(iv)The collection of all possible equivalence classes of '\ by ~,, denoted I'\%/ ~,
LN ~, 2 {[y]\gly € TN} (2.3.7)

Remark 2.3.2. Note that from the axiom of separation it follows directly that T/ ~,, is
a

set in the sense of the set theory ZFCyg.

Definition 2 .3.5.Let 3ng be the countable collection of the all sets definable by
1-place

open wff of the set theory ZFCyg, i.€.

VY{Y € 3ng = FYX)([YX) g € TR ~x )AFIXYX)AY =X]]]F. (2.3.8)
Definition 2 .3.6.We rewrite now (2.3.8) in the following equivalent form
YY{Y € Sne = P[P X) g € T ~x ) A (Y = X)], (2.3.9)
where the countable collection I';N/ ~x is defined by
VY)Y K) g € T ~x = [([PK) g € TR ~x ) ATXYP(X)]}  (2.3.10)
Definition 2 .3.7. Let Ry be the countable collection of the all sets such that
VX(X € Ing)[X € Rng <= X € X]. (2.3.11)

Remark 2.3.3.Note that Rns € Ing Since Rng IS a collection definable by 1-place open
wif

Y(Z,3Ing) = VX(X € Ing)[X € Z = X ¢ X].
From (2.3.11) one obtains



Rt € Rt = Rnse € Rist (2.3.12)
But (2.3.12) gives a contradiction

(Rns € Rns) A (Rnst € Ring)- (2.3.13)

However a contradiction (2.3.13) it is not a true contradiction inside ZFCyg for the
reason

that the countable collection Jng is not a set in the sense of the set theory ZFChg.

In order to obtain a true contradiction inside ZFCng We introduce the following

definitions .

Definition 2 .3.8.We define now the countable set T';N%/ ~, by formula
WVl € TV~ = (Vg € T~ ) ATV A BIXP (001} (2.3.14)

Remark 2 .3.4. Note that from the axiom of separation it follows directly that T';N/ ~,
is
a set in the sense of the set theory ZFCyg.
Definition 2 .3.9.We define now the countable set 3§ by formula
YY{Y € Sk = W([Ylng € TN~ ) A (@zrcia(X) = V) AY = X]}. (2.3.15)

Note that from the axiom schema of replacement it follows directly that 3% is a set in
the

sense of the set theory ZFChg.

Definition 2 .3.10.We define now the countable set Rfy by formula

VXX € 3ig)[X € Rig = X ¢ X]. (2.3.16)

Note that from the axiom schema of separation it follows directly that Ry is a set in
the

sense of the set theory ZFChg.

Remark 2 .3.5.Note that Ry € Iy Since R{q is a definable by the following formula

PH(Z) 2 VX(X € Fig)[X e Z = X ¢ X]. (2.3.17)

Theorem 2 .3.1.Set theory ZFCyg is inconsistent.
Proof. From (2.3.16) and Remark 2.3.5 we obtain Ry € Rig &= Rig ¢ Rig from
which one obtains a contradiction (Ryg € Rig) A (Rig € Rig)-

3.Derivation of the inconsistent provably definable set in
set theory ZFCs"°, ZFCg and ZFChs.

3.1.Derivation of the inconsistent provably definable set
in set theory ZFCyp"°.

NH
Definition 3 .1.1. Let st be the countable collection of all provable definable sets X
such
that ZFC,° + AIXY(X),where ¥ (X) is a 1-place open wif i.e.,

VY{Y e Xy o ZFCH - IPO[WO0] € THY ~x ) A [IXFX) A Y = xm}. 3.1.1)



Let X éFﬁgs Y be a predicate such that X ﬁﬁgs Y o ZFCy° - X ¢ VY.Let %SS be the
countable collection of all sets such that
vx(x c %23)[x e %y o X @ x] (3.1.2)
From (3.1.2) one obtains
~Hs ~Hs ~Hs

~Hs
R, . (3.1.3)

SRZ ESRZ <—>SR2 g,_i
zZrchis

But obviously this is a contradiction. However contradiction (3.1.3) it is not a
contradiction inside ZFC';Is for the reason that predicate X Er s Y is not a predicate of
2

ZTC?S and therefore countable collections ’525 and 25{";5 are not a sets of ﬁ:?s.
Nevertheless by using Godel encoding the above stated contradiction can be shipped in
special consistent extensions of ZFC»".

Remark 3.1.1.More formally | can to explain the gist of the contradictions deriveded in
this

paper (see Proposition 2.5.(i)-(ii)) as follows.

Let M be Henkin model of ZFCEs. Let ’iﬁgs be the set of the all sets of M provably

_ ~H ~H
definable in ZFC?S, and let SRZS = {x € SZS COx ¢ x)} where LJA means ‘sentence A

derivable in ZTC?S’, or some appropriate modification thereof. We replace now formula
(3.1.1) by the following formula

VY{Y e %5° o IPO[[POO] € THS ~x ) ACIXPX) A Y = xu}. (3.1.4)
and we replace formula (3.1.2) by the following formula
vx(x c §§S>[x e Ty o O(X ¢ X)] (3.1.5)
Definition 3 .1.2.We rewrite now (3.1.4) in the following equivalent form
VY{Y e 35 = IPOOIFO)], € THHT ~x ) A (Y = X)]}, (3.1.6)
where the countable collection T'{HS/ ~x is defined by the following formula
VIX){[P(X)] € T3 ~x = [((PXK)]s € TRY ~x ) ACAXY(X)]F  (B.1.7)
Definition 3 .1.3.Let '*J‘{’;S be the countable collection of the all sets such that
vx(x e %25)[x e 7 o OX ¢ x]. (3.1.8)
~Hs ~Hs . NHS_ . .
Remark 3.1.2.Note that R, € T, since R, is a collection definable by 1-place open
wif
~Hs ~Hs
‘P(Z,ERZ ) R vx(x e X, )[x e Z o OX ¢ X)].
From (3.1.8) one obtains
~Hs ~Hs ~Hs ~Hs
Ry e Wy o D(mz ¢ %, ) (3.1.9)
But (3.1.9) immediately gives a contradiction

=——=Hs ~Hs ~Hs ~~Hs ~~Hs
ZFCHs (mz e 5, )/\ (iRz ¢ %, ) (3.1.10)



However contradiction (3.1.10) it is not a true contradiction inside ZFC,"® for the reason

~H -
that the countable collection st is not a set in the sense of the set theory ZFC?S.
In order to obtain a true contradiction inside ZFC5® we introduce the following
definitions .

Definition 3 .1.4.We define now the countable set I';"s/ ~, by
_~Hs
Vy{[y]Hs e M ~, = ([ylye € TH ~, ) AFT, (Y,V) A [DH!X\PW(X)]}. (3.1.11)

Definition 3 .1.5.We choose now [IA in the following form
DA 2 Bewyres(#A) A [ BeWgas(#A) = A]. (3.1.12)

ZFCy ZFCY

Here BeWZchs(#A) is a canonycal Godel formula which says to us that there exists

proof in ﬁ?s of the formula A with Gddel number #A.

Remark 3.1.3. Notice that the Definition 3.1.5 holds as definition of predicate really
asserting provability in ﬁ:?s.

Definition 3 .1.7.Using Definition 3.1.5, we replace now formula (3.1.7) by the
following formula

VE){PX)] € T ~x = IPX)([FX)] € TRS ~x ) A

N[ BeWzeess (BAIX[P(X) A Y = X]) ] A (3.1.13)
AL BeWes BIX[P(X) A Y = X]) = IXFX)AY = X] |}
Definition 3 .1.8.Using Definition 3.1.5, we replace now formula (3.1.8) by the
following
formula

~Hs ~Hs
vx(x €3, )[x € Ry < [BeWgras(#HX & X)) | A

(3.1.14)
Al BeWzess(#(X ¢ X)) = X & X].

ZFCy

Definition 3 .1.9.Using Definition1.3.5,we replace now formula (3.1.11) by the
following formula

VY {Ylys € T3~ =
(Vs € TH ~ ) A FIEY) A [ BeWorge BEIXIP, () AY = XD ] A (3.1.15)
s (FEIXYy, () AY = X]) = XMWy () AY = X}

ZFCy

/\[Bew

~*H
Definition 3 .1.10.Using Definitions 3.1.4-3.1.7, we define now the countable set 3, °
by formula

vv{v e 3 = W) € T3 ~ ) A (Ggree®) = v) ]}. (3.1.16)

Remark 3.1.4.Note that from the axiom schema of replacement (1.1.1) it follows

directly that ngS is a set in the sense of the set theory ZFCh®.
Definition 3 .1.11.Using Definition 3.1.8 we replace now formula (3.1.14) by the
following formula



~xHs
vx(x c %, )

~xHs (3 1 17)
[x e W, = [Bewgpes((X £ X)) ] A [ Bewggs#(X & X)) = X ¢ x]]
Remark 3.1.5. Notice that the expression (3.1.18)
[ Bewszes (#(X & X)) | A [ BeWgeas(#(X 2 X)) = X ¢ X] (3.1.18)

- . ~~cxHs .
obviously is a well formed formula of ZFC?S and therefore collection *R; ° is a set in the
sense of ZFCy".

~xH ~xH ~*xH
Remark 3.1.6.Note that R, * e R “since R, s a collection definable by 1-place
open
wif

~xHs
ly(z,snz ) R
vx(x e %Z’s) XeZo (3.1.19)

[ Bewres (#(X 2 X)) | A [ BeWres(#(X 2 X)) = X ¢ X] ].

Theorem 3 .1.1.Set theory ZFC';Is 2 ZFCHs + EIM§?3Eis is inconsistent.
Proof. From (3.1.17) we obtain

~xHs ~*Hs

% e T o [Bew Hs(#(’iﬁZHs ¢ 'iﬁZHS)) ] A
ZFCy

~*HS ~*Hs ~*Hs ~*Hs (3 1 20)
/\[BeWZFC;s(#(iRz ¢ %, )) =T e T ]
(a) Assume now that:
~*Hs ~*Hs
R, € R, . (3.1.21)
N*H N*H
Then from (3.1.20) we obtain r s Be\NZFCE.s(#<*J{2 i R, s)) and
'~ *Hs ~*Hs ~*Hs ~*Hs ~*Hs ~*Hs
Fzrche Bewfcgs(#(ﬂ%z ¢ R, )) = R, ¢ R, ,therefore et R, ¢ R, and
(o]
~*Hs ~xHs ~xHs ~xHs
Fﬁ?s R, €Ry, =R, ¢ R, . (3 1. 22)
From (3.1.21)-(3.1.22) we obtain
~xHs ~*Hs ~~xHs ~xHs ~xHs ~xHs ~*Hs ~*Hs
R, €eRy, MRy eRy, =R, €R, Ry ¢ Ry,
~Hs ~Hs ~Hs ~Hs
and thus - zrchs (iRz € R, ) A (9{2 ¢ Ro )
(b) Assume now that
'~ *Hs ~*Hs
[ Bewes (#(32 " € 5.°) ) |
(3.1.23)

~xHs ~xHs ~xHs ~xHs
/\|:BEVVZF_CES<#(5R2 & SRZ )) = SRZ & SRZ :|

~xH ~xH
Then from (3.1.23) we obtain + R, ) ¢ R, °.From (3.1.23) and (3.1.20) we obtain

~*Hs ~xHs ~*Hs ~*Hs ~~xHs ~xHs

Fzrche R, €R, ,s0 zrche R, ¢ Ry Ry € Ry, which immediately gives us a




contradiction Fzqys (ﬁisz e %’;HS) A (%ZHS ¢ %’;HS).
Definition 3 .1.12.We choose now LA in the following form
LA £ Bewges(#A), (3.1.24)
or in the following equivalent form
CJA £ Bew

srcs(#A) A | BeWes(#A) = A

similar to (3.1.5).Here WNZFCQS(#A) is a Godel formula (see Chapt. Il section 2,
Definition)

which really asserts provability in ﬁ:?s of the formula A with G6del number #A.

Remark 3.1.7. Notice that the Definition 3.1.12 with formula (3.1.24) holds as
definition

of predicate really asserting provability in ZFC5°.

Definition 3 .1.13.Using Definition 3.1.12 with formula (3.1.24), we replace now

formula
(3.1.7) by the following formula

VOO {¥0] € TX™ ~x = I¥OO[F)] € THY ~x ) A
N[ BEWess (BIX[P(X) A Y = X]) |}

ZFC;

(3.1.25)

Definition 3 .1.14.Using Definition 3.1.12 with formula (3.1.24), we replace now
formula
(3.1.8) by the following formula

vx(x e %25)[x e Ty o [ By (X £ X))]] (3.1.26)

Definition 3 .1.15.Using Definition 3.1.12 with formula (3.1.24),we replace now formula
(3.1.11) by the following formula

VY{[Ylys € T3™ ~, <=

_Hs o (3.1.27)
([Yls € T~ ) AFr2 (v,V) A [ BeWgess(H3IX[ Py, (X) A Y = X])]}.

Definition 3 .1.16.Using Definitions 3.1.13-3.1.17, we define now the countable set

~xHs
3, by formula
~xHs
VY{Y ey = W) €T ~ ) A (ggren(X) = v) ]}. (3.1.28)

Remark 3.1.8.Note that from the axiom schema of replacement (1.1.1) it follows

directly that ngS is a set in the sense of the set theory ZFCh®.
Definition 3 .1.17.Using Definition 3.1.16 we replace now formula (3.1.26) by the
following formula

vx(x e %2”5) [x e Ty " e [BaWpan (X ¢ X))]]. (3.1.29)

ZFCy

Remark 3.1.9. Notice that the expressions (3.1.30)



[ BeWyees(#(X ¢ X)) ]
and (3.1.30)

[ BeWres (#(X 2 X)) | A [ BeWyrs(#(X € X)) = X ¢ X]

S ~+H
obviously is a well formed formula of ZFC?S and therefore collection R, ° is a set in the
sense of ZFCy".
~~*H ~xH ~~*H
Remark 3.1.10.Note that R, = Ry “since R, *is a collection definable by 1-place
open
wif

N*H N*H —_
‘P(Z,iﬂz s) 2 vx(x e, s)[x € Z & Bl (#(X £ X)) |. (3.1.31)

Theorem 3 .1.2.Set theory ZFC';Is 2 ZFCHs + EIM§?3Eis is inconsistent.
Proof. From (3.1.29) we obtain

~xHs ~*Hs

W e, o [BaWp(#(F e %)) ] (3.1.32)

(a) Assume now that:

~xHs ~*Hs

R, €N, . (3.1.33)
- N*H N*H
Then from (3.1.32) we obtain r s Be\NZFCE.s(#<*J{2 i R, s)) and therefore
~xHs ~*Hs
'_ZFCE‘S 9{2 & 9{2
thus we obtain
~xHs ~xHs ~xHs ~xHs
l—ﬁ?s 9{2 € ERZ = SRZ & SRZ . (3 134)

~*Hs ~*Hs ~xHs ~xHs ~x*Hs

~*xH
From (3.1.33)-(3.1.34) we obtain %, e %, and Ry e Ry = R, & Ry  thus
~xHs ~xHs . . ~Hs ~Hs ~Hs ~Hs
- zrchs R, ¢ R, and finally we obtain - zrchs (iRz € R, ) A (9{2 ¢ Ro )

(b) Assume now that

~xHs ~xHs
[ Bewges (#(F. " e 7)) | (3.1.23)
~xH ~*H
Then from (3.1.35) we obtain Fz s Ry “ g R, °.From (3.1.35) and (3.1.32) we obtain
~*Hs ~*Hs ~*Hs ~*Hs ~*Hs ~*Hs i
FZFC;‘S 9{2 € SRZ ,thUS FZFC;‘S 9{2 & 9{2 and FZFCE‘S 9{2 € SRZ which

. . . .. ~*Hs ~*Hs '~ *Hs ~*Hs
immediately gives us a contradiction et (iRz e R, ) A (9{2 ¢ Ro )

3.2.Derivation of the inconsistent provably definable set in
ZFCyg.

Let 3« be the countable collection of all sets X such that ZFCg + 3IX¥(X),where ¥ (X)
is a 1-place open wff i.e.,

VY{Y € Tq & ZFCq - IPOO[P)] € T/ ~ ) AIXFOOAY = X]T}. (3.2.1)

Let X ¢ Y be a predicate such that X ¢ Y < ZFCq + X ¢ Y.Let R be the

FzFcy

countable collection of all sets such that

FzFCcy



VX[Xe e = XeI)A(Xe . X)] (3.2.2)

From (3.2.1) one obtains

Rg € Rg = Rg & Ry. (3 23)

FzFCcy
But (3.2.3) gives a contradiction
(Rg € Rae) A Ra € Ra). (3.2.4)

However contradiction (3.2.4) it is not a contradiction inside ZFCg for the reason that
predicate X ¢ Y is not a predicate of ZFCg and therefore countable collections J«

FzFcg
and R¢ are not a sets of ZFC«. Nevertheless by using Gddel encoding the above stated
contradiction can be shipped in special consistent extensions of ZFCy.

Designation 3 .2.1 (i) Let M§© be a standard model of ZFC and

(ii) let ZFCg« be the theory ZFCq = ZFC + IM%°,

(iii) let I« be the set of the all sets of M4 provably definable in ZFCg,and let

Ra = {X € Ja : Ua(X ¢ X)} where LlgA means: ‘'sentence A derivable in ZFCg’, or
some

appropriate modification thereof.

We replace now (3.2.1) by formula

VY{Y € g < Og[FP()AIX[YX) AY = X]]}, (3.2.5)
and we replace (3.2.2) by formula
VX[X e Ra « (X e I) AD«(X 2 X) . (3.2.6)

Assume that ZFCgy + Rg € J4. Then, we have that: Ry € Ry if and only if
Us(Ra € R«), Which immediately gives us Rg € Ry if and only if R ¢ Rg.But thisis a
contradiction, i.e., ZFCq + (R« € Ra) A (R € R«).We choose now LI4A in the
following form

OgA 2 Bewzrcy (#A) A [Bewzec, (#A) = Al. 3.2.7)

Here Bewzrc, (#A) is a canonycal Godel formula which says to us that there exists proof
in ZFCgq of the formula A with Godel number #A € MEA.

Remark 3.2.1. Notice that definition (3.2.7) holds as definition of predicate really
asserting provability in ZFCg.

Definition 3 .2.2.We rewrite now (3.2.5) in the following equivalent form

vY{Y € 5 = IPOOLIP(X)]g € T3 ~x ) A (Y = X)]}, (3.2.8)

where the countable collection I'{HS/ ~x is defined by the following formula
VIX)H[Y(X)]g € T ~x <= [((PX)]g € TR ~x ) ALOIXP(X)]} - (3.2.9)

Definition 3 .2.3.Let R« be the countable collection of the all sets such that
vx(x e %a)[x e fa = OaX 2 X) |. (3.2.10)

Remark 3.2.2.Note that i, e 35 since 9, is a collection definable by 1-place open
wif

\P(z,’iﬁg) 2 vx(x = %'sg)[x e Z = Og(X ¢ X)]. (3.2.11)

Definition 3 .2.4.By using formula (3.2.7) we rewrite now (3.2.8) in the following



equivalent form
VY{Y e Tg = FYOO[FX)]y € T3 ~x ) A (Y = X)]}, (3.2.12)
where the countable collection T'{HS/ ~x is defined by the following formula
VIX){[Y(X)]g € T ~x <
[([Y(X)]g € T ~x ) A Bewzre, (HAIXY(X))] A (3.2.13)
ABewzrc, (HAIXY(X)) = IIXY(X)]}

Definition 3 .2.5.Using formula (3.2.7), we replace now formula (3.2.10) by the
following
formula

vx(x c Z‘sg)[x e Mg = [Bewzrc, (#(X & X)) A
A[Bewzrc, (#(X ¢ X))].

(3.2.14)

Definition 3 .2.6.Using Definition1.3.5,we replace now formula (3.2.11) by the
following formula

YWilylg € TV ~ =
(Ylg € T8 ~ ) AFTa(y,V) A [Bewzee, (IX[¥y, ) AY = XDI A (3:2.15)
ABewzrc, (X[ (X) A Y = X]) = IX[¥y,(X) A Y = X]T}.
Definition 3 .2.7.Using Definitions 3.2.4-3.2.6, we define now the countable set '5; by
formula
wY{Y e 3¢ = WYl € T3 ~ ) A @zrca(X) = )]} (3.2.16)

Remark 3.2.3.Note that from the axiom schema of replacement it follows directly that

’5; is a set in the sense of the set theory ZFCyg.
Definition 3 .2.8.Using Definition 3.2.7 we replace now formula (3.2.14) by the
following formula

vx(x e %;)

s (3.2.17)
[x e Rq = [Bewzrc,(#(X & X))] A [Bewze, (#(X & X)) = X ¢ X]]
Remark 3.2.4. Notice that the expression (3.2.18)
[Bewzrcy (#(X € X)) ] A [Bewzrcs(#(X ¢ X)) = X ¢ X] (3.2.18)

obviously is a well formed formula of ZFC« and therefore collection fﬁ'; is a set in the
sense of ZFCy".

Remark 3.2.5.Note that fﬁ'; € ’5; since fﬁ'; is a collection definable by 1-place open
wif



v(z %) 2
vx(x c %;)[x cZ o (3.2.19)
[Bewzrcs (#(X ¢ X))] A [Bewzrc,(#(X g X)) = X ¢ X]].

Theorem 3.2.1.Set theory ZFCy £ ZFC + M4 C is inconsistent.
Proof. From (3.2.17) we obtain

~x

Ry € 'iﬁ; = [Be\Nchg (#(Eﬁ; 3 %ﬁ;)) } A

~* ~ox ~ox ~ox (3' 2' 20)
A[BMZFCQ(#(&RQ & iRg)) = ERS( & SRS(i|
(a) Assume now that:
Ry e Ra. (3.2.21)
Then from (3.2.20) we obtain - Bewzrcy (#@?; ¢ ?ﬁ;)) and
+ Bewzrc, (#(fj{'; & ﬁ;)) = fﬁ'; & ’iﬁ;, therefore + fﬁ'; & ’iﬁ; and so
Forc, Ny € Ry = Ry 2 Ra. (3.2.22)
From (3.2.21)-(3.2.22) we obtain Ry € Ry, Ry € Ry = Ry & Ry - Ry & Ry
and therefore +zrcg (5%’; € %;) A ('iﬁ; ¢ %;)
(b) Assume now that
|:Be\Nz|:CS( (#(ij{; & ﬁ;)) i| A
(3.2.23)

/\[BeWchg (#(fj{; ¢ gﬁ;)) = fj{; ¢ ’iﬁ;}

Then from (3.2.23) we obtain + :J?;HS ¢ :J?;HS. From (3.2.23) and (3.2.20) we obtain

~*Hs ~*Hs ~*Hs ~*Hs ~~xHs ~*Hs . . . .
Forcs R € Ry ;SO ke Ry € Ry Ry €Ny which immediately gives us a

L. ~xHs ~xHs ~xHs ~xHs
contradiction ek (9%2 € R, )/\ (SRZ ¢ R, )

3.3.Derivation of the inconsistent provably definable set in
ZFChns:.

Designation 3 .3.1.(i) Let PA be a first order theory which contain usual postulates of

Peano arithmetic [8] and recursive defining equations for every primitive recursive
function

as desired.

(i) Let MZE be a nonstandard model of ZFC and let ME” be a standard model of
PA.We

assume now that MEA = MZC and denote such nonstandard model of ZFC by
MRE[PA].
(iii) Let ZFCng be the theory ZFCng = ZFC + MEE[PA].



(iv) Let Ing be the set of the all sets of MZ ©[PA] provably definable in ZFCng,and let

Rne = {X € Ing - Lnae(X 2 X)} where LngA means ‘sentence A derivable in ZFCg',
or

some appropriate modification thereof. We replace now (3.1.4) by formula

VY{Y € Ing « Ung[FY(CE)IXPX) AY = X]]7, (3.3.1)
and we replace (3.1.5) by formula
VX[ X € Rng < (X € Ing) ADa(X 2 X) . (3.3.2)

Assume that ZFCng - Rne € Ins. Then, we have that: Ryg € Rng if and only if
Cnst(Rnse 2 Rnst), Which immediately gives us Rns € Rng if and only if Rng & Rng. But
this is a contradiction, i.e., ZFCns + (Rnst € Rns) A (Rns € R ). We choose now LngA
in the following form

OngA 2 Bewzecy, (HA) A [BeWzre,, (HA) = Al. (3.33)

Here Bewzec,, (#A) is a canonycal Godel formula which says to us that there exists
proof
in ZFCng of the formula A with Godel number #A € MEA.
Remark 3.3.1. Notice that definition (3.3.3) holds as definition of predicate really
asserting provability in ZFCpg.
Designation 3 .3.2.(i) Let gzec,\y (U) be a Godel number of given an expression u of
ZFCns.
(i) Let Frng(y, V) be the relation : y is the Godel number of a wff of ZFCng that
contains
free occurrences of the variable with Gédel number v [10].
(iii) Let @ ne(Y,V,v1) be a Godel number of the following wiff:
IXY(X) AY = X],where
gzrens (F(X)) = ¥, 0zrcye (X) = v, Ozreye (Y) = vi.

(iv) Let Przec,,(2) be a predicate asserting provability in ZFCng, which defined by
formula (2.6), see Chapt. I, section 2, Remark 2.2 and Designation 2.3,(see also
[10]-[11]).

Remark 3.3.2.Let 3ng be the countable collection of all sets X such that
ZFCng + XY (X),where ¥(X) is a 1-place open wff i.e.,

VYLY € Ing < ZFCng - IPX)IAXPX) A Y = X]}. (3.3.4)
We rewrite now (3.3.4) in the following form
vY{Y € J{q &
(Gzrcne(Y) = V1) A IYFT s (VW) A (Gzrcra(X) = v) A [Przrcae (@ ns(iViva)) A (3.3.5)
AN[Przecy (9 nst(Ys v, ve)) = FIX[P(X) AY = X]]]}
Designation 3 .3.3.Let ¢ n«(2) be a Godel number of the following wff: Z ¢ Z, where

Ozren(£) = Z
Remark 3.3.3.Let Rng above by formula (3.3.2), i.e.,

VZ[Z e Rne © (Ze Ina) NOna(Z 2 Z) ] (3.3.6)

We rewrite now (3.3.6) in the following form



VZ[Z € Rg < (£ € IRa) AN Gzrcns(Z) = ZA Przecy (o nst(2))] A

3.3.7
/\[PrZFCNst(SONst(Z)) =7Z¢ Z:|_ ( )

Theorem 3.3.1.ZFCns + Rig € Rig A R € Rig-

3.4.Generalized Tarski's undefinability lemma.

Remark 3.4.1.Remind that: (i) if Th is a theory, let T+, be the set of Godel numbers of

theorems of Th,[10],(ii) the property x € T+, is said to be is expressible in Th by wif

True(xz) if the following properties are satisfies [10]:

(@) ifn e Ty then Th + True(n),(b) if n ¢ Ttn then Th + —True(n).

Remark 3.4.2.Notice it follows from (a)A(b) that
—=[(Th &+ True(n)) A (Th #+ =True(n))].

Theorem 3 .4.1. (Tarski's undefinability Lemma) [10].Let Th be a consistent theory
with

equality in the language £ in which the diagonal function D is representable and let
grh(U)

be a Godel number of given an expression u of Th. Then the property x € T+, is not

expressible in Th.

Proof .By the diagonalization lemma applied to —True(x1) there is a sentence & such

that: (c)Th - & < —True(q),where qis the Godel number of F,i.e. grh(F) = q.

Case 1.Suppose that Th + &, then q € T+. By (@), Th + True(q). But, from Th + &

and (c), by biconditional elimination, one obtains Th - —True(g).Hence Th is
inconsistent,

contradicting our hypothesis.

Case 2. Suppose that Th + &F. Then q ¢ Ttn. By (b), Th + —True(q@). Hence, by (c)
and

biconditional elimination, Th ~ &.Thus, in either case a contradiction is reached.

Definition 3 .4.1.If Th is a theory, let Tty be the set of Godel numbers of theorems of

Th and let gtn(u) be a Gddel number of given an expression u of Th. The property
X € Ttn

is said to be is a strongly expressible in Th by wif True*(x;) if the following properties
are

satisfies:

(@) if n € Tty then Th + True*(n) A (True*(n) = g7i(n)),

(b)if n ¢ Tty then Th - —True*(n).

Theorem3 .4.2.(Generalized Tarski's undefinability Lemma).Let Th be a consistent
theory

with equality in the language £ in which the diagonal function D is representable and
let

grth(u) be a Godel number of given an expression u of Th.Then the property x € Tty is
not

strongly expressible in Th.

Proof .By the diagonalization lemma applied to —True*(x1) there is a sentence F*
such

that: (c)Th - F* < —True*(Q),where g is the Godel number of F*,i.e. grn(F*) = q.

Case 1.Suppose that Th + F*, then q € Tt. By (@), Th + True*(g). But, from



Thr F*
and (c), by biconditional elimination, one obtains Th + —True*(Q).Hence Th is
inconsistent, contradicting our hypothesis.
Case 2. Suppose that Th + F*. Then q ¢ Ttn. By (b), Th + —True*(g). Hence, by (c)
and biconditional elimination, Th - F*.Thus, in either case a contradiction is reached.
Remark 3.4.3.Notice that it is widely believed on ubnormal part of the mathematical
comunity that Tarski's undefinability theorems 3.4.1-3.4.2 blocking any possible
definitions of the sets 3, 34, Ing, mentioned in subsection 1.2 and therefore these
theorems blocking definitions of the sets R, R«, Rng, and correspondingly Tarski's
undefinability theorem blocking the biconditionals

ReRe=NRe R Re € Re & Ry 2 Ra, .41
Rnst € Rt & Rnge € R o

3.5.Generalized Tarski’'s undefinability theorem.

Remark 3.5.1.(I) Let Th be the theory Th¥ 2 ZFC5®.

In addition under assumption &ﬁ(Th’f), we establish a countable sequence of the

consistent extensions of the theory Th¥ such that:

()Thi <...2 Thf € Thi,; <...Th%, where

(ii) Thi4is a finite consistent extension of Thf,

(iii) Th% = Uien ThY,

(iv) ThZ proves the all sentences of Thj, which valid in M,i.e.,M = A = Th% A,

see Part II, section 2,Proposition 2.1.(i).

(I) Let Thi4 be Thig4 2 ZFCgq.

In addition under assumption %(Thfg), we establish a countable sequence of the

consistent extensions of the theory Thf such that:

() Thig €...€ Thiy € Thi1 4 &...ThE ¢, where

(ii) Thf,1 4 is a finite consistent extension of Thg,

(iii) Th% g = Uien Thig,

(iv) Thi & proves the all sentences of Thig, which valid in M§©, i.e.,

MZFC = A= Thig A

see Part I, section 2, Proposition 2.1.(ii).

(I1) Let Thing be Thi g 2 ZFChg.

In addition under assumption %(Thf,\,g), we establish a countable sequence of the

consistent extensions of the theory Th¥ such that:

O\Thing E...€ Thing & Thiig S...Thi g, Where

(i) Th,1ng is a finite consistent extension of Thi\g,

(iii) Th% ¢ = Uien Thig

(iv) Thi & proves the all sentences of Thi g, which valid in MZEE[PA], i.e.,

MEEIPA] E A = Thi g - A,

see Part I, section 2, Proposition 2.1.(iii).

Remark 3.5.2.(I)Let Ji,i = 1,2,... be the set of the all sets of M provably definable in
Tht,

VY{Y € 3 o L3V ()AIXYX) AY = X]}. (3.5.1)
and let R = {x € J; : LJi(x ¢ X)> where [J;A means sentence A derivable in Th{. Then



we have that R; € R; if and only if LJi(Ri ¢ Ri), which immediately gives us R; € R; if
and only if R; ¢ Ri.We choose now LJiA,i = 1,2,... in the following form
LA £ Bew;(#A) A [Bewi(#A) = Al. (3.5.2)
Here Bew;(#A),i = 1,2,... is a canonycal Godel formulae which says to us that there
exist

proof in Th,i = 1,2,...0f the formula A with Gddel number #A.
(I) Let Sig,i = 1,2,... be the set of the all sets of MZ™C provably definable in Thiy,
VY{Y € Jig © UigdP()AX[PX)AY = X]}. (3.5.3)
and let Ri« = {X € Ti« : Uig(X ¢ X)} where L sA means sentence A derivable in
This.
Then we have that R« € Rig if and only if L «(Ris ¢ Ri«), which immediately gives
us
Ris € Rig ifand only if Ris ¢ Risx.We choose now L] ¢A,i = 1,2,... in the following
form
Ui «A £ Bew; «(#A) A [Bew; «(#A) = Al. (3.5.4)
Here Bew; «(#A),1 = 1,2,... is a canonycal Godel formulae which says to us that there
exist proof in Thiq,i = 1,2,...0f the formula A with Godel number #A.
(1) Let Jing,i = 1,2,... be the set of the all sets of M{EC[PA] provably definable in
Thins,

VY{Y € Sing < UingIVY(E)IXPX) AY = X]}. (3.5.5)
and let Ring = {X € Ting : Line(X € X)} where Ll n«A means sentence A derivable in
Thiyg. Then we have that Ring € Ring if and only if i ne(Ring € Ring), Which
immediately gives us Rins € Ring if and only if Ring € Rine.

We choose now LingA I = 1,2,... in the following form
UingA = Bewinse(#A) A [Bewi nse(H#A) = Al (3.5.6)
Here Bew;ns(#A),1 = 1,2,... is a canonycal Gddel formulae which says to us that there
exist proof in Ttha,i = 1,2,...0f the formula A with Gddel number #A.
Remark 3.5.3 Notice that definitions (3.5.2),(3.5.4) and (3.5.6) hold as definitions of
predicates really asserting provability in Th?, Thfg and Thi\g.,i = 1,2,...
correspondingly.
Remark 3.5.4.0f course the all theories Thf, Thi'q, Thi\g,i = 1,2,... are
inconsistent,see
Part Il,Proposition 2.10.(i)-(iii).
Remark 3.5.5.(l)Let 3., be the set of the all sets of M provably definable in Th#,
VY{Y € T o U AP()IXP(X)AY = X]}. (3.5.7)
and let R, = {x € I, : Uo(X ¢ X)} where L1,A means ‘sentence A derivable in
Th¥.Then, we have that R., € R.. if and only if (..(R.. ¢ R..), which immediately gives
us R, € Ry if and only if R, ¢ R..We choose now L1.Ai = 1,2,... in the following
form

[.A 2 Ji[Bew;(#A) A [Bew;(#A) = A]]. (3.5.8)
(I) Let 3.« be the set of the all sets of M4 provably definable in Th? 4,
YYLY € Fog < DugdP()IXFX) AY = X1 (3.5.9)



and let R« be the set Rog = {X € Tog : Log(X € X)}, where L, <A means ‘sentence
A derivable in Th% 4. Then, we have that R.g € Ru« if and only if Jog(Reos & Rosg),
which immediately gives us R g € Ruog if and only if R & ¢ Reos. We choose now
UesAi = 1,2,... in the following form

MgA 2 Ji[Bew; 4 (#A) A [Bew g(#A) = A]]. (3.5.10)
(1) Let J.ns be the set of the all sets of MEEC[PA] provably definable in Th% g,
VYYLY € Fung © DoonsgIP()IX[PX) AY = X1 (3.5.11)

and let R nat be the set Rong = {X € Tong - Luonst(X € X)} where L, neA means
‘sentence A derivable in Th% . Then, we have that R.ng € Rone if and only if
Uonst(Ronst & Ronst), Which immediately gives us Rons € Reone if @and only if
Ronst € Ronst- We choose now Lo ngA, i = 1,2,... in the following form

CoonsA 2 Ji[Bew; g (HA) A [Bewi g (HA) = A]]. (3.5.12)

Remark 3.5.6.Notice that definitions (3.5.8),(3.5.10) and (3.5.12) holds as definitions
of a

predicate really asserting provability in Th%, Th% ¢ and Th \y correspondingly.

Remark 3.5.7.0f course all the theories Th#, Th% 4 and Th# g are inconsistent,see

Part 11,Proposition 2.14.(i)-(iii).

Remark 3.5.8.Notice that under naive consideration the set 3., and k., can be defined

directly using a truth predicate,which of couse is not available in the language of ZFCHs

(but iff ZFCYs is consistent) by well-known Tarski's undefinability theorem [10].

Theorem 3 .5.1. Tarski’s undefinability theorem : (I) Let Th. be first order theory
with

formal language £, which includes negation and has a Gdédel numbering g(o) such that
for

every £-formula A(x) there is a formula B such that B — A(g(B)) holds. Assume that
The

has a standard model M}"* and Con(Theg) where

Thyeg 2 Thye +3IME™. (3.5.13)
Let T*be the set of Gédel numbers of £-sentences true in M;hf. Then there is no

L-formula True(n) (truth predicate) which defines T*.That is, there is no £-formula
True(n) such that for every £-formula A,
True(g(A)) < A (3.5.14)

holds.

(1) Let Th'® be second order theory with Henkin semantics and formal language £,
which

includes negation and has a Godel numbering

g(e) such that for every £-formula A(x) there is a formula B such that B « A(g(B))
holds.

Assume that Th'/® has a standard model M;hgs and Con(Th'),where

ThY, 2 Thi + amy'™ (3.5.15)

Let T*be the set of Godel numbers of the all £-sentences true in M. Then there is no
L-formula True(n) (truth predicate) which defines T*.That is, there is no £L-formula



True(n) such that for every £-formula A,
True(g(A)) <= A (3.5.16)

holds.

Remark 3.5.9.Notice that the proof of Tarski's undefinability theorem in this form is
again by simple reductio ad absurdum. Suppose that an £- formula True(n) defines T*.
In particular, if Ais a sentence of The then True(g(A)) holds in N if and only if Ais true in
M;hi. Hence for all A, the Tarski T-sentence True(g(A)) < Aistruein M;hi. But the
diagonal lemma yields a counterexample to this equivalence, by giving a "Liar" sentence
Ssuch that S < —True(g(S)) holds in M;hf. Thus no £L-formula True(n) can define T*.

Remark 3.5.10.Notice that the formal machinery of this proof is wholly elementary
except for the diagonalization that the diagonal lemma requires. The proof of the
diagonal lemma is likewise surprisingly simple; for example, it does not invoke recursive
functions in any way. The proof does assume that every £-formula has a Gédel number,
but the specifics of a coding method are not required.

Remark 3.5.11.The undefinability theorem does not prevent truth in one consistent
theory from being defined in a stronger theory. For example, the set of (codes for)
formulas of first-order Peano arithmetic that are true in N is definable by a formula in
second order arithmetic. Similarly, the set of true formulas of the standard model of
second order arithmetic (or n-th order arithmetic for any n) can be defined by a formula
in first-order ZFC.

Remark1.3.5.12. Notice that it is widely believed on ubnormal part of mathematical

comunity that Tarski's undefinability theorem blocking any possible definition of the
sets

Tieny ooy Jisty Jist, Soosts SoNst, &N the sets R, R «. Correspondingly Tarski's
undefinability

theorem blocking the biconditionals

Rie€ R < Ri ¢ Ri,l €N,

(3.5.17)
Re € R <= R & R, etC.

Thus in contrast with naive definition of the sets 3., and R, there is no any problem
which arises from Tarski’s undefinability theorem.
Remark 3.5.13.(1) We define again the set 3., but now by using generalized truth
predicate True?(g(A),A) such that
True,(9(A),A) < Ji[Bewi(#A) A [Bewi(#A) = A]] <
Truec(g(A)) A[Trues(g(A) = Al = A, (3.5.18)
True.(g(A)) < JiBew;(#A).
holds.
(Il) We define the set 3.« using generalized truth predicate True?, 4(g(A),A) such that
True,«(g(A),A) < Ji[Bew;«(#A) A [Bew;«(#A) = A]] <
True.s(g(A) A[True.«(g(A) = A] < A, (3.5.19)
True,«(g(A)) < JiBew;«(#A)

holds.Thus in contrast with naive definition of the sets 3., and R., there is no any



problem

which arises from Tarski’s undefinability theorem.

(1) We define the set J.,ng USing generalized truth predicate True? g (9(A), A) such
that

True,ns(g(A),A) < Ji[Bewins(#A) A [Bewing(HA) = A]] <
Trueons(g(A)) A[Truesns(g(A)) = Al < A, (3.5.20)
Trueons(g(A)) < JiBewing(#A)

holds.Thus in contrast with naive definition of the sets 3. ns and R ng there is no any

problem which arises from Tarski's undefinability theorem.

Remark 3.5.14.In order to prove that set theory ZFCHS + IMZCE* is inconsistent
without

any refference to the set 3.,,notice that by the properties of the extension Th? follows
that

definition given by formula (1.5.18) is correct, i.e.,for every ZFCYs-formula ® such that

MZ €3 = @ the following equivalence ® < True,(g(®),®) holds.

Theorem 3 .5.2.(Generalized Tarski 's undefinability theorem ) (see Part Il, section
2,

Proposition 2.30).Let Th be a first order theory or the second order theory with
Henkin

semantics and with formal language £, which includes negation and has a Gdodel
encoding

g(+) such that for every £-formula A(x) there is a formula B such that the equivalence

B < A(g(B)) A[A(g(B) = B]holds. Assume that Th, has an standard Model M§".

Then there is no £-formula True(n),n € N, such that for every £-formula A such that

M = A, the following equivalence

A = True(g(A) A[True(gd) = Al (3.5.21)

holds.

Theorem 3 .5.3. (i) Set theory Th¥= ZFCYs + IMZFC2* is inconsistent;

(i) Set theory Thf 4= ZFC + IMFC is inconsistent;(iii) Set theory Th¥ yg= ZFC + IMZEE
is

inconsistent; (see Part.ll, section 2, Proposition 2.31.(i)-(iii)).

Proof .(i) Notice that by the properties of the extension Th’ of the theory

ZFCYs + IMZFCE® — Thf follows that

MZCE = ® = Th + ©. (3.5.22)
Therefore formula (3.5.18) gives generalized "truth predicate" for the set theory
Th%.By
Theorem 3.5.2 one obtains a contradiction.
(i) Notice that by the properties of the extension Th \ of the theoryZFC + IMZC =
Thi 4 follows that
MFC E ® = Thi g+ . (3.5.23)
Therefore formula (3.5.19) gives generalized "truth predicate" for the set theory
Thig.By
Theorem 3.5.2 one obtains a contradiction.



(iii) Notice that by the properties of the extension Th \ of the theory
ZFC + 3IMEEL = Thi4 follows that

MZC E @ = Thi g - @, (3.5.24)

Therefore (3.5.20) gives generalized "truth predicate" for the set theory Thf\g. By
Theorem 3.5.2 one obtains a contradiction.

3.6. Avoiding the contradictions from set theory ZFC5",
ZFC« and set theory ZFCng using Quinean approach.

In order to avoid difficultnes mentioned above we use well known Quinean approach.

3.6.1.Quinean set theory NF.

Remind that the primitive predicates of Russellian unramified typed set theory (TST),
a streamlined version of the theory of types, are equality = and membership €. TST has
a linear hierarchy of types: type 0 consists of individuals otherwise undescribed. For
each (meta-) natural number n, type n+ 1 objects are sets of type n objects; sets of type
n have members of type n— 1. Objects connected by identity must have the same type.
The following two atomic formulas succinctly describe the typing rules: x" = y" and
X" e yn+1_

The axioms of TST are:

Extensionality : sets of the same (positive) type with the same members are equal;

Axiom schema of comprehension

If ®(x") is a formula, then the set {x" | ®(x")}™! exists i.e., given any formula ®(x"),
the

formula

IAMLYX[XT € AL & O(X")] (3.6.1)

is an axiom where A™! represents the set {x" | ®(x")}™! and is not free in ®(x").

Quinean set theory.(New Foundations) seeks to eliminate the need for such

superscripts.

New Foundations has a universal set, so it is a non-well founded set theory.That is to
say, it is a logical theory that allows infinite descending chains of membership such as

Xn € Xn-1 €...X3 € X2 € X;1. It avoids Russell's paradox by only allowing stratifiable

formulae in the axiom of comprehension. For instance x € y is a stratifiable formula, but
X € X is not (for details of how this works see below).

Definition 3 .6.1.In New Foundations (NF) and related set theories, a formula ® in the
language of first-order logic with equality and membership is said to be stratified if and
only if there is a function o which sends each variable appearing in ® [considered as an
item of syntax] to a natural number (this works equally well if all integers are used) in
such a way that any atomic formula x € y appearing in @ satisfies o(X) + 1 = o(y) and
any atomic formula x = y appearing in @ satisfies o(x) = a(y).

Quinean set theory NF.

Axioms and stratification are
The well-formed formulas of New Foundations (NF) are the same as the well-formed
formulas of TST, but with the type annotations erased. The axioms of NF are:



Extensionality : Two objects with the same elements are the same object;

A comprehension schema: All instances of TST Comprehension but with type indices
dropped (and without introducing new identifications between variables).

By convention, NF's Comprehension schema is stated using the concept of stratified
formula and making no direct reference to types.Comprehension then becomes.

Stratified Axiom schema of comprehension

{X | ®%} exists for each stratified formula ®s.

Even the indirect reference to types implicit in the notion of stratification can be
eliminated. Theodore Hailperin showed in 1944 that Comprehension is equivalent to a
finite conjunction of its instances,so that NF can be finitely axiomatized without any
reference to the notion of type.Comprehension may seem to run afoul of problems
similar to those in naive set theory, but this is not the case. For example, the existence
of the impossible Russell class {x | x ¢ X} is not an axiom of NF, because x ¢ x cannot
be stratified.

3.6.2.Set theory ZFC5°, ZFCq4 and set theory ZFCng With

stratified axiom schema of replacement.

The stratified axiom schema of replacement asserts that the image of a set under any
function definable by stratified formula of the theory ZFC« will also fall inside a set.

Stratified Axiom schema of replacement

Let ®S(x,y,w1,Wo,...,Wn) be any stratified formula in the language of ZFC4 whose free
variables are among x,y,A,w1,W2,...,Wy, SO that in particular B is not free in ®s. Then

VAVW1VW,. .. VWr[VX(X € A = FlyDS(X,y,W1,Wo,...,Wy)) =

(3.6.2)
= ABVX(X € A = 3y(y € B A ®5(X,Y,W1,W2,...,Wn)))],

i.e.,if the relation ®5(x,y,...) represents a definable function f, A represents its domain,
and f(x) is a set for every x € A, then the range of f is a subset of some set B.
Stratified Axiom schema of separation
Let dS(x,w1, W2, ..., W) be any stratified formula in the language of ZFC« whose free
variables are among x,A,wi, Wz, ...,Wp, SO that in particular B is not free in ®°. Then

VYW1VWsa...VW,VAIBVX[X € B <= (X € AA O5(X,W1,W2,...,Wn))], (3.6.3)

Remark 3.6.1. Notice that the stratified axiom schema of separation follows from the
stratified axiom schema of replacement together with the axiom of empty set.

Remark 3.6.2. Notice that the stratified axiom schema of replacement (separation)
obviously violeted any contradictions (2.1.20),(2.2.18) and (2.3.18) mentioned above.
The existence of the countable Russell sets R3S, R4 and Ry impossible,because x ¢ x
cannot be stratified.

Designation 3 .6.1.

Part Il.Generalized Lobs Theorem.
1.
2.Generalized LOobs Theorem

Remark 2.1.In this section we use second-order arithmetic Z5s with Henkin semantics.



Notice that any standard model M?FS of second-order arithmetic Z5s consists of a set N of
usual natural numbers (which forms the range of individual variables) together with a
constant 0 (an element of N), a function Sfrom N to N, two binary operations + and - on
N, a binary relation < on N, and a collection D < 2" of subsets of N, which is the range of
the set variables. Omitting D produces a model of the first order Peano arithmetic.

When D = 2V is the full powerset of N, the model M2 is called a full model. The use of
full second-order semantics is equivalent to limiting the models of second-order
arithmetic to the full models. In fact, the axioms of second-order arithmetic ZfzSS have only
one full model. This follows from the fact that the axioms of Peano arithmetic with the
second-order induction axiom have only one model under second-order semantics, see
section 3.

Let Th be some fixed, but unspecified, consistent formal theory. For later
convenience, we assume that the encoding is done in some fixed formal second order
theory S and that Th contains S.We assume throughout this paper that formal second
order theory S has an w-model M3. The sense in which S is contained in Th is better
exemplified than explained: if S is a formal system of a second order arithmetic Z5's and
Th is, say, ZFCEs, then Th contains S in the sense that there is a well-known
embedding, or interpretation, of S in Th. Since encoding is to take place in M3, it will
have to have a large supply of constants and closed terms to be used as codes. (e.g. in
formal arithmetic, one has 0,1,... .) S will also have certain function symbols to be
described shortly.To each formula, @, of the language of Th is assigned a closed term,
[@]°, called the code of ®. We note that if ®(x) is a formula with free variable x, then
[@(x)]¢is a closed term encoding the formula ®(x) with x viewed as a syntactic object
and not as a parameter. Corresponding to the logical connectives and quantifiers are the
function symbols, neg(-), imp(-), etc., such that for all formulae

O,¥ : S+ neg([®]°) = [—D@]°, S+ imp([®]°,[¥]°) = [® — ¥]° etc. Of particular
importance is the substitution operator, represented by the function symbol sub(-,-). For
formulae ®(x), terms t with codes [t]° :

S F sub([@(x)]% [t]°) = [@(t)]°. (2.1)
It is well known [8] that one can also encode derivations and have a binary relation
Provrh(x,y) (read "x proves y " or "x is a proof of y") such that for closed t;,t> : S

+ Provrh(ty,t2) iff t1 is the code of a derivation in Th of the formula with code t; . It
follows that

Th + @ iff S - Provn(t,[@]°) (2.2)
for some closed term t. Thus one can define

Pron(y) < 3IxProvra(X,y), (2.3)

and therefore one obtain a predicate asserting provability.
Remark 2.2. (I)We note that it is not always the case that [8]:

Th - @ iff S - Proa([@]°), (2.4)

unless Sis fairly sound,e.g. this is a case when Sand Th replaced by S, = S| MM and
Th, = Th} MI" correspondingly (see Designation 2.1 below).
(INNotice that it is always the case that:



Thy, = @, iff S, - Proy, ([@s]), (2.5)
i.e. that is the case when predicate Prr,,(y),y € MM :
Prrh, (y) < 3x(x € MIMProvrh, (X,y) (2.6)

really asserts provability.
It is well known [8] that the above encoding can be carried out in such a way that the
following important conditions D1,D2 and D3 are meet for all sentences [8]:

D1.Th + ® implies S + Prrp([®]%),
D2.S+ Prrn([®]°) - Pron([Pr([®]1°)1°), 2.7)
D3.S + Pron([®]°) A Pron([®@ - W1°) > Proa([¥]°).

Conditions D1,D2 and D3 are called the Derivability Conditions.
Remark 2 .3.From (2.5)-(2.6) follows that

D4.Th, - @ iff S, + Pron, (($u]°),
D5.S, + Pron, ((®6]®) < Pren, ((Prn, ((®0]%)1°), (2.8)
D6.S, F Prrn, ((®0]®) A Prom, ((®o > ¥Yul°) = Pron, ((Wol©).

Conditions D4,D5 and D6 are called the Strong Derivability Conditions.

Definition 2 .1. Let ® be well formed formula (wff) of Th. Then wif @ is called
Th-sentence iff it has no free variables.

Designation 2 .1.(i) Assume that a theory Th has an o-model M]" and ® is a
Th-sentence, then:

Oy £ @ 1 M (we will write @, instead ®ym) is a Th-sentence @ with all quantifiers
relativized to o-model M [11] and

Th, 2 Th MM is a theory Th relativized to model M/",i.e., any Th,-sentence has the
form @, for some Th-sentence ©.

(i) Assume that a theory Th has a standard model M" and @ is a

Th-sentence, then:

(iii) Assume that a theory Th has a non-standard model M} and @ is a
Th-sentence, then:

Oy = @ | M5 (we will write dng instead ®ym) is a Th-sentence with all quantifiers

relativized to non-standard model M\, and

Thne 2 Th MG is a theory Th relativized to model M{%,i.e., any Thyg-sentence has a

form dng for some Th-sentence O.

(iv) Assume that a theory Th has a model M = M™ and ® is a Th-sentence, then:

®,,m is a Th-sentence with all quantifiers relativized to model M™, and

Thy is a theory Th relativized to model M™,i.e. any Thy-sentence has a form @, for

some Th-sentence ©.

Designation 2 .2. (i) Assume that a theory Th with a lenguage £ has an o-model MI"
and

there exists Th-sentence S¢ such that: (a) S, expressible by lenguage £ and (b)
Sqasserts

that Th has a model M[";we denote such Th-sentence S, by Con(Th; MIM).

(i) Assume that a theory Th with a lenguage £ has a non-standard model M} and
there



exists Th-sentence S¢ such that: (a) S, expressible by lenguage £ and (b) S; asserts
that Th has a non-standard model M{%; we denote such Th-sentence S; by
Con(Th; M{%).

(iii) Assume that a theory Th with a lenguage £ has an model M™ and there exists

Th-sentence S, such that: (a) Sy expressible by lenguage £ and (b) S, asserts that
Th

has a model M™;we denote such Th-sentence S, by Con(Th;M™")

Remark 2.4. We emphasize that: (i) it is well known that there exist a ZFC-sentence

Con(ZFC; M#F¢) [10],[11],(ii) obviously there exists a ZFCYs-sentence
Con(ZFCHs; MZFCE™)

and there exists a Zb-sentence Con(Z55; M%").

Designation 2 .3. Let EBE(Th) be the formula:
4

Con(Th) 2
Vii(ts € MIMVEL(t) € MIMVta(t: € MIMVEL(t, € MIM)
—[Provry(ty, [®]°) A Provra(tz, neg([®]°))],
) t; = [®]%t; = neg([®]°) @9
or
Con(Th) 2
L VOVt (t; € MIMVta(ta € MIM)—=[Provrh(ts, [@]°) A Provrh(tz, neg([®]1°))]

and where ty,t),1,,t, is a closed term.

Lemma 2.1. (I) Assume that: (i) Con(Th;M™), (i) M™ = Con(Th) and

(ii) Th + Prrn([®]°),where @ is a closed formula.Then Th i Pry([—®]°),

(1) Assume that: (i) Con(Th; MIn) (i) MI" = Con(Th) and (iii) Th, - Prrn, ((®0]°),
where

®,, is a closed formula.Then Thy, # Prrn, ([-®,]°).

Proof . () Let EBETh(GD) be the formula :

/ P —
Conrh (@) £

th(tl S M;r)h)vtz(tz S MLh)ﬁ[ProvTh(tl,[db]c) A ProvTh(tz,neg([d)]C))],
Vti(ts € MJMVta(tz € MEM)—[Provrn(ty, [@]°) A Provrn(tz, neg([®]°)) ]«
| o{-Flt e MIM—3ta(tz € MIM[Provra(ty, [®]°) A Provrn(tz, neg((®]%))]}.

(2.10)

where t1,t, is a closed term. From (i)-(ii) follows that theory Th +653(Th) is consistent.

We note that Th +Con(Th) + Con,(®) for any closed ®. Suppose that
Th + Proh([—®]°), then (iii) gives

Th + Proa([®1%) A Pron([—@]°). (2.11)
From (2.3) and (2.11) we obtain
3t 3ty [Provrn(ts, [®]c) A Provri(tz, neg([d)]c))] (2.12)

But the formula (2.10) contradicts the formula (2.12). Therefore Th # Prrn([—®]°).
(1) This case is trivial becourse formula Pr 1, ([—®,]¢) by the Strong Derivability



Condition D4,see formulae (2.8), really asserts provability of the Th,-sentence —®,,.But
this is a contradiction.
Lemma 2.2. (I) Assume that: (i) Con(Th; MTM), (i) M™ = Con(Th) and
(ii) Th + Prrn([—®]°),where @ is a closed formula.Then Th v Pry([®]°),
(Il) Assume that: (i) Con(Th; M) (i) MI" = Con(Th) and (i) The - Prrn, ([—®w]°),
where ®,, is a closed formula.Then Th,, v Prrn, ([®s]°).
Proof . Similarly as Lemma 2.1 above.
Example 2 .1. (i) Let Th = PA be Peano arithmetic and ® < 0 = 1. Then obviously
by Lobs theorem PA + Prpa(0 + 1), and therefore by Lemma 2.1 PA # Prpa(0 = 1).

(i) Let PA*= PA +—Con(PA) and ® < 0 = 1. Then obviously by Lébs theorem
PA* - Prpa+(0 = 1),
and therefore
PA* i+ Prpa+(0 = 1).
However obviously
PA* - [Prpa(0 = 1)] A [Prpa(0 = 1)].

Remark 2 .5.Notice that there is no standard model of PA*.

Assumption 2 .1. Let Th be a first order a second order theory with the Henkin
semantics. We assume now that:

(i) the language of Th consists of:

numerals 0,1,...

countable set of the numerical variables: {vo,v1,...}

countable set F of the set variables: & = {x,y,z X,Y,Z,3,R,...}

countable set of the n-ary function symbols: 3, f7,...

countable set of the n-ary relation symbols: Rj, R, ...

connectives: —,—

quantifier:V.

(i) Th contains ZFCYs or ZFC

(iii) Th has an o-model MM or

(iv) Th has a nonstandard model M{Z[PA].

Definition 2 .1. A Th-wff @ (well-formed formula ®) is closed - i.e. ® is a sentence - if it

has no free variables; a wff is open if it has free variables.We’'ll use the slang ‘k-place

open wiff’ to mean a wif with k distinct free variables.

Definition 2 .2.We will say that,Th% is a nice theory or a nice extension of the Th iff
the

following

(i) Th% contains Th;

(i) Let @ be any closed formula of Th, then Th  Pry([®]°) implies Th ~ ®@;

(iii) Let @., be any closed formula of Th%, then MI" = @, implies Th% + ®@.,i.e.

Con(Th + @.,; MIM) implies Th% - @.,.

Remark 2 .6.Notice that formulae Con(Th + ®.,; MJ") and Con(Th% + ®.,;MJ") are

expressible in Th¥.

Definition 2 .3.Let L be a classical propositional logic L. Recall that a set A of L-wff's is

said to be L-consistent, or consistent for short, if A + L and there are other equivalent

formulations of consistency:(1) A is consistent, (2) Ded(A) .= {A | A + A} is not the



set

of all wff’s,(3) there is a formula such that A «+ A.(4) there are no formula A such that

A+ Aand A+ —-A.

We will say that,Th% is a maximally nice theory or a maximally nice extension of the
Thiff

Th% is consistent and for any consistent nice extension Th’ of the Th :

Ded(Th%) < Ded(Th#) implies Ded(Th%) = Ded(Th#).

Remark 2.7. We note that a theory Th’ depend on model MM or M, i.e.

Th% = ThZ[MI"] or Th% = Th%Z[M]] correspondingly. We will consider now the case

Th 2 Th%[MJ"] without loss of generality.

Remark 2 .8.a. Notice that in order to prove the statements: (i) ~Con(ZFCYs; M),

(i) —Con(ZFC; MJM) the following Proposition 2.1 is not necessary, see Proposition
2.18.

Proposition 2 .1.(Generalized L6bs Theorem ).

(1) Assume that:

(1) Eaﬁ(Th),where predicate EBE(Th) defined by formula 2.9

(i) Th has an w-model M[", and

(iii) the statement IM]" is expressible by lenguage of Th as a single sentence of Th.

Then theory Th can be extended to a maximally consistent nice theory

Thi ¢ = Th% ¢[MI"].Below we write for short Th ¢ 2 Th% = Th%[MJ"].

Remark 2.8.b. We emphasize that (iii) valid for ZFC despite the fact that the axioms

of ZFC are infinite, see [10] Chapter Il,section 7,p.78.

(I1) Assume that:

0] %(Th) ,Where predicate %(Th) defined by formula 2.9,

(i) Th has an w-model MM and

(iii) the statement IM[" is expressible by lenguage of Th as a single sentence of Th.

Then theory Th,, 2 Th [M/" can be extended to a maximally consistent nice theory
Th.

(111) Assume that:

® EBE(Th) ,Where predicate EBE(Th) defined by formula 2.9,

(i) Th has a nonstandard model M{3[PA] and

(iii) the statement IM[L[PA] is expressible by lenguage of Th as a single sentence of
Th.

Then theory Th can be extended to a maximally consistent nice theory

Thins = Thi na[MEL].

Remark 2 .8.c. We emphasize that (iii) valid for ZFC despite the fact that the axioms

of ZFC are infinite, see [10] Ch.ll,section 7,p.78.

Proof .(I) Let ®;... ®;... be an enumeration of all closed wff's of the theory Th (this
can

be achieved if the set of propositional variables can be enumerated). Define a chain

@ = {Thig]i e N}, Thig = Th of consistent theories inductively as follows: assume
that

theory Thfy is defined. Notice that below we write for short Thiy 2 Th?.

(i) Suppose that the statement (2.13) is satisfied



[Thi # Progs([@i1°) ] A[Thi # @] and M]" = @;. (2.13)

Then we define a theory Th?,; as follows Thf,; £ Thf U {®;}.We will rewrite the
condition
(2.13) using predicate Prﬁhﬁl(-) symbolically as follows:

/
Thiy - Priye (®i1%),

Pripe ([0i1%) = Proy([0i]°) A M" = @],
MM = @; < Con(Thf +®;; M),
ie.
fo (D)%) = P 11°) A Con(Thi+;; M]"
PrThﬁl([CD.] ) < Props([@i]%) A Con(Thi+®i; M,,"),
Priye ([®i]°) < Prog: ([0i19),
Pr s, ([i]°) = @,
Pl’ﬁhﬁl([q)i]c) = ;.

A

(2.14)

A
(i) Suppose that the statement (2.15) is satisfied

[Thi # Progs((=@i19) ] A [Thf + —@i]and MI" = —®;. (2.15)

Then we define a theory Th?,; as follows Thf,; £ Thf U {®;}.We will rewrite the
condition
(2.15) using predicate Prﬁhﬁl(-), symbolically as follows:

/
Thiy + Prﬁhiﬁl([—@i]c),

Pripe ([=®i]%) & Progs([=@i]9) A [MJ" = =i,
MIN = —®; <= Con(Thf+—®;;MIM),
ie.

# .1]¢C .]¢ . +NTh
PrThﬁl([_‘ch] ) = PrTh?([_'(DCl )/\COﬂ(Th|+—|cD|,Mw )1
Priye ([=@i1%) < Progs, ((-®i19),

Pr e, ([-@i]°) = —®i,

Prﬁh;ﬁl([@i]c) = —O;.

(2.16)

A
(iif) Suppose that the statement (2.17) is satisfied
Thi - Props([0i1°) and [Thi # @] A [MI" = @] (2.17)

Then we define a theory Th?,; as follows Th{,; 2 Th{ U {®;}.Using Lemma 2.1and

predicate Prﬁhﬁl(-),we will rewrite the condition (2.17) symbolically as follows:



This + Prﬁhﬁl([q)ijc),
Pripe (9119 = Prog ([0 A MI = @i,
MIPM = @; < Con(Thi+®;;MTM),
ie.
Priye ((911%) & Pro([®i]°) A Con(Thi+®i; ML),

Prips ([@i]°) & Prog ((@i]%),

Prop: ((@i]°) = @,

Prée ([®i]°) = ®;.

A

(2.18)

(S
Remark 2 .9.Notice that predicate Prﬁhﬁl([CDi]C) is expressible in Th? because Th{ is a
finite extension of the recursive theory Th and Con(Thi+®;;M™) e Th?.
(iv) Suppose that a statement (2.19) is satisfied

Thi + PrThi#([—ml)i]c) and [Th ¥ =@ ] A [MIM & —D;]. (2.19)

Then we define theory Thi,; as follows: Thi,; 2 Thf U {—~®;}. Using Lemma 2.2 and
predicate Prﬁh#l(-),we will rewrite the condition (2.15) symbolically as follows

~
Th - Pri «((=®i]%)

Prips([—®@i1%) < Prop:([—@i]%) A M E —@i],
MIN £ —®; <= Con(Thi+-®d;;MM),
i.e.
Pri «([=®i]1°) & Proys([=®i]%) A Con(Thi+—=®i; M),
Prins (@19 & Proy (i1,
Prone, ([@i]F) = @,
Pr g, (@1]) = .

A

(2.20)

.
Remark 2.10. Notice that predicate Prf, .([-®i]%) is expressible in Th’ because Th{ is

a finite extension of the recursive theory Th and Con(Th# +—®;;MJ") € Th?.
(V) Suppose that the statement (2.21) is satisfied

Thi - Prop«([0i]°) and Th - Prop«([@i]°) = @i (2.21)

We will rewrite now the conditions (2.21) symbolically as follows

Thi - Pri«([®i]°)

(2.22)
Prips([@i]°) < Progs([@i]°) A [Pros([@i1°) = @i ]

Then we define a theory Th?,; as follows: Thf,; £ Th¥.
(iv) Suppose that the statement (2.23) is satisfied

Thi + PrThi#([—ml)i]c) and Thi ~ PrThi#([—mI)i]c) = —0;. (2.23)



We will rewrite now the condition (2.23) symbolically as follows

Th|# [ Pr?h?([—‘q)dc)

(2.24)
Pr i (5®11%) = Proyp((-@i1%) A [Prope((-9i1°) = —@i]

Then we define a theory Th?,; as follows: Th#,; £ Th¥.We define now a theory Th% as
follows:

Th% 2 (JThf, (2.25)

ieN
First, notice that each Th is consistent. This is done by induction on i and by Lemmas
2.1-2.2. By assumption, the case is true when i = 1.Now, suppose Th? is consistent.
Then its deductive closure Ded(Th{) is also consistent. If the statement (2.14) is

satisfied,i.e. Th¥; r PrTh# ([®@i]°) and Th,; - ®@;, then clearly Thi,; 2 Thf U {®;} is
consistent since it is a subset of closure Ded(Th?,,).If a statement (2.16) is satisfied,i.e.
Th?, Pr#h# ([-®i1°) and Thf,; - —®;, then clearly Th?; 2 Th¥ U {~®;} is consistent
since it is a subset of closure Ded(Thf,).If the statement (2.18) is satisfied,i.e.

Thi F Prog([@i1°) and [Th{ # @] A [MI" = @;] then clearly Thi; 2 Thi U {®i} is

consistent by Lemma 2.1 and by one of the standard properties of consistency: A U {A}
is consistent iff A = —A. If the statement (2.20) is satisfied,i.e. Th} - PrTh#([ﬂCD-]C) and

[Thf + —=®;] A [MI" = —®;] then clearly Thf,; £ Th{ U {—~®;} is consistent by Lemma
2.2 and by one of the standard properties of consistency: A U {—A} is consistent iff

A v A.Next, notice Ded(Th%) is maximally consistent nice extension of the
Ded(Th).Ded(Th%) is consistent because, by the standard Lemma 2.3 below, it is the
union of a chain of consistent sets. To see that Ded(Th¥ ) is maximal, pick any wif ®.
Then @ is some ®@; in the enumerated list of all wff’'s. Therefore for any ® such that

Thi + Prom ([@]°) or Thi = Pry«([—@]°), either ® € Th} or —® e Th.Since
Ded(Thf.;) < Ded(Th%), we have ® € Ded(Th%) or —=® € Ded(Th%),which implies that
Ded(Th%) is maximally consistent nice extension of the Ded(Th).

Proof .(Il) Let ®,1... ®,;... be an enumeration of all closed wff’s of the theory Th,,
(this can be achieved if the set of propositional variables can be enumerated). Define a
chain ¢ = {Th%ili e N},Th?, = Th, of consistent theories inductively as follows:

assume that theory Th?; is defined.
(i) Suppose that a statement (2.26) is satisfied

Thi, v Props ([©0i]%) and M = @;. (2.26)
Then we define a theory Thfml as follows
Thij 2 Thi; U{®,,;}. (2.27)
We will rewrite now the conditions (2.26) and (2.27) symbolically as follows
Thiia - Pl (@019 < Thii + @,
(2.28)

Prips. (@119 & Prog ((@i1°) A Do,

,i+1

(ii) Suppose that a statement (2.29) is satisfied



Thi, v Prps ([®0;1°) and M = —@;. (2.29)
Then we define theory Thf,m as follows:
Thi i £ Thi U{—D,,}. (2.30)
We will rewrite the conditions (2.25) and (2.26) symbolically as follows

Thoivi F Prng . ((—90i]®) < Theja - =@oj,

(2.31)
Prin, .. ([~®i]9) < Pron,..([—®i]°).
(iii) Suppose that the following statement (2.32) is satisfied
Thei + Prn, ([9oi]°), (2.32)
and therefore by Derivability Conditions (2.8)
Thyi - @g,. (2.33)
We will rewrite now the conditions (2.28) and (2.29) symbolically as follows
Prin, ([(Pwil®) < Thei = Pron,, ((@0i]°) (2.34)
Then we define a theory Thy .1 as follows: Thyi.a £ Thy,.
(iv) Suppose that the following statement (2.35) is satisfied
The, + Prrn,, ([—®0i]°), (2.35)
and therefore by Derivability Conditions (2.8)
Thyi - =Dy;. (2.36)
We will rewrite now the conditions (2.35) and (2.36) symbolically as follows
Prin,, ([(+®0i]®) & Thyi F Pro, ([+@0,i]°) (2.37)

Then we define a theory Th,,; as follows: Th,.1 = Th,;.We define now a theory

ThZ,, as follows:
Th%., 2 |JTho,. (2.38)
ieN

First, notice that each Th,,; is consistent. This is done by induction on i.Now, suppose
Th; is consistent. Then its deductive closure Ded(Th,;) is also consistent. If statement
(2.22) is satisfied,i.e. Thy t# Prn,,([®s,;]°) and MM = @; then clearly
Thyia = Thyi U {®,;} is consistent.If statement (2.25) is satisfied,i.e.
Thyitt Prrn,, ((—®6,;]%) and MI" = —@;, then clearly Thyjxx 2 The U {—®,} is
consistent. If the statement (2.28) is satisfied,i.e. Th,,; + Prrn,, ([90i]°),then clearly
Thyi1 £ Thy; is also consistent. If the statement (2.35) is satisfied,i.e.
Thei F Pro,, ([—®w,i]°),then clearly Th,i.1 £ Th,; is also consistent.Next, notice
Ded(ThZ.,) is a maximally consistent nice extension of the Ded(Th..,). The set
Ded(ThZ.,) is consistent because, by the standard Lemma 2.3 belov, it is the union of a
chain of consistent sets.

Lemma 2.3. The union of a chain g = {Ti|i € N} of consistent sets I';, ordered by <,
is



consistent.
Definition 2 .4. () We define now predicate Pr 1« ([®]°) and predicate Pr,: ([—-®]°)
asserting provability in Th by the following formulae

Proe ([01%) < {3i(@ e ThH[Pri ((@]%) ] v [Pris(@]%) |} v
VI(® € Th%) A Con(Th# +@; MIM],
Con(Th# +&;MI") <
Pr oy ([-@]%) < {3i(@ e ThH)[ Pré, (=19 ] v [Pri (=01 ]} v
V(@ € Th%) A Con(Th% +—@; MIM)],
Con(Th# +—d;M!") <

(2.39)

(S
(I1) We define now predicate Pry: ([®,]%) and predicate Prrp: ([-®0]°)

asserting provability in Th%,., by the following formulae

4 Cc
Pr Th¥, ([©.]7) <

{Bi(@, e Thi D[Py (@]9 ] V[ Pri (@19 ]}V
V[(®, € ThE,,) A Con(ThE,+®,;MIM)],
Con(Th%.,+®,;MT") =

< ' (2.40)
Pr Th¥, ([+D0]°) =

(3@, € THED[Préye (=019 ]V [Pri (=019 ]} v
V[(®, € Th%,) A Con(Th#., + —®,;MIN)],
COﬂ(Thfo;m + =Dy, szh) =

.

Remark 2.11.(I) Notice that both predicate Pr,« ([®]°) and predicate Pr s ([—®]°)
are

expressible in Th% because for any i € N, Th¥ is an finite extension of the recursive
theory

Th and Con(Thf+®;M™) e Th;,Con(Th¥+—®;M™) e Th;.

(I1) Notice that both predicate PrThg;w([Qw]C) and predicate PrThi;w([—@w]C) are
expressible

in Thfc;w because for any i € N, Thf),i is an finite extension of the recursive theory Th,,
and

Con(Th? +®,;M™) € Th?;,Con(Th? ;+—®,;M™) e Th#;.

Definition 2 .5.Let ¥ = W(x) be one-place open Th-wff such that the following
condition:

Th 2 Th - 3xe[¥(Xxy)] (2.41)
is satisfied.
Remark 2.12.We rewrite now the condition (2.41) using only the language of the
theory

Thf :



{ThT - 3xe[¥(xe)]} & Propy((3xe[¥(xe)]]%) A

2.42
AP (B [P (xw)]]%) = Ixe[W(xe)]}. (242

Definition 2 .6. We will say that, a set y is a Thi-set if there exist one-place open wif
(%)

such that y = xy. We write y[Th¥] iff y is a Thf-set.
Remark 2.13. Note that

YIThE] = 3P {(y = xe) A Proys([31xe [¥(xe)]]°)

(2.43)
{Prons (3w [¥(xe)]]%) = Ixe[P(xe)]} }.
Definition 2 .7.Let 31 be a collection such that :
Vx[x € J1 < xis a Thi-set]. (2.44)

Proposition 2 .2. Collection 31 is a Thf-set.
Proof . Let us consider an one-place open wff ¥(x) such that conditions (2.41) are

satisfied, i.e. Th¥ ~ J!xe[¥(x¢)]. We note that there exists countable collection Fy of
the

one-place open wWif's Fy = {¥n(X)} o Such that: (i) ¥(x) € Fv and (ii)
Th 2 Th F Ixe[[P(xe)] A {¥n(n € N)[P(xy) < Pn(xe)]}]

or in the equivalent form

Th 2 Thi +

< Pr g (3w [P (x)]1%) A (2.45)
{Pr s ([Axe[¥(x$)]]°%) = xe[P(xw)]} A
[Pronz([vn(n € N)[¥(xy) < ¥n(xe)]]%) ] A
L Props([Vn(n € N)[¥(xy) « ¥n(x¢)]]?) = Vn(n € N)[¥(xy) © ¥n(Xy)]

or in the following equivalent form

( Th? - X [[F1(x0)] A VNN € N)[W1(x1) © Pra(a)]}]

or

Th% -

< PrTh’f([E”Xl\P(xl)]c) A (2.46)
{Prons (3% ¥(x1)]1%) = I (x1) } A

[Pros([VN(n € N)[¥(x1) < ¥n(x1)]]%) ] A

[ Prng([Vn(n € N)[¥(x) Pn(x1)]]%) = vn(n € N)[¥(x1) < ¥n(X1)],

where we have set W(x) = W1(X1), ¥n(X1) = ¥na1(X1) and xy = X3. We note that any
collection F v, = {¥nk(X)} K = 1,2,... such as mentioned above, defines an unique
set xy,,i.e. Fy, NFw,, = Diff Xy, + Xy,,. We note that collections Fy,,k = 1,2,.. are
not a part of the ZFCYs or ZFC,i.e. collection F y, is not a set in sense of ZFCYs or ZFC.
However this is no problem, because by using Gddel numbering one can to replace any
collection Fy,,k = 1,2,.. by collection ©x = g(¥ v,) of the corresponding Gédel numbers



such that
Ok = 9(F wi) = {9(Fnk(X)) Fpano K= 1,2,... . (2.47)

It is easy to prove that any collection ®x = g(F v, ),k = 1,2,.. is a Thi-set.This is done
by Gédel encoding [7],[10] (2.47), by the statament (2.45) and by axiom schemata of
separation [10]. Let gnk = g(Wnk(Xk)),k = 1,2,.. be a Godel number of the wif W nx(X).
Therefore g(F k) = {Onk} p» Where we have set F = Fy,, k=1,2,.. and

VKle2[{gn,k1}neN N {gn,kz}neN =J e Xk, F sz]- (2 48)
Let {{Onk} nen f oy D€ @ family of the sets {gnk} o K = 1,2,....By the axiom of choice

[10] one obtains unique set I} = {Qk} . Such that Vk[gk € {gnk} . ]- Finally one obtains
a set 3, from the set J; by the axiom schema of replacement [10].

Proposition 2 .3. Any collection @ = g(F v, ),k = 1,2,.. is a Thi-set.
Proof . We define gnk = g(¥nx(Xk)) = [Pnx(Xk)]% vk = [X]°. Therefore
Onk = 9(Wnk(Xk)) < Fr(gnk, k) (see [7]). Let us define now predicate I1(gnk, Vk)

TI(Gnk, Vi) < Py ([(3[W1k(X0)]1) A

(2.49)
A3k = X[ VNN € N)[Pr s ([ 1x()]1%) = Proye(Fr (gni Vi) ] .
We define now a set ® such that
{ Ok = O} U {ai}, (250,
vNn(n € N)[gnk € O < I1(gnk, Vk)]

Obviously definitions (2.45) and (2.50) are equivalent.
Definition 2 .7.We define now the following Thi-set R; & 31 :
VX[Xx € R1 = (X € I1) APrpe(lx € XI) A [Progs([x ¢ X]°) = x ¢ x]]. (2.51)

Proposition 2 .4. (i) Thi ~ 3R, (i) R1 is a countable Thj-set.

Proof .(i) Statement Th{ - 3% follows immediately from the statement 33; and the

axiom schema of separation [4], (ii) follows immediately from countability of a set

3J1.Notice that R1 is nonempty countable set such that N < R1, because for any
neN:

Thirnegn.

Proposition 2 .5. A set R; is inconsistent.

Proof .From formula (2.51) we obtain

Thi - R1 e R1 = Progg((Re 2 Ra)) A[Progg((R ¢ Ril®) = R e Ra]. (252)
From (2.52) we obtain
Thf - R1 e Ry = Ry ¢ R (2.53)
and therefore

Thi - (R1 € R1) A (R1 ¢ R). (2.54)

But this is a contradiction.
Definition 2 .8. Let ¥ = W(x) be one-place open Th-wff such that the following



condition:

Th? - e [P (Xe)] (2.55)
is satisfied.
Remark 2.14.We rewrite now the condition (2.55) using only the lenguage of the
theory
Thi :

{Thi' + 3Mxe[F(xe)]} & Prope((3xe [P (xe)11°) A

2.56
AP e (A% [ (xe)]]°) = Fxe[W(xw)] ). (259

Definition 2 .9. We will say that, a set y is a Th?-set if there exist one-place open wif
Y(x)

such that y = xy. We write y[Th{] iff y is a Th/-set.

Remark 2 .15. Note that

YIThf] < 3Py = xe) A Pr s (3 [¥(xw)]1%)

. (2.57)
{Props(Bxe[¥(xe)]]%) = Ixe[P(xe)]} }.
Definition 2 .10.Let J; be a collection such that :
Vx[x € J; < xis a Th-set]. (2.58)

Proposition 2 .6. Collection J; is a Th{-set.

Proof . Let us consider an one-place open wff ¥(x) such that conditions (2.51) are
satisfied, i.e. Th¥  3Ixe[¥(x¢)]. We note that there exists countable collection & of
the one-place open wif's Fy = {¥n(X)} . Such that: (i) ¥(x) € Fy and (ii)

.

neN
Thi + Jxe[[P(xe)] A {VN(N € N)[¥(Xw) < Pnlxe)]}]
or in the equivalent form
Th - Props ((3xe [P (x#)]]°) A
{Pr s (3% [P (x4)]]%) = xe[P(xe)]} A
[Props([YN(N € N)[W(xy) © Pn(xe)]]%) ] A
| Prong([¥n(n € NP Oer) © Wn(e)]]) = vn(n € N)¥Oe) < Wn(x)]

(2.59)

or in the following equivalent form

( Th# - El!xl[[‘Pl(xl)] A {Vn(n c N)[‘Pl(xl) > \Pnyl(Xl)]}]

or

Thi +

< Pr s ([31X1¥ (X2)]%) A (2.60)
{Props(@Ax¥(x1)]%) = Ixa¥(xa) } A

[Prone([YN(n € N)[¥(x1) < ¥a(x1)]19) ] A

L Props([VNn(n € N)[P(x1) < Pa(x1)]]%) = vn(n € N)[¥(X1) < Pn(x1)].

where we have set W(x) £ ¥1(X1), ¥n(X1) £ ¥n1(x1) and xy = x1. We note that any
collection F v, = {¥nk(X)} K = 1,2,... such as mentioned above, defines an unique



set xy,,i.e. Fy, NFw,, = Diff Xy, + Xy,,. We note that collections Fy,,k = 1,2,.. are

not a part of the ZFCS,i.e. collection F v, there is no set in the sense of ZFCYS. However

that is no problem, because by using Gédel numbering one can to replace any collection

Fw,k=1,2,.. by collection ®x = g(F v, ) of the corresponding Gddel numbers such that
Ok = 9(Fw,) = {g(¥nk(X))}pav kK =1,2,... . (2.61)

It is easy to prove that any collection O = g(F v, ),k = 1,2,.. is a Thi-set.This is done
by Gddel encoding [7],[10] (2.61), by the statament (2.55) and by the axiom schema of
separation [10]. Let gnx = g(Wnk(Xk)),k = 1,2,.. be a Godel number of the wif Wpx(Xk).
Therefore g(Fk) = {Onk) pen» Where we have set F = Fy,, k=1,2,.. and

VK1VK2[{gn,k1}neN N {gn,kz}neN =0 < Xk, # sz]- (2 62)
Let {{9nk} nen /ey P€ @ family of the all sets {gnk} - By axiom of choice [10] one

obtains a unique set J{ = {0} such that VK[gk € {gnk} ] Finally for any i € N one
obtains a set J; from the set 3| by the axiom schema of replacement [10].

Proposition 2 .8. Any collection @k = g(F,),k = 1,2,.. is a Thi-set.
Proof . We define gnk = g(Wnk(Xx)) = [Pnk(Xx)]¢, vk = [Xk]¢. Therefore
Onk = 9(Wnk(Xk)) < Fr(gnk Vk) (see [7]). Let us define now predicate IT;(gnk, Vk)

i (Qnks Vi) < Props([3[ ¥ 1(x)1]%) A

(2.63)
AFXk(Vk = [ [ VNN € N)[Props (1Y 16(6)]1%) = Pr s (Fr (Gng, Vi) ] -
We define now a set ® such that
Ok = O U {0k}, (2.64)
Vn(n S N)[gn,k S @;( <~ Hi(gn,k,Vk)]-

Obviously definitions (2.59) and (2.64) are equivalent.
Definition 2 .11.We define now the following Thf-set ®; < J; :

VX[x € Ri = (X € F)APrps((x & XI) A [Prope(x ¢ XI°) = x ¢ x]].  (2.65)

Proposition 2 .9. (i) Thf ~ 3%, (i) R; is a countable Thi-set,i € N.
Proof .(i) Statement Th? - 3%R; follows immediately by using statement 33; and axiom
schema of separation [4]. (ii) follows immediately from countability of a set 5.
Proposition 2 .10. Any set R;,i € N is inconsistent.
Proof .From the formula (2.65) we obtain
Thif - Rie R = Props([Ri & Ril°) A [PrThi#([*Ri g R°) =R ¢ iRi]. (2.66)
From the formla (2.66) we obtain
Th*  FRi e R = R, ¢ R (2.67)
and therefore
Th? - (Ri € R)A R ¢ Ri). (2.68)
But this is a contradiction.
Definition 2 .12. A Th%-wff @, that is: (i) Th-wff ® or (i) well-formed formula ®., which
contains predicate Pr 1« ([®]°) given by formula (2.39).An Th’-wff ., (well-formed
formula @..) is closed - i.e. @, is a sentence - if it has no free variables; a wif is open if
it



has free variables.
Definition 2 .13.Let ¥ = ¥(x) be one-place open Th’-wif such that the following
condition:

Th - 3xe[P(xy)] (2.69)
is satisfied.

Remark 2.16.We rewrite now the condition (2.69) using only the lenguage of the
theory Th :

{Th = Ixe[P(xe)]} & Props (3% [P (xe)]]%) A

(2.70)
AP 1 (3% [P (X)) = Fxe[P(Xe)]}

Definition 2 .14.We will say that, a set y is a Th’-set if there exists one-place open wff

¥(x) such that y = xy. We write y[Th%] iff y is a Th¥-set.

Definition 2 .15. Let 3., be a collection such that : Vx[x € I, « Xxis a Thi-set].

Proposition 2 .11. Collection 3., is a Th’-set.

Proof . Let us consider an one-place open wff ¥(x) such that condition (2.69) is
satisfied, i.e. Th% ~ J!xy[¥P(xy)]. We note that there exists countable collection Fy of
the one-place open wif's Fy = {¥n(X)} . Such that: (i) ¥(x) € Fy and (ii)

4

neN
Th? F 3xe[[P(Xe)] A {YN(N € N)[P(Xy) < PnXe)]}]
or in the equivalent form

The = Props (3% [P (Xe)]1%) A
< . (2.71)
{Pr e ([3MXxe [ (Xxe)]]7) = Fxe[P(xe)]} A
[Prnz ([VN(N € N)[¥(xy) < Wn(xe)]1)]A
L Prons ([Vn(n € N)[P(Xe) < Pnlxe)]]®) = Vn(n € N)[P(Xy) © Pn(xXy)]

or in the following equivalent form

( Th% - A [[W1(x)] A {VN(n € N)[W1(x) o Pn1(x1)]}]

or
Thi + Props([3xa¥(x1)]1%) A
{Propz ([3%P(x1)]1%) = I P(xa)} A
[Pros([¥N(n € N)[¥(x1) < Pn(x1)]]%) ] A
L Props([VNn(n € N)[P(x1) < Pa(x1)]1]%) = vn(n € N)[¥(X1) < Pn(x1)].

(2.72)

where we set ¥(X) = Y1(X1),¥n(X1) = Wn1(X1) and xy = x1. We note that any collection
Fw, = {¥nk(X)} K = 1,2,... such as mentioned above defines a unique set xy,, i.e.
Fo, F v, = D iff Xy, # Xy,,.We note that collections Fy,,k = 1,2,.. are not a part of
the ZFCYSs,i.e. collection F y, there is no set in sense of ZFCYS. However that is not a
problem, because by using Gddel numbering one can to replace any collection
Fw,k=1,2,.. by collection ®x = g(F ¢,) of the corresponding Gddel numbers such that

Ok = 9(Fw) = {I(¥nk(X))} per K = 1,2, . (2.73)

It is easy to prove that any collection ®x = g(F v, ),k = 1,2,.. is a Th*-set.This is done by
Godel encoding [8],[10] by the statament (2.66) and by axiom schema of separation [9].



Let gnk = 9(Wnk(Xk)),k = 1,2,.. be a Godel number of the wff ¥,x(xx). Therefore
9(F«) = {Onk} ney» Where we have set Fi =2 Fy,, k= 1,2,.. and

VK]-VKZ[{gn,kl}neN n{gn,kz}neN =D © Xig # Xie]- (2.74)
Let {{9nk} nen f ey P€ @ family of the sets {gnk} o K = 1,2,... . By axiom of choice [9] one

obtains an unique set 3" = {gk} ., such that Vk[gk € {Onk} ] Finally one obtains a set
3., from the set 3., by axiom schema of replacement [9]. Thus one can define Th#-set

Ro & T ©
VXX € Ry = (X € Too) A[Props([x & X]) A{Prope([x & X]°) = x & x}]]. (2.75)
Proposition 2 .12. Any collection Ok = g(F,),k = 1,2,.. is a Th’-set.

Proof . We define gnk = g(Wnk(Xk)) = [Pnk(Xk)]¢, vk = [Xk]¢. Therefore
Onk = 9(Wnk(Xk)) < Fr(gnk Vvk) (see [10]). Let us define now predicate I1.(gnk, Vk)

Moo (Qnk, Vk) <
Pr e (3P 1.(X2)11%) A [P ([3X[ P 1k(X1)11%) = Ix1 P (X1)] (2.76)
Ak = [X]E) VNN € NPT s ([P 1k(XKk)11) <= Props (Fr(Gnk Vi) 1.

We define now a set O such that

{ Ok = O} U {g} 277

vNn(n € N)[ghk € O < TI(gnk, Vk)]
Obviously definitions (2.70) and (2.77) are equivalent by Proposition 2.1.
Proposition 2 .13. (i) Th% ~ 3R.,, (i) R.. is a countable Th#-set.
Proof .(i) Statement Th% - 3R., follows immediately from the statement 33., and
axiom
schema of separation [9], (ii) follows immediately from countability of the set J...
Proposition 2 .14. Set K., is inconsistent.
Proof .From the formula (2.75) we obtain

Th F R € R & Progs (R € Reo]®) A{Prrps ((Re € R]®) = Reo & R}, (2.78)
From (2.74) one obtains
Th% - R, € R, = R, ¢ Re (2.79)
and therefore
ThE - (R € Ro) A R 2 Ro). (2.80)
But this is a contradiction.
Definition 2 .16.An Th%,,-wff ®..,, that is: (i) Th,-wff ®,, or (ii) well-formed formula
Do
Which contains predicate PrThi;m([GD]c) given by formula (2.36).An Th%,,-wff @,

(well-formed formula @) is closed - i.e. @, IS a sentence - if it has no free
variables; a

wff is open if it has free variables.

Definition 2 .17.Let ¥ = W(x) be one-place open Th-wff such that the following

condition:



Th, 2 Th?; - 3xe[P(Xv)] (2.81)

is satisfied.
Remark 2.17.We rewrite now the condition (2.81) using only the lenguage of the
theory
Thzyl .
{Thi ;1 - Ixe[P(xv)]} = PrThiyl([H!xw[‘P(x\y)]]c). (2.82)
Definition 2 .18. We will say that, a set y is a Th? ;-set if there exist one-place open
wif
¥(x) such that y = xy. We write y[Th? ;] iff yis a Th? ;-set.
Remark 2.18. Note that

YIThE 1] = 3Ly = xw) A Proge (31X [¥(xw)]]%)
{Pr s (3% [W(xe)]1%) = Ixe[W(xe)]} }-
Definition 2 .19.Let 3,1 be a collection such that :
VX[ X € Jo1 < Xis aThj-set ]. (2.84)

Proposition 2 .15. Collection 3,1 is a Th? ;-set.

Proof . Let us consider an one-place open wff ¥(x) such that conditions (2.37) are
satisfied, i.e. Th}; + 3!xg[¥(xy)]. We note that there exists countable collection Fy of
the one-place open wif's Fy = {¥n(X)} . Such that: (i) ¥(x) € Fy and (ii)

(2.83)

neN

-
The2 Thi 1 - 3xe[[P(xw)] A VNN € N)[P(Xy) < Pn(xw)]}]
or in the equivalent form

9 Thy2 Thiy - Py (B [¥00)1]%) A (2.85)
g [Proe ([VN(0 € N)[W(xe) = Wa(xe)]]%) ],
or in the following equivalent form
( Thi 1+ 3xa[[P1(x2)] A {¥Yn(n € N)[¥1(x1) < Wna(x1)]}]
or
9 This - Prays, (B5aP0)]°) A (2.89)
[Prone ([9YN(N € N)[¥(x1) < ¥n(x1)]1%) ],

A
where we have set W(x) £ ¥1(X1), ¥n(X1) £ ¥n1(X1) and xy = x1. We note that any
collection F v, = {¥nk(X)} K = 1,2,... such as mentioned above, defines an unique
set xy,,i.e. Fy, N Fy,, = T iff Xy, * xy,,.We note that collections Fy,,k = 1,2,.. are
not a part of the ZFCYS,i.e. collection &y, is not a set in the sense of ZFC,. However that
is not a problem, because by using Godel numbering one can to replace any collection
Fw.,k=1,2,.. by collection ®x = g(F v,) of the corresponding Gddel numbers such that

Ok = 9(Fv) = {9(F¥nk(Xk)) e kK= 1,2,... . (2.87)

It is easy to prove that any collection Ok = g(F v,),k = 1,2,.. is a Th? ;-set.This is
done by Gdodel encoding [7],[10] (2.87), by the statament (2.85) and by the axiom
schema of separation [7]. Let gnk = 9(Wnk(Xk)),k = 1,2,.. be a Godel number of the wif



Wnk(Xk). Therefore g(F«) = {Onk) n» Where we have set F = Fy,, kK= 1,2,.. and
VK1VK2[{gn,k1}neN N {gn,kz}neN =0 < Xk, # sz]- (2 88)
Let {{9nk} nenf ey P€ @ family of the sets {gnk} o K = 1,2,... . By the axiom of choice [7]

one obtains an unique set 3] = {gk},. such that Vk[gk € {gnk} ] Finally one obtains a
set 3,1 from the set 3, ; by the axiom schema of replacement [7].

Proposition 2 .16. Any collection ® = g(Fw,),k = 1,2,.. is a Th} ;-set.
Proof . We define gnk = g(¥nx(Xk)) = [Pnx(Xk)]%, vk = [X]°. Therefore
Onk = 9(Wnk(Xk)) < Fr(gnk, Vvk) (see [10]). Let us define now predicate I1(gnk, Vk)

TT(Gnko Vi) < P e (X P 14(X1)]1%) A

(2.89)
Ak = D) V(N € N)[ Proye (1P 1x(011%) < Proye (Fr (gnio Vi) | .
We define now a set ® such that
Ok = O, ,
k= O U{ {9k} (2.90)
vn(n € N)[gnk € O < TT(Onk, V)]
Obviously definitions (2.85) and (2.90) are equivalent.
Definition 2 .20.We define now the following Th? ;-set R,1 & Foa1 :
VXX € Rop = (X € Tua) AProye (X & X% |. (2.91)

Proposition 2 .17. (i) Thi; + 3R, 1, (i) Re1 is a countable Th ;-set.

Proof .(i) Statement Th} ; ~ 3%,,1 follows immediately from the statement 33,1 and

axiom schema of separation [7], (ii) follows immediately from countability of the set
Joi-

Proposition 2 .18. A set R,,1 IS inconsistent.

Proof .From formla (2.87) we obtain

Thii F Roa € Rop & Prog ([Ron € Roal®). (2.92)
From (2.92) we obtain
Thii - Ro1 € Rop = Rox € Roa (2.93)
and therefore
Thii+ (Ros € Ror) A Ror € Ron). (2.94)

But this is a contradiction.
Definition 2 .21. Let ¥ = ¥(x) be one-place open Th-wif such that the following
condition:

Thi; + 3xe[P(Xy)] (2.95)
is satisfied.
Remark 2.19.We rewrite now the condition (2.95) using only the lenguage of the
theory
Thf,’i .

{Thi, = 3Mxe[¥(xe)]} & Props (Bxe[¥(xe)]]). (2.96)



Definition 2 .22. We will say that, a set y is a Th? ;-set if there exist one-place open wif
W¥(x) such that y = xy. We write y[Th? ;] iff y is a Th? ;-set.
Remark 2.20. Note that

yIThi] < 3P[(y = xw) AProg (Bxe[¥(xw)]]%) ]. (2.97)
Definition 2 .23.Let 3, be a collection such that :
VX[ X € Joi < xis a Thi;-set]. (2.98)

Proposition 2 .19. Collection 3, is a ThZYi-set.

Proof . Let us consider an one-place open wff ¥(x) such that conditions (2.95) is
satisfied, i.e. Th?; - 3!xy[¥(xw)]. We note that there exists countable collection Fy of
the one-place open wif's Fy = {¥n(X)} . Such that: (i) ¥(x) € F¢ and (ii)

Thii = 3% [[P(xe)] A {YN(N € N)[¥(Xy) < Pn(xe)]}]
or in the equivalent form

Thii + Proye (3% [¥0xe)]1%) A (2.99)
[P ([VN(N € N)[W(xw) < ¥alxw)]]%) ],
or in the following equivalent form
Thi,i = 3 [[P1(x1)] A {Vn(n € N)[¥1(x1) © ¥n1(x1)]}]
or
Thi; - (2.100)

Prope ([3%1 P (x1)]°) A
[Pron (LVN(N € N)[¥(x1) « Wa(x)]]%) |-

where we have set W(x) £ W1(X1), ¥n(X1) £ ¥n1(X1) and xy = x1. We note that any
collection Fy, = {¥nk(X)} K= 1,2,... such as mentioned above, defines an unique
set xy,,i.e. Fy, NFy,, = Diff Xy, + Xv,,. We note that collections Fy,,k = 1,2,.. is not
a part of the ZFCg,i.e. collection Fy, is not a set in the sense of ZFC4. However that is
not a problem, because by using Godel numbering one can to replace any collection
Fw,k=1,2,.. by collection ®x = g(F v, ) of the corresponding Gddel numbers such that

Ok = 9(Fw) = {I(F¥nk(X))}park = 1,2, . (2.101)

It is easy to prove that any collection Ok = g(F v,),k = 1,2,.. is a Th?;-set.This is done
by Gddel encoding [8],[10] (2.101), by the statament (2.95) and by axiom schema of
separation [9]. Let gnk = g(Wnk(Xx)),k = 1,2,.. be a Gédel number of the wff W, k(X«).
Therefore g(F k) = {Onk} pn» Where we have set Fy 2 Fy,, k= 1,2,.. and

VKle2[{gn,k1}neN N {gn,kz}neN =J e Xky # sz]' (2 102)
Let {{Onk} nen f oy 0€ the family of the sets {gnk} - BY axiom of choice [9] one obtains

an unique set J; = {0k} such that VK[gk € {gnk} ] Finally one obtains a set I,
from the set 3| by axiom schema of replacement [9].

Proposition 2 .20. Any collection Ok = g(Fv,),k = 1,2,.. is a Th?;-set.
Proof . We define gnk = g(¥nx(Xk)) = [Pnx(X)]% vk = [X]°. Therefore
Onk = 9(Wnk(Xk)) < Fr(gnk Vvk) (see [10]). Let us define now predicate I1,i(gnk, Vk)



o (Gnko Vi) = Props (3 P1k(x1)11%) A

(2.103)
ATk = D) V(N € N)[Prye (MW 1x06011%) < Proye (FF (i Vi) | -

We define now a set O such that

Ok = O, U {0k},

/ (2.104)
vn(n € N)[gnk € Ok < I1,i(Onk, Vi) ].

Obviously definitions (2.95) and (2.104) are equivalent.
Definition 2 .24.We define now the following Thf,,i-set Roi & Joi :
VX[ X € Roi <= (X € Jui) AProy ([x € X9 . (2.105)

Proposition 2 .21. (i) Th¥; ~ 3R,;, (i) R, is a countable Th? ;-set,i e N.

Proof .(i) Statement Th?; - 3R,,; follows immediately by using statement 33,,; and
axiom

schema of separation [9]. (ii) follows immediately from countability of a set 3, ;.

Proposition 2 .22. Any set R,;,i € Nis inconsistent.

Proof .From formla (2.105) we obtain

Thii - Roi € Rai < Prog ((Roi € Roil®). (2.106)
From (2.106) we obtain
Thii - Rui € Roi = Roi & Ro, (2.107)
and therefore
Th? i F (Roi € Ro) A Roi 2 Ro). (2.108)

But this is a contradiction.

Definition 2 .25.Let ¥ = ¥(x) be one-place open Th%,,-wff such that the following
condition:

Thfo;a, F Ay [V (Xy)] (2.109)
is satisfied.

Remark 2.20.We rewrite now the condition (2.109) using only the lenguage of the
theory
Th% in the following equivalent form

LTh, F 3xe[P(xe)] < Thi, - Proge (3xe[¥(xe)]1%)
or
2.Th%, - Axe[¥(xe)] = Thi, = (Progs ([3xe[¥(xe)]19)) A
ACPT i, (31X [¥(x9)]1%) = 3xe[¥(xe)])

(2.110)

Definition 2 .26.We will say that: (i) a set y is a Th%,,-set if there exist one-place open
wif

¥(x) such thaty = xy,i.e. Thi,, + PrThi;w([EI!xxy[‘P(xqj)]]C) A (Y = Xy);
(i) a set yis a Th%,,-set if there exist one-place open wif

We write y[Th%,,] iff yis a Th%.,-set.



Definition 2 .27. Let 3., be a collection such that : VX[ x € J.,, < x[Th%,,]1].

Proposition 2 .23. Collection 3., is a Th%,,-set.

Proof . Let us consider an one-place open wff ¥(x) such that condition (2.109) is
satisfied, i.e. Th%., - 3'xe[¥(xw)].We note that there exists countable collection &y of
the one-place open wif's Fy = {¥n(X)} . Such that: (i) ¥(x) € Fy and (ii)

neN
Thi, =3[P )] A {VN(N € N)[¥(xy) < Pnlxw)]}]
or in the equivalent form

Thi., Prong, ([3!%e [P (xe)]]%) A (2.111)
[Pr e, ([VN(N € N)[¥(xy) < Pn(xw)]1%) ],
or in the following equivalent form
Thfow - El!xl[[‘Pl(xl)] A {Vn(n IS N)[‘Pl(xl) <~ \Pnyl(Xl)]}]
or
(2.112)

Thi., F Proge, (3% (x)1%) A
[Prope, (VNN € N)[¥(x1) < ¥n(x2)11%) ],

where we set ¥(X) = Y1(X1),¥n(X1) = WYn1(X1) and xy = x1. We note that any collection

Fw, = {¥nk(X)} K = 1,2,... such as mentioned above defines unique set xy,, i.e.

Fo, F v, = D iff Xy, # Xy,,.We note that the collections Fy,,k = 1,2,.. is not a part

of the ZFC,i.e. collection Fy, is not a set in the sense of ZFC. However that is not a

problem, because by using Gddel numbering one can to replace any collection

Fw.,k=1,2,.. by collection ®x = g(F v,) of the corresponding Gddel numbers such that
Ok = 9(F w,) = {9(¥nk(X)) e K= 1,2,... . (2.113)

It is easy to prove that any collection @k = g(F v, ),k = 1,2,.. is a Th%,,-set.This is done
by Gddel encoding [8],[10] by the statament (2.109) and by axiom schema of separation
[9]. Let gnk = 9(Wnk(Xk)),k = 1,2,.. be a G6del number of the wif W, k(xx). Therefore
9(Fk) = {Onk) pen» Where we have set Fx = Fy,, kK= 1,2,.. and

VK1Vk2[{gn,k1}neN n{gn,kz}neN =D © Xig * Xie]- (2.114)
Let {{9nk} nenf ey € the family of thesets {gnk} .- By axiom of choice [9] one obtains
unique set 3" = {Qk} . such that Vk[gk € {Onk} ] Finally one obtains a set 3., from
the set 3., by axiom schema of replacement [9].Thus one can define Th%,,-set

moo;a) ; Soo;a) :
VX[X € R = (X € Tow) APrype (X 2 XI°) . (2.115)



Proposition 2 .24. Any collection O = g(Fv,),k = 1,2,.. is a Th%,,-set.
Proof . We define gnk = g(Wnk(Xk)) = [Pnk(Xk)]¢, vk = [Xk]¢. Therefore
Onk = 9(Wnk(Xk)) < Fr(gnk,Vk) (see [7]). Let us define now predicate I«.,(gnk, Vk)

Moo (Gnke Vi) <= Prope ([3% [P 1x(x1)11) A

(2.116)
Ixk(Vk = ][ YN € N)[Prope ([W1k()]1%) < Progs (Fr(@nk, i) ] -

We define now a set O such that

O = O ,
k k/U {9x) (2.117)
vNn(n € N)[Gnk € Oy < Ilw:n(Gnk, Vi) ]

Obviously definitions (2.114) and (2.117) is equivalent by Proposition 2.1.

Proposition 2 .25. (i) Th%., - 3R .., (i) R iS a countable Th,,-set.

Proof .(i) Statement Th%,, - 3R..,, follows immediately from the statement 33 and
axiom

schema of separation [9], (ii) follows immediately from countability of the set J...

Proposition 2 .26. Set R.., IS inconsistent.

Proof .From the formula (2.119) we obtain

Thi., - Rew € Ry < Prong, ((Reo € R ]©)- (2.118)
From the formula (2.118) and Proposition 2.1 we obtain
Th:., - Rew € R © R € R (2.115)
and therefore
Thi., - Rew € Rew) A R & Row). (2.116)

But this is a contradiction.

Proposition 2 .26.Assume that (i) Con(Th) and (ii) Th has an nonstandard model M}
and M22 < M. Then theory Th can be extended to a maximally consistent nice theory
Thi £ Thi[MI5].

Proof. Let @1... ®;... be an enumeration of all wff’s of the theory Th (this can be
achieved if the set of propositional variables can be enumerated). Define a chain
@ = {Thigili € N}, Thi: = Th of consistent theories inductively as follows: assume

that theory Th; is defined. (i) Suppose that a statement (2.117) is satisfied
Thilgi - Prong, ([@i]%) and [Thig; # @] A [MI§ = @i]. (2.117)

Then we define a theory Thng i1 as follows Thngii1 = Thagi U {®@i}.Using Lemma 2.1
we will rewrite the condition (2.117) symbolically as follows

Thiai - Priye ((®11°),

(2.118)
Prin ([@i1°) < Prope, (@119 A MG F @i,
(ii) Suppose that the statement (2.119) is satisfied
Thilgi = Prong,, ([-®i1°) and [Thilg; # —@i] A MG E —@i]. (2.119)

Then we define theory Thi,; as follows: Thi.1 £ Th; U {—=®;}. Using Lemma 2.2 we will
rewrite the condition (2.119) symbolically as follows



Thiiai F Priye (-®i]°),

. . . - (2.120)
Prhi, ([(F@i17) & Propg ([5@i]7) A My I —@i].
(iii) Suppose that a statement (2.121) is satisfied
Thigi + PrThﬁiyi([CDi]C) and Thig, + PrThmgyi([cDi]C) = 0. (2.121)
We will rewrite the condition (2.121) symbolically as follows
This = Prie (1%,
. C" . (2.122)
P, (1% < Pron ([@11°) A [Pron ([@i]%) = @]
Then we define a theory Thff,st,nl as follows: Ttht|+1 = Ttht,i.
(iv) Suppose that the statement (2.123) is satisfied
Thigic - PrThmgyi([ﬁCDif) and Thig,; PrThﬁiyi([ﬁcDi]C) = —0;. (2.123)
We will rewrite the condition (2.123) symbolically as follows
Th; + Pripe ([~®i1°),
’ (2.124)

Priye ([C®i1%) & Proge ([(—®i11%) A [P, ((50i°) = —0 ]

Then we define a theory Th¥, Neir1 @s follows: ThNng £ ThNStl We define now a theory
Thi g as follows:

hins 2 [ This,- (2.125)

ieN
First, notice that each Thi; is consistent. This is done by induction on i and by Lemmas
2.1-2.2. By assumption, the case is true when i = 1.Now, suppose Thig; is consistent.
Then its deductive closure Ded(Thig;) 2 {AlTh{s; - A} is also consistent. If a statement
(2.121) is satisfied,i.e. Thig, + Prryz,, ([@i]°) and Thigi + @i, then clearly
Thigiz1 2 Thig U {®i} is consistent since it is a subset of closure Ded(Thig;).If a
statement (2.123) is satisfied,i.e. Thig; + Prrng, ([—.GD 1°) and Th{g,; - —®;, then clearly
ThNng = TthtI U {—®;} is consistent since it is a subset of closure Ded(ThNS“) If a
statement (2.117) is satisfied,i.e. Thig; + PrThﬁgyi([ i1°) and [Thig;i #* ®i]A ML & O]
then clearly Thﬁ,sml £ Thﬁ,st,i U {®;} is consistent by Lemma 2.1 and by one of the
standard properties of consistency: A U {A} is consistent iff A + —A. If a statement
(2.119) is satisfied,i.e. Thig; - Proy ((=®i]°) and [Thig; ¥ —®i] A [M{§ = —®i] then
clearly ThNng £ ThNStl U {—®;} is consistent by Lemma 2.2 and by one of the standard
properties of consistency: A U {—A} is consistent iff A i A.Next, notice Ded(Th% \g) is
maximally consistent nice extension of the Ded(Th). Ded(Thfo;Ng) is consistent because,
by the standard Lemma 2.3 above, it is the union of a chain of consistent sets. To see
that Ded(Th?ng) is maximal, pick any wff ®. Then @ is some ®; in the enumerated list of

all wff's. Therefore for any @ such that Thig; + Prrng, ([ 1%) or Thigi + PrThﬁayi([ﬁd)]C),
either ® € Th?, ng OF =@ € Thoo Nt Since Ded(ThNSml) c Ded(Thw nst), We have
® e Ded(Th%,\g) Or —® € Ded(Th% ), which implies that Ded(Th%.\g) is maximally



consistent nice extension of the Ded(Th).
Definition 2 .28. We define now predicate Pr,«([®i]°) asserting provability in Th% \g :

(2.126)

Definition 2 .29. Let ¥ = ¥(x) be one-place open wff such that the conditions:
(x) Th#.\g + Ixe[P(xy)] OF
(x *) Thing - PrThg;Ng([EI!xxy[‘P(xq/)]]C) and M{% = 3!xe[P(xy)] is satisfied.

Then we said that, a set y is a Th*-set iff there is exist one-place open wif ¥(x) such
that

y = Xy. We write y[Th% \g] iff y is @ Th% yg-set.

Remark 2.21. Note that [(x) V ( )] = Th¥.ag - Ixe[¥(xe)].

Remark 2.22. Note that y[Th%ng] < FW[ (y = Xw) A Prope (3% [¥(xw)]1°) ]
Definition 2 .30.Let 3% 4 be a collection such that : Vx[x € 3%y < xis a Th*-set].
Proposition 2 .27.Collection 3%\ is a Th% ng-set.

Proof . Let us consider an one-place open wff ¥(x) such that conditions (x) or (x x) is

satisfied, i.e. Th* - 31xy[¥P(xv)]. We note that there exists countable collection &y of
the one-place open wff's Fy = {¥n(X)} o Such that: (i) ¥(x) € Fv and (ii)
The e - 3o 0] A {vn(n € ME)w0w) o Patx)]} ]
or
Thine F 3o Prog (9019 A {¥n(n e M& ) Pr i ([P (xy) Y19} ] (2127)
and
MIS & 3t [¥0a)] A {vn(n e ME )P 0w) o Paow)1} |

or of the equivalent form

Th? g - El!xl[[‘lfl(xl)] A {Vn(n = Mﬁgs)[‘l’l(xl) o \Pn,l(xl)]}}
or
The e - 30| Proge  ((P0)]) A {¥n(n e M&)Proge ([1¥0) © Pa0w)]9} ] (2128)
and
ML = El!xxy[[‘l’(xl)] A {Vn(n c Migs)[\y(xl) o ‘Pn(xl)]}}

where we set ¥(X) = Y1(X1),¥n(X1) = WYn1(X1) and xy = x1. We note that any collection
Fw, = {¥Ynk(X)} o K = 1,2,... such above defines an unique set Xy, i.e.

Fo, NF v, = D iff Xy, # Xy,,.We note that collections F,,k = 1,2,.. is no part of the
ZFC!Hs,i.e. collection &y, there is no set in sense of ZFCYS. However that is no problem,
because by using Gédel numbering one can to replace any collection F,,k = 1,2,.. by
collection © = g(F ¢,) of the corresponding Gddel numbers such that

Ok = 9(Fw,) = {g(¥nk(X))}pernr kK =1,2,... . (2.129)
It is easy to prove that any collection @k = g(F v, ).k = 1,2,.. is a Th% \g-set.This is done



by Gddel encoding [8],[10] (2.129) and by axiom schema of separation [9]. Let
Onk = O(Wnk(Xx)), k = 1,2,.. be a Godel number of the wff ¥, x(xk). Therefore
9(Fk) = {Onk) pen» Where we set F = Fy,, k=1,2,.. and

VK1Vk2[{gn,kl}n€N n{gn,kz}neN =D © Xig # Xie]- (2.130)

Let {{9nk} nenf ey P€ @ family of the all sets {gnk} - By axiom of choice [9] one obtain

unique set 3% .\g = {0k} oy SUCh that VK[gk € {gnk} ] Finally one obtain a set 3% g

from a set 3% 4 by axiom schema of replacement [9].Thus we can define a Th# yg-set
ERo#c;Nst ; So#c;Nst .
VX[X € Ring © (X € Ihng) APrope (X & X]) A
(Prowe, ([x ¢ x| = x 2 %) ]

Proposition 2 .28. Any collection ©x = g(Fw,),k = 1,2,.. is a Thi \g-set.
Proof . We define gnk = g(¥nx(X)) = [Pnx(Xk)]% vk = [X]°. Therefore
Onk = 9(Wnk(Xk)) <= Fr(gnk, Vvk) (see [10]). Let us define now predicate IT.(gnk, Vk)

oo (G Vi) < Prope (3P ax(X0)11%) A
ATV = [Xk]°) (2.132)
[vn(n € MZ)[Prope  ((¥1xx011%) = Proye, (Fr(@nevid) ] |
We define now a set ® such that

{ Ok = O, U {0k},

(2.131)

(2.133)
vNn(n € N)[gnk € Ok < TTo(gnk, Vk)]
But obviously definitions (2.29) and (2.133) is equivalent by Proposition 2.26.
Proposition 2 .28. (i) Th g - 3R%.\g, (i) R .ng iS @ countable Th \g-set.
Proof .(i) Statement Th* - 3R, follows immediately from the statement 33% 4 and
axiom
schema of separation [9]. (ii) follows immediately from countability of the set 3% \q.
Proposition 2 .29. A set R% .4 is inconsistent.
Proof .From formla (2.131) we obtain

Thfo;NSt + ERo#o;Nst € mfo;Nst = mfo;Nst & s‘thoc;Nst- (2.134)
From formula (2.41) and Proposition 2.6 one obtains

Thing F REng € Ring & Ring € R (2.135)
and therefore

Thing - (Ring € Ring) A Ring & Rine)- (2.136)

But this is a contradiction.

2.3.Proof of the inconsistensy of the set theory
ZFCHs + IMZCE using Generalized Tarski’s undefinability

theorem.
In this section we will prove that a set theory ZFCYs + IMZFC2* is inconsistent, without



any refference to the set 3., and inconsistent set R...

Proposition 2 .30.(Generalized Tarski's undefinability theorem).Let Th%® be second
order

theory with Henkin semantics and with formal language £, which includes negation
and

has a Gddel encoding g(-) such that for every £-formula A(x) there is a formula B
such

that B < A(g(B)) A [A(g(B) = B] holds. Assume that Th%® has an standard Model M.

Then there is no £-formula True(n) such that for every £-formula A such that M = A,
the

following equivalence

A = True(g(A) A[True(gd) = Al (2.137)

holds.

Proof .The diagonal lemma yields a counterexample to this equivalence, by giving a
"Liar"

sentence Ssuch that S« —True(g(9)) holds.

Remark 2.23. Above we defined the set 3., (see Definition 2.10) in fact using
generalized

"truth predicate" Truef ([®]°,®) such that

True? ([@]°,®) < Pryp: ([@]°) A {Pr s ([@]°) = D). (2.138)

In order to prove that set theory ZFCYSs + IMZ 2" is inconsistent without any refference
to

the set 3.,,notice that by the properties of the nice extension Th¥ follows that definition

given by (2.138) is correct, i.e.,for every ZFCHs-formula @ such that MZC2® = @ the

following equivalence

® = Props ([0]°) A {Prrps ([0]°) = D). (2.139)

holds.
Proposition 2 .31.Set theory Th} = ZFCYs + IMZ7C" s inconsistent.
Proof .Notice that by the properties of the nice extension Th of theTh# follows that

MZCE = ® = Th + ©. (2.140)

Therefore (2.138) gives generalized "truth predicate" for set theory Th¥. By Proposition

2.30 one obtains a contradiction.

Remark 2 .24.A cardinal « is inaccessible if and only if « has the following reflection
property: for all subsets U c V,, there exists a < « such that (V,,€,UNV,) is an
elementary substructure of (V,,<,U). (In fact, the set of such « is closed unbounded in
x.) Equivalently, « is I19 -indescribable for all n > 0.

Remark 2 .25.Under ZFC it can be shown that « is inaccessible if and only if (V,,€) is a
model of second order ZFC, [5].

Remark 2 .26. By the reflection property, there exists a < x such that (V,,€) is a
standard model of (first order) ZFC. Hence, the existence of an inaccessible cardinal is a
stronger hypothesis than the existence of the standard model of ZFC}".



3.Derivation inconsistent countable set in set theory ZFC,

with the full semantics.

Let Th = Th™ be an second order theory with the full second order semantics.We
assume now that Th contains ZFCfZSS.We will write for short Th, instead Th',

Remark 3.1.Notice that M is a model of ZFszSS if and only if it is isomorphic to a model
of

the form V,,e N(V, x V,), for k a strongly inaccessible ordinal.

Remark 3.2.Notice that a standard model for the language of first-order set theory is
an ordered pair {D, 1} .Its domain, D, is a nonempty set and its interpretation function, I,
assigns a set of ordered pairs to the two-place predicate " €". A sentence is true in {D, 1}
just in case it is satisfied by all assignments of first-order variables to members of D and
second-order variables to subsets of D; a sentence is satisfiable just in case it is true in
some standard model; finally, a sentence is valid just in case it is true in all standard
models.

Remark 3.3.Notice that:

(DThe assumption that D and | be sets is not without consequence. An immediate
effect of this stipulation is that no standard model provides the language of set theory
with its intended interpretation. In other words, there is no standard model {D, I} in which
D consists of all sets and | assigns the standard element-set relation to "€". Foritis a
theorem of ZFC that there is no set of all sets and that there is no set of ordered-pairs
{x,y} for x an element of y.

(INThus, on the standard definition of model:

(2) it is not at all obvious that the validity of a sentence is a guarantee of its truth;

(2) similarly, it is far from evident that the truth of a sentence is a guarantee of its

satisfiability in some standard model.

(3)If there is a connection between satisfiability, truth, and validity, it is not one that
can be

“read off” standard model theory.

(I11) Nevertheless this is not a problem in the first-order case since set theory provides
us

with two reassuring results for the language of first-order set theory. One result is the
first

order completeness theorem according to which first-order sentences are provable, if

true in all models. Granted the truth of the axioms of the first-order predicate calculus

and the truth preserving character of its rules of inference, we know that a sentence

of the first-order language of set theory is true, if it is provable. Thus, since valid

sentences are provable and provable sentences are true, we know that valid
sentences

are true. The connection between truth and satisfiability immediately follows: if ¢ is

unsatisfiable, then —¢, its negation, is true in all models and hence valid. Therefore,

—¢ is true and ¢ is false.

Definition 3 .1. The language of second order arithmetic Z; is a two-sorted

language: there are two kinds of terms, numeric terms and set terms.

0 is a numeric term,

1.There are in nitely many numeric variables, Xo, X1, ...,Xn, ... €ach of which



IS & numeric term;

2.1f sis a numeric term then Ssis a numeric term;

3.If s,t are numeric terms then +st and -st are numeric terms (abbreviated

s+tands-t);

3.There are infinitely many set variables, Xo, X1,...,Xn... €ach of which is

a set term;

4.1f tis a numeric term and Sthen € tSis an atomic formula (abbreviated

te9);

5.1f s and t are numeric terms then = st and < st are atomic formulas

(abbreviated s = t and s < t correspondingly).

The formulas are built from the atomic formulas in the usual way.

As the examples in the definition suggest, we use upper case letters for

set variables and lower case letters for numeric terms. (Note that the only

set terms are the variables.) It will be more convenient to work with

functions instead of sets, but within arithmetic, these are equivalent: one can

use the pairing operation, and say that X represents a function if for each

n there is exactly one m such that the pair (n,m) belongs to X.

We have to consider what we intend the semantics of this language to

be. One possibility is the semantics of full second order logic: a model

consists of a set M, representing the numeric objects, and interpretations

of the various functions and relations (probably with the requirement that

equality be the genuine equality relation), and a statement VX®(X) is satisfied by the

model if for every possible subset of M, the corresponding statement holds.

Remark 3.1.Full second order logic has no corresponding proof system. An easy

way to see this is to observe that it has no compactness theorem. For example, the
only

model (up to isomorphism) of Peano arithmetic together with the second order
induction

axiom: VX(0 € XA VX(X € X = Sx € X) = VX(X € X)) is the standard model N. This
is

easily seen: any model of Peano arithmetic has an initial segment isomorphic to N;

applying the induction axiom to this set, we see that it must be the whole of the model.

Remark 3.2.There is no completeness theorem for second-order logic. Nor do the
axioms

of second-order ZFC imply a reflection principle which ensures that if a sentence of

second-order set theory is true, then it is true in some standard model. Thus there

may be sentences of the language of second-order set theory that are true but

unsatisfiable, or sentences that are valid, but false. To make this possibility vivid, let Z

be the conjunction of all the axioms of second-order ZFC. Z is surely true. But the

existence of a model for Z requires the existence of strongly inaccessible cardinals.

The axioms of second-order ZFC don't entail the existence of strongly inaccessible

cardinals, and hence the satisfiability of Z is independent of second-order ZFC. Thus,

Z is true but its unsatisfiability is consistent with second-order ZFC [5].

Thus with respect to ZFCS, thisis a semantically defined system and thus it is not

standard to speak about it being contradictory if anything, one might attempt to prove
that



it has no models, which to be what is being done in section 2 for ZFCYs,
Definition 3 .2. Using formula (2.3) one can define predicate Pr#%,(y) really asserting
provability in Th = ZFC5®

Priy(y) < Pron(y) A [Pron(y) = @],
Prrn(y) < Elx(x € M?)Provm(x,y), (3.1)

y = [®]°.

Theorem 3 .1.[12].(L6b’s Theorem for ZFC5®) Let ® be any closed formula with code
y = [®]° € MZ, then Th + Prop([@]°) implies Th ~ @ (see [12] Theorem 5.1).
Proof . Assume that

#) Th + Prop([@]°).

Note that

(1) Th #+ —®. Otherwise one obtains Th + Prrp([—®]°) A Pra([®]°), but this is a
contradiction.

(2) Assume now that (2.i) Th + Pr,([®]¢) and (2.i)) Th v ®.

From (1) and (2.ii) follows that

(3) Th#+ —® and Th v .

Let Th_¢ be a theory

(4)Th_p £ Th U{—D}.From (3) follows that

(5) Con(Th_g).

From (4) and (5) follows that

(6) Thﬁ(p [ PrThﬁq)([—ﬂ)]C).

From (4) and (#) follows that

(7) Thoo = Pron_, ([®]1°).

From (6) and (7) follows that

(8) Th_g F Prn_o([®]°) A Prrn_, ([—®]),but this is a contradiction.

Definition 3 .3. Let ¥ = W(x) be one-place open wiff such that:

Th + IxXe[V(Xy)] (3.2)

Then we will says that, a set y is a Th-set iff there is exist one-place open wiff W(x)
such

thaty = xy. We write y[Th] iff yis a Th-set.

Remark 3.2. Note that

y[Th] <
FP[(Y = xw) A Pron([3%e [P (xe)1]%) A [(Proa((3%e [P (xw)]]%) = Ixe[¥(xw)])]]

Definition 3 .4. Let 3 be a collection such that : VX[x € 3 o Xisa Th-set].
Proposition 3 .1. Collection 3 is a Th-set.
Definition 3 .4. We define now a Th-set R & T :
VXX € Re « (X e I)APrra([x ¢ X]°) A[Prra([x ¢ X]°) = x ¢ X]]. (3.4)

Proposition 3 .2. (i) Th + 3R, (i) R is a countable Th-set.

Proof .(i) Statement Th + 3R follows immediately by using statement 33 and axiom
schema of separation [4], (ii) follows immediately from countability of a set 3.
Proposition 3 .3. A set R is inconsistent.

(3.3)



Proof .From formla (3.2) one obtains
Th - Re € Re = Pron((Re 2 Re]®) A[Pron([Re 2 Re]®) = Re 2 Rel. (3.5)
From formula (3.4) and definition 3.5 one obtains
Th R e R = Re ¢ Re (3.6)
and therefore
Th F (Re € Re) A (Re ¢ Re). (3.7)

But this is a contradiction.

Thus finally we obtain:

Theorem 3 .2.[12].~Con(ZFC5®).

It well known that under ZFC it can be shown that « is inaccessible if and only if (Vy,€)
isa

model of ZFC; [5],[11].Thus finally we obtain.

Theorem 3 .3.[12].-Con(ZFC + IMFC(MEC = Hy)).

4.Consistency Results in Topology.

Definition 4 .1.[19].A Lindel6f space is indestructible if it remains Lindel6f after forcing

with any countably closed partial order.

Theorem 4 .1.[20].1f it is consistent with ZFC that there is an inaccessible cardinal,
then it

is consistent with ZFC that every Lindelof T3 indestructible space of weight < & has
size

< N1.

Corollary 4 .1.[20] The existence of an inaccessible cardinal and the statement:

L[T3,< N81,< N1] = “every Lindel6f T3 indestructible space of weight < X, has size
< N7”

are equiconsistent.

Theorem 4 .2.[12].—Con(ZFC + £[T3,< 81,< X1]).

Proof.Theorem 4.2 immediately follows from Theorem 3.3 and Corollary 4.1.

Definition 4 .2.The X;-Borel Conjecture is the statement: BC[X ;] = “a Lindel6f space
is

indestructible if and only if all of its continuous images in [0; 1]“* have cardinality
< N1".

Theorem 4 .3.[12]. If it is consistent with ZFC that there is an inaccessible cardinal,
then it

is consistent with ZFC that the X;-Borel Conjecture holds.

Corollary 4 .2.The Ni-Borel Conjecture and the existence of an inaccessible cardinal
are

equiconsistent.

Theorem 4 .4.[12] —Con(ZFC + BC[X1]).

Proof.Theorem 4.4 immediately follows from Theorem 3.3 and Corollary 4.2.

Theorem 4 .5.[20]. If w2 is not weakly compact in L, then there is a Lindelof Ts

indestructible space of pseudocharacter < N1 and size N».

Corollary 4 .3.The existence of a weakly compact cardinal and the statement:



E[Tg,g N1,N2] £ “there is no Lindeldf T3 indestructible space of pseudocharacter
< N1

and size N are equiconsistent.

Theorem 4 .6.[12].There is a Lindel6f T3 indestructible space of pseudocharacter < 4
and

size Nz inL.

Proof.Theorem 4.6 immediately follows from Theorem 3.3 and Theorem 4.5.

Theorem 4 .7.[12]. —COH(ZFC + 2[Ta< N, N2]>.

Proof.Theorem 3.7 immediately follows from Theorem 3.3 and Corollary 4.3.

5.Conclusion.

In this paper we have proved that the second order ZFC with the full second-order
semantic is inconsistent,i.e. —.Con(ZFCfZSS). Main result is: let k be an inaccessible cardinal
and Hy is a set of all sets having hereditary size less then k, then
—Con(ZFC + (V = Hy)). This result also was obtained in [7],[12],[13] by using essentially
another approach. For the first time this result has been declared to AMS in [14],[15]. An
important applications in topology and homotopy theory are obtained in [16],[17],[18].
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